版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖北省廣水市市馬坪鎮(zhèn)重點達(dá)標(biāo)名校2024年中考試題猜想數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,四邊形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,則DH=()A. B. C.12 D.242.計算(﹣3)﹣(﹣6)的結(jié)果等于()A.3B.﹣3C.9D.183.如圖,A,B,C,D,E,G,H,M,N都是方格紙中的格點(即小正方形的頂點),要使△DEF與△ABC相似,則點F應(yīng)是G,H,M,N四點中的()A.H或N B.G或H C.M或N D.G或M4.下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()A. B.C. D.5.如圖是一塊帶有圓形空洞和矩形空洞的小木板,則下列物體中最有可能既可以堵住圓形空洞,又可以堵住矩形空洞的是()A.正方體 B.球 C.圓錐 D.圓柱體6.如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn)90°后得到△AB′C′(點B的對應(yīng)點是點B′,點C的對應(yīng)點是點C′,連接CC′.若∠CC′B′=32°,則∠B的大小是()A.32° B.64° C.77° D.87°7.如圖,這是由5個大小相同的整體搭成的幾何體,該幾何體的左視圖是()A. B. C. D.8.在聯(lián)歡會上,甲、乙、丙3人分別站在不在同一直線上的三點A、B、C上,他們在玩搶凳子的游戲,要在他們中間放一個木凳,誰先搶到凳子誰獲勝,為使游戲公平,凳子應(yīng)放的最恰當(dāng)?shù)奈恢檬恰鰽BC的()A.三條高的交點 B.重心 C.內(nèi)心 D.外心9.一個布袋內(nèi)只裝有1個黑球和2個白球,這些球除顏色不同外其余都相同,隨機(jī)摸出一個球后放回攪勻,再隨機(jī)摸出一個球,則兩次摸出的球都是黑球的概率是()A. B. C. D.10.如圖,⊙O的直徑AB=2,C是弧AB的中點,AE,BE分別平分∠BAC和∠ABC,以E為圓心,AE為半徑作扇形EAB,π取3,則陰影部分的面積為()A.﹣4 B.7﹣4 C.6﹣ D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知線段厘米,厘米,線段c是線段a和線段b的比例中項,線段c的長度等于________厘米.12.出售某種手工藝品,若每個獲利x元,一天可售出個,則當(dāng)x=_________元,一天出售該種手工藝品的總利潤y最大.13.如圖,直線y1=mx經(jīng)過P(2,1)和Q(-4,-2)兩點,且與直線y2=kx+b交于點P,則不等式kx+b>mx>-2的解集為_________________.14.在某一時刻,測得一根高為2m的竹竿的影長為1m,同時測得一棟建筑物的影長為9m,那么這棟建筑物的高度為_____m.15.計算:的結(jié)果是_____.16.如圖,為的直徑,與相切于點,弦.若,則______.三、解答題(共8題,共72分)17.(8分)計算:;解方程:18.(8分)如圖,已知,請用尺規(guī)過點作一條直線,使其將分成面積比為兩部分.(保留作圖痕跡,不寫作法)19.(8分)“校園安全”受到全社會的廣泛關(guān)注,某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為度;(2)請補(bǔ)全條形統(tǒng)計圖;(3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對校園安全知識達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù).20.(8分)如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O經(jīng)過AC的中點D,E為⊙O上的一點,連接DE,BE,DE與AB交于點F.求證:BC為⊙O的切線;若F為OA的中點,⊙O的半徑為2,求BE的長.21.(8分)((1)計算:;(2)先化簡,再求值:,其中a=.22.(10分)如圖,在邊長為1個單位長度的小正方形組成的12×12網(wǎng)格中建立平面直角坐標(biāo)系,格點△ABC(頂點是網(wǎng)格線的交點)的坐標(biāo)分別是A(﹣2,2),B(﹣3,1),C(﹣1,0).(1)將△ABC繞點O逆時針旋轉(zhuǎn)90°得到△DEF,畫出△DEF;(2)以O(shè)為位似中心,將△ABC放大為原來的2倍,在網(wǎng)格內(nèi)畫出放大后的△A1B1C1,若P(x,y)為△ABC中的任意一點,這次變換后的對應(yīng)點P1的坐標(biāo)為.23.(12分)如圖,在Rt△ABC中,∠C=90°,AC=AB.求證:∠B=30°.請?zhí)羁胀瓿上铝凶C明.證明:如圖,作Rt△ABC的斜邊上的中線CD,則CD=AB=AD().∵AC=AB,∴AC=CD=AD即△ACD是等邊三角形.∴∠A=°.∴∠B=90°﹣∠A=30°.24.如圖,已知△ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F.求證:△ABE≌△CAD;求∠BFD的度數(shù).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
解:如圖,設(shè)對角線相交于點O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=AB?DH=AC?BD,即5DH=×8×6,解得DH=.故選A.【點睛】本題考查菱形的性質(zhì).2、A【解析】原式=?3+6=3,故選A3、C【解析】
根據(jù)兩三角形三條邊對應(yīng)成比例,兩三角形相似進(jìn)行解答【詳解】設(shè)小正方形的邊長為1,則△ABC的各邊分別為3、、,只能F是M或N時,其各邊是6、2,2.與△ABC各邊對應(yīng)成比例,故選C【點睛】本題考查了相似三角形的判定,相似三角形對應(yīng)邊成比例是解題的關(guān)鍵4、A【解析】分析:根據(jù)中心對稱圖形的定義旋轉(zhuǎn)180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,即可判斷出答案.詳解:A、此圖形是中心對稱圖形,不是軸對稱圖形,故此選項正確;B、此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;C、此圖形是中心對稱圖形,也是軸對稱圖形,故此選項錯誤;D、此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤.故選A.點睛:此題主要考查了中心對稱圖形與軸對稱的定義,關(guān)鍵是找出圖形的對稱中心與對稱軸.5、D【解析】
本題中,圓柱的俯視圖是個圓,可以堵住圓形空洞,它的正視圖和左視圖是個矩形,可以堵住方形空洞.【詳解】根據(jù)三視圖的知識來解答.圓柱的俯視圖是一個圓,可以堵住圓形空洞,而它的正視圖以及側(cè)視圖都為一個矩形,可以堵住方形的空洞,故圓柱是最佳選項.故選D.【點睛】此題考查立體圖形,本題將立體圖形的三視圖運用到了實際中,只要弄清楚了立體圖形的三視圖,解決這類問題其實并不難.6、C【解析】試題分析:由旋轉(zhuǎn)的性質(zhì)可知,AC=AC′,∵∠CAC′=90°,可知△CAC′為等腰直角三角形,則∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故選C.考點:旋轉(zhuǎn)的性質(zhì).7、A【解析】
觀察所給的幾何體,根據(jù)三視圖的定義即可解答.【詳解】左視圖有2列,每列小正方形數(shù)目分別為2,1.故選A.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.8、D【解析】
為使游戲公平,要使凳子到三個人的距離相等,于是利用線段垂直平分線上的點到線段兩端的距離相等可知,要放在三邊中垂線的交點上.【詳解】∵三角形的三條垂直平分線的交點到中間的凳子的距離相等,∴凳子應(yīng)放在△ABC的三條垂直平分線的交點最適當(dāng).故選D.【點睛】本題主要考查了線段垂直平分線的性質(zhì)的應(yīng)用;利用所學(xué)的數(shù)學(xué)知識解決實際問題是一種能力,要注意培養(yǎng).想到要使凳子到三個人的距離相等是正確解答本題的關(guān)鍵.9、D【解析】試題分析:列表如下
黑
白1
白2
黑
(黑,黑)
(白1,黑)
(白2,黑)
白1
(黑,白1)
(白1,白1)
(白2,白1)
白2
(黑,白2)
(白1,白2)
(白2,白2)
由表格可知,隨機(jī)摸出一個球后放回攪勻,再隨機(jī)摸出一個球所以的結(jié)果有9種,兩次摸出的球都是黑球的結(jié)果有1種,所以兩次摸出的球都是黑球的概率是.故答案選D.考點:用列表法求概率.10、A【解析】∵O的直徑AB=2,∴∠C=90°,∵C是弧AB的中點,∴,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分別平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°?(∠BAC+∠CBA)=135°,連接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO為Rt△ABC內(nèi)切圓半徑,∴S△ABC=(AB+AC+BC)?EO=AC?BC,∴EO=?1,∴AE2=AO2+EO2=12+(?1)2=4?2,∴扇形EAB的面積==,△ABE的面積=AB?EO=?1,∴弓形AB的面積=扇形EAB的面積?△ABE的面積=,∴陰影部分的面積=O的面積?弓形AB的面積=?()=?4,故選:A.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
根據(jù)比例中項的定義,列出比例式即可得出中項,注意線段不能為負(fù).【詳解】∵線段c是線段a和線段b的比例中項,∴,解得(線段是正數(shù),負(fù)值舍去),∴,故答案為:1.【點睛】本題考查比例線段、比例中項等知識,比例中項的平方等于兩條線段的乘積,熟練掌握基本概念是解題關(guān)鍵.12、1【解析】先根據(jù)題意得出總利潤y與x的函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的最值問題進(jìn)行解答.解:∵出售某種手工藝品,若每個獲利x元,一天可售出(8-x)個,
∴y=(8-x)x,即y=-x2+8x,
∴當(dāng)x=-=1時,y取得最大值.
故答案為:1.13、-4<x<1【解析】將P(1,1)代入解析式y(tǒng)1=mx,先求出m的值為,將Q點縱坐標(biāo)y=1代入解析式y(tǒng)=x,求出y1=mx的橫坐標(biāo)x=-4,即可由圖直接求出不等式kx+b>mx>-1的解集為y1>y1>-1時,x的取值范圍為-4<x<1.
故答案為-4<x<1.
點睛:本題考查了一次函數(shù)與一元一次不等式,求出函數(shù)圖象的交點坐標(biāo)及函數(shù)與x軸的交點坐標(biāo)是解題的關(guān)鍵.14、1【解析】分析:根據(jù)同時同地的物高與影長成正比列式計算即可得解.詳解:設(shè)這棟建筑物的高度為xm,由題意得,,解得x=1,即這棟建筑物的高度為1m.故答案為1.點睛:同時同地的物高與影長成正比,利用相似三角形的相似比,列出方程,通過解方程求出這棟高樓的高度,體現(xiàn)了方程的思想.15、【解析】試題分析:先進(jìn)行二次根式的化簡,然后合并同類二次根式即可,考點:二次根式的加減16、1【解析】
利用切線的性質(zhì)得,利用直角三角形兩銳角互余可得,再根據(jù)平行線的性質(zhì)得到,,然后根據(jù)等腰三角形的性質(zhì)求出的度數(shù)即可.【詳解】∵與相切于點,∴AC⊥AB,∴,∴,∵,∴,,∵,∴,∴.故答案為1.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.三、解答題(共8題,共72分)17、(1)2(2)【解析】
(1)原式第一項利用負(fù)指數(shù)冪法則計算,第二項利用特殊角的三角函數(shù)值化簡,第三項利用絕對值的代數(shù)意義化簡,最后一項利用零指數(shù)冪法則計算可得到結(jié)果;(2)移項后分解因式,即可得出兩個一元一次方程,求出方程的解即可.【詳解】(1)原式==2;(2)∴【點睛】本題考查了實數(shù)運算以及平方根的應(yīng)用,正確掌握相關(guān)運算法則是解題的關(guān)鍵.18、詳見解析【解析】
先作出AB的垂直平分線,而AB的垂直平分線交AB于D,再作出AD的垂直平分線,而AD的垂直平分線交AD于E,即可得到答案.【詳解】如圖作出AB的垂直平分線,而AB的垂直平分線交AB于D,再作出AD的垂直平分線,而AD的垂直平分線交AD于E,故AE=AD,AD=BD,故AE=AB,而BE=AB,而△AEC與△CEB在AB邊上的高相同,所以△CEB的面積是△AEC的面積的3倍,即S△AEC∶S△CEB=1∶3.【點睛】本題主要考查了三角形的基本概念和尺規(guī)作圖,解本題的要點在于找到AB的四分之一點,即可得到答案.19、(1)60,90;(2)見解析;(3)300人【解析】
(1)由了解很少的有30人,占50%,可求得接受問卷調(diào)查的學(xué)生數(shù),繼而求得扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角;(2)由(1)可求得了解的人數(shù),繼而補(bǔ)全條形統(tǒng)計圖;(3)利用樣本估計總體的方法,即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問卷調(diào)查的學(xué)生共有:30÷50%=60(人);∴扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為:×360°=90°;故答案為60,90;(2)60﹣15﹣30﹣10=5;補(bǔ)全條形統(tǒng)計圖得:(3)根據(jù)題意得:900×=300(人),則估計該中學(xué)學(xué)生中對校園安全知識達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為300人.【點睛】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖,解題的關(guān)鍵是熟練的掌握條形統(tǒng)計圖與扇形統(tǒng)計圖的相關(guān)知識點.20、(1)證明見解析;(2)【解析】
(1)連接BD,由圓周角性質(zhì)定理和等腰三角形的性質(zhì)以及已知條件證明∠ABC=90°即可;(2)連接OD,根據(jù)已知條件求得AD、DF的長,再證明△AFD∽△EFB,然后根據(jù)相似三角形的對應(yīng)邊成比例即可求得.【詳解】(1)連接BD,∵AB為⊙O的直徑,∴BD⊥AC,∵D是AC的中點,∴BC=AB,∴∠C=∠A=45°,∴∠ABC=90°,∴BC是⊙O的切線;(2)連接OD,由(1)可得∠AOD=90°,∵⊙O的半徑為2,F(xiàn)為OA的中點,∴OF=1,BF=3,,∴,∵,∴∠E=∠A,∵∠AFD=∠EFB,∴△AFD∽△EFB,∴,即,∴.【點睛】本題考查了切線的判定與性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理的運用;證明某一線段是圓的切線時,一般情況下是連接切點與圓心,通過證明該半徑垂直于這一線段來判定切線.21、(1)2016;(2)a(a﹣2),.【解析】試題分析:(1)分別根據(jù)0指數(shù)冪及負(fù)整數(shù)指數(shù)冪的計算法則、特殊角的三角函數(shù)值、絕對值的性質(zhì)及數(shù)的開方法則計算出各數(shù),再根據(jù)實數(shù)混合運算的法則進(jìn)行計算即可;(2)先算括號里面的,再算除法,最后把a(bǔ)的值代入進(jìn)行計算即可.試題解析:(1)原式==2016;(2)原式====a(a﹣2),當(dāng)a=時,原式==.22、(1)見解析;(2)見解析,(﹣2x,﹣2y).【解析】
(1)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出點A、B、C的對應(yīng)點D、E、F,即可得到△DEF;(2)先根據(jù)位似中心的位置以及放大的倍數(shù),畫出原三角形各頂點的對應(yīng)頂點,再順次連接各頂點,得到△A1B1C1,根據(jù)△A1B1C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 早教生活領(lǐng)域課程設(shè)計
- 2024年安全員B證考試題庫附答案
- 旅行社管理系統(tǒng)課程設(shè)計
- 2024湖北省建筑安全員A證考試題庫及答案
- 線條畫游戲課程設(shè)計
- 電玩具高級電子電路設(shè)計考核試卷
- 彎角課程設(shè)計cad圖紙
- 游戲網(wǎng)站的課課程設(shè)計
- 煤氣化工藝中CO捕集與減排技術(shù)考核試卷
- 畢業(yè)論文課程設(shè)計建議
- 復(fù)合機(jī)器人行業(yè)分析
- 建立進(jìn)出校園安全控制與管理的方案
- 阿里菜鳥裹裹云客服在線客服認(rèn)證考試及答案
- 水庫防恐反恐應(yīng)急預(yù)案
- 供應(yīng)商管理培訓(xùn)資料課件
- 綠植租擺服務(wù)投標(biāo)方案(完整技術(shù)標(biāo))
- 幼兒園優(yōu)質(zhì)公開課:大班科學(xué)《有趣的仿生》課件
- 通用短視頻拍攝腳本模板
- 公司信息安全管理制度五篇
- GB/T 12574-2023噴氣燃料總酸值測定法
- 急性胰腺炎病案分析
評論
0/150
提交評論