2024屆山東省臨沂、德州、濟(jì)寧市部分縣重點(diǎn)名校中考數(shù)學(xué)仿真試卷含解析_第1頁(yè)
2024屆山東省臨沂、德州、濟(jì)寧市部分縣重點(diǎn)名校中考數(shù)學(xué)仿真試卷含解析_第2頁(yè)
2024屆山東省臨沂、德州、濟(jì)寧市部分縣重點(diǎn)名校中考數(shù)學(xué)仿真試卷含解析_第3頁(yè)
2024屆山東省臨沂、德州、濟(jì)寧市部分縣重點(diǎn)名校中考數(shù)學(xué)仿真試卷含解析_第4頁(yè)
2024屆山東省臨沂、德州、濟(jì)寧市部分縣重點(diǎn)名校中考數(shù)學(xué)仿真試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆山東省臨沂、德州、濟(jì)寧市部分縣重點(diǎn)名校中考數(shù)學(xué)仿真試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖圖形中,可以看作中心對(duì)稱圖形的是()A. B. C. D.2.如圖,四邊形ABCE內(nèi)接于⊙O,∠DCE=50°,則∠BOE=()A.100° B.50° C.70° D.130°3.在同一直角坐標(biāo)系中,二次函數(shù)y=x2與反比例函數(shù)y=1x(x>0)的圖象如圖所示,若兩個(gè)函數(shù)圖象上有三個(gè)不同的點(diǎn)A(x1,m),B(x2,m),C(x3,m),其中m為常數(shù),令ω=x1+x2+x3A.1B.mC.m2D.14.如圖,點(diǎn)A,B在雙曲線y=(x>0)上,點(diǎn)C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于()A. B.2 C.4 D.35.下列各數(shù)中是有理數(shù)的是()A.π B.0 C. D.6.計(jì)算±的值為()A.±3 B.±9 C.3 D.97.如圖的幾何體是由一個(gè)正方體切去一個(gè)小正方體形成的,它的主視圖是()A. B. C. D.8.有兩把不同的鎖和三把鑰匙,其中兩把鑰匙恰好分別能打開(kāi)這兩把鎖,第三把鑰匙不能打開(kāi)這兩把鎖,任意取出一把鑰匙去開(kāi)任意的一把鎖,一次打開(kāi)鎖的概率是()A. B. C. D.9.如圖是一次數(shù)學(xué)活動(dòng)課制作的一個(gè)轉(zhuǎn)盤(pán),盤(pán)面被等分成四個(gè)扇形區(qū)域,并分別標(biāo)有數(shù)字6、7、8、1.若轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,轉(zhuǎn)盤(pán)停止后(當(dāng)指針恰好指在分界線上時(shí),不記,重轉(zhuǎn)),指針?biāo)竻^(qū)域的數(shù)字是奇數(shù)的概率為()A.12 B.14 C.110.點(diǎn)A(m﹣4,1﹣2m)在第四象限,則m的取值范圍是()A.m> B.m>4C.m<4 D.<m<411.3的倒數(shù)是()A. B. C. D.12.在平面直角坐標(biāo)系中,將點(diǎn)P(﹣4,2)繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,則其對(duì)應(yīng)點(diǎn)Q的坐標(biāo)為()A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,書(shū)中有下列問(wèn)題:“今有勾五步,股十二步,問(wèn)勾中容方幾何?”其意思為:“今有直角三角形,勾(短直角邊)長(zhǎng)為5步,股(長(zhǎng)直角邊)長(zhǎng)為12步,問(wèn)該直角三角形能容納的正方形邊長(zhǎng)最大是多少步?”該問(wèn)題的答案是______步.14.如圖,小量角器的零度線在大量角器的零度線上,且小量角器的中心在大量角器的外緣邊上.如果它們外緣邊上的公共點(diǎn)P在小量角器上對(duì)應(yīng)的度數(shù)為65°,那么在大量角器上對(duì)應(yīng)的度數(shù)為_(kāi)____度(只需寫(xiě)出0°~90°的角度).15.的相反數(shù)是______,的倒數(shù)是______.16.如圖,直線y=kx與雙曲線y=(x>0)交于點(diǎn)A(1,a),則k=_____.17.如圖,將一張矩形紙片ABCD沿對(duì)角線BD折疊,點(diǎn)C的對(duì)應(yīng)點(diǎn)為,再將所折得的圖形沿EF折疊,使得點(diǎn)D和點(diǎn)A重合若,,則折痕EF的長(zhǎng)為_(kāi)_____.18.計(jì)算:6﹣=_____三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)把0,1,2三個(gè)數(shù)字分別寫(xiě)在三張完全相同的不透明卡片的正面上,把這三張卡片背面朝上,洗勻后放在桌面上,先從中隨機(jī)抽取一張卡片,記錄下數(shù)字.放回后洗勻,再?gòu)闹谐槿∫粡埧ㄆ?,記錄下?shù)字.請(qǐng)用列表法或樹(shù)狀圖法求兩次抽取的卡片上的數(shù)字都是偶數(shù)的概率.20.(6分)如圖所示,AB是⊙O的一條弦,DB切⊙O于點(diǎn)B,過(guò)點(diǎn)D作DC⊥OA于點(diǎn)C,DC與AB相交于點(diǎn)E.(1)求證:DB=DE;(2)若∠BDE=70°,求∠AOB的大?。?1.(6分)(1)如圖1,半徑為2的圓O內(nèi)有一點(diǎn)P,切OP=1,弦AB過(guò)點(diǎn)P,則弦AB長(zhǎng)度的最大值為_(kāi)_________;最小值為_(kāi)__________.圖①(2)如圖2,△ABC是葛叔叔家的菜地示意圖,其中∠ABC=90°,AB=80米,BC=60米,現(xiàn)在他利用周邊地的情況,把原來(lái)的三角形地拓展成符合條件的面積盡可能大、周長(zhǎng)盡可能長(zhǎng)的四邊形地,用來(lái)建魚(yú)塘.已知葛叔叔想建的魚(yú)塘是四邊形ABCD,且滿足∠ADC=60°,你認(rèn)為葛叔叔的想法能實(shí)現(xiàn)嗎?若能,求出這個(gè)四邊形魚(yú)塘面積和周長(zhǎng)的最大值;若不能,請(qǐng)說(shuō)明理由.圖②22.(8分)未成年人思想道德建設(shè)越來(lái)越受到社會(huì)的關(guān)注,遼陽(yáng)青少年研究所隨機(jī)調(diào)查了本市一中學(xué)100名學(xué)生寒假中花零花錢(qián)的數(shù)量(錢(qián)數(shù)取整數(shù)元),以便引導(dǎo)學(xué)生樹(shù)立正確的消費(fèi)觀.根據(jù)調(diào)查數(shù)據(jù)制成了頻分組頻數(shù)頻率0.5~50.50.150.5~200.2100.5~150.5200.5300.3200.5~250.5100.1率分布表和頻率分布直方圖(如圖).(1)補(bǔ)全頻率分布表;(2)在頻率分布直方圖中,長(zhǎng)方形ABCD的面積是;這次調(diào)查的樣本容量是;(3)研究所認(rèn)為,應(yīng)對(duì)消費(fèi)150元以上的學(xué)生提出勤儉節(jié)約的建議.試估計(jì)應(yīng)對(duì)該校1000名學(xué)生中約多少名學(xué)生提出這項(xiàng)建議.23.(8分)進(jìn)入冬季,某商家根據(jù)市民健康需要,代理銷售一種防塵口罩,進(jìn)貨價(jià)為20元/包,經(jīng)市場(chǎng)銷售發(fā)現(xiàn):銷售單價(jià)為30元/包時(shí),每周可售出200包,每漲價(jià)1元,就少售出5包.若供貨廠家規(guī)定市場(chǎng)價(jià)不得低于30元/包.試確定周銷售量y(包)與售價(jià)x(元/包)之間的函數(shù)關(guān)系式;試確定商場(chǎng)每周銷售這種防塵口罩所獲得的利潤(rùn)w(元)與售價(jià)x(元/包)之間的函數(shù)關(guān)系式,并直接寫(xiě)出售價(jià)x的范圍;當(dāng)售價(jià)x(元/包)定為多少元時(shí),商場(chǎng)每周銷售這種防塵口罩所獲得的利潤(rùn)w(元)最大?最大利潤(rùn)是多少?24.(10分)在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(8,0)、點(diǎn)B(0,4),點(diǎn)C、D分別是邊OA、AB的中點(diǎn).將△ACD繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn),得△AC′D′,記旋轉(zhuǎn)角為α.(I)如圖①,連接BD′,當(dāng)BD′∥OA時(shí),求點(diǎn)D′的坐標(biāo);(II)如圖②,當(dāng)α=60°時(shí),求點(diǎn)C′的坐標(biāo);(III)當(dāng)點(diǎn)B,D′,C′共線時(shí),求點(diǎn)C′的坐標(biāo)(直接寫(xiě)出結(jié)果即可).25.(10分)如圖,四邊形ABCD是邊長(zhǎng)為2的正方形,以點(diǎn)A,B,C為圓心作圓,分別交BA,CB,DC的延長(zhǎng)線于點(diǎn)E,F(xiàn),G.(1)求點(diǎn)D沿三條圓弧運(yùn)動(dòng)到點(diǎn)G所經(jīng)過(guò)的路線長(zhǎng);(2)判斷線段GB與DF的長(zhǎng)度關(guān)系,并說(shuō)明理由.26.(12分)如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).請(qǐng)?jiān)趫D中,畫(huà)出△ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;以點(diǎn)O為位似中心,將△ABC縮小為原來(lái)的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè),畫(huà)出△A2B2C2,并求出∠A2C2B2的正弦值.27.(12分)某校九年級(jí)數(shù)學(xué)測(cè)試后,為了解學(xué)生學(xué)習(xí)情況,隨機(jī)抽取了九年級(jí)部分學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì),得到相關(guān)的統(tǒng)計(jì)圖表如下.成績(jī)/分120﹣111110﹣101100﹣9190以下成績(jī)等級(jí)ABCD請(qǐng)根據(jù)以上信息解答下列問(wèn)題:(1)這次統(tǒng)計(jì)共抽取了名學(xué)生的數(shù)學(xué)成績(jī),補(bǔ)全頻數(shù)分布直方圖;(2)若該校九年級(jí)有1000名學(xué)生,請(qǐng)據(jù)此估計(jì)該校九年級(jí)此次數(shù)學(xué)成績(jī)?cè)贐等級(jí)以上(含B等級(jí))的學(xué)生有多少人?(3)根據(jù)學(xué)習(xí)中存在的問(wèn)題,通過(guò)一段時(shí)間的針對(duì)性復(fù)習(xí)與訓(xùn)練,若A等級(jí)學(xué)生數(shù)可提高40%,B等級(jí)學(xué)生數(shù)可提高10%,請(qǐng)估計(jì)經(jīng)過(guò)訓(xùn)練后九年級(jí)數(shù)學(xué)成績(jī)?cè)贐等級(jí)以上(含B等級(jí))的學(xué)生可達(dá)多少人?

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】

根據(jù)把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做對(duì)稱中心進(jìn)行分析即可.【詳解】解:A、不是中心對(duì)稱圖形,故此選項(xiàng)不合題意;B、不是中心對(duì)稱圖形,故此選項(xiàng)不合題意;C、不是中心對(duì)稱圖形,故此選項(xiàng)不合題意;D、是中心對(duì)稱圖形,故此選項(xiàng)符合題意;故選D.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形,關(guān)鍵掌握中心對(duì)稱圖形定義.2、A【解析】

根據(jù)圓內(nèi)接四邊形的任意一個(gè)外角等于它的內(nèi)對(duì)角求出∠A,根據(jù)圓周角定理計(jì)算即可.【詳解】四邊形ABCE內(nèi)接于⊙O,,由圓周角定理可得,,故選:A.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是圓的內(nèi)接四邊形性質(zhì),解題關(guān)鍵是熟記圓內(nèi)接四邊形的任意一個(gè)外角等于它的內(nèi)對(duì)角(就是和它相鄰的內(nèi)角的對(duì)角).3、D【解析】

本題主要考察二次函數(shù)與反比例函數(shù)的圖像和性質(zhì).【詳解】令二次函數(shù)中y=m.即x2=m,解得x=m或x=-m.令反比例函數(shù)中y=m,即1x=m,解得x=1m,將x的三個(gè)值相加得到ω=m+(-m)+【點(diǎn)睛】巧妙借助三點(diǎn)縱坐標(biāo)相同的條件建立起兩個(gè)函數(shù)之間的聯(lián)系,從而解答.4、B【解析】【分析】依據(jù)點(diǎn)C在雙曲線y=上,AC∥y軸,BC∥x軸,可設(shè)C(a,),則B(3a,),A(a,),依據(jù)AC=BC,即可得到﹣=3a﹣a,進(jìn)而得出a=1,依據(jù)C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,進(jìn)而得到Rt△ABC中,AB=2.【詳解】點(diǎn)C在雙曲線y=上,AC∥y軸,BC∥x軸,設(shè)C(a,),則B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(負(fù)值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故選B.【點(diǎn)睛】本題主要考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,注意反比例函數(shù)圖象上的點(diǎn)(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.5、B【解析】【分析】根據(jù)有理數(shù)是有限小數(shù)或無(wú)限循環(huán)小數(shù),結(jié)合無(wú)理數(shù)的定義進(jìn)行判斷即可得答案.【詳解】A、π是無(wú)限不循環(huán)小數(shù),屬于無(wú)理數(shù),故本選項(xiàng)錯(cuò)誤;B、0是有理數(shù),故本選項(xiàng)正確;C、是無(wú)理數(shù),故本選項(xiàng)錯(cuò)誤;D、是無(wú)理數(shù),故本選項(xiàng)錯(cuò)誤,故選B.【點(diǎn)睛】本題考查了實(shí)數(shù)的分類,熟知有理數(shù)是有限小數(shù)或無(wú)限循環(huán)小數(shù)是解題的關(guān)鍵.6、B【解析】

∵(±9)2=81,∴±±9.故選B.7、D【解析】試題分析:根據(jù)三視圖的法則可知B為俯視圖,D為主視圖,主視圖為一個(gè)正方形.8、B【解析】解:將兩把不同的鎖分別用A與B表示,三把鑰匙分別用A,B與C表示,且A鑰匙能打開(kāi)A鎖,B鑰匙能打開(kāi)B鎖,畫(huà)樹(shù)狀圖得:∵共有6種等可能的結(jié)果,一次打開(kāi)鎖的有2種情況,∴一次打開(kāi)鎖的概率為:.故選B.點(diǎn)睛:本題考查的是用列表法或樹(shù)狀圖法求概率.注意樹(shù)狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹(shù)狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.9、A【解析】

轉(zhuǎn)盤(pán)中4個(gè)數(shù),每轉(zhuǎn)動(dòng)一次就要4種可能,而其中是奇數(shù)的有2種可能.然后根據(jù)概率公式直接計(jì)算即可【詳解】奇數(shù)有兩種,共有四種情況,將轉(zhuǎn)盤(pán)轉(zhuǎn)動(dòng)一次,求得到奇數(shù)的概率為:P(奇數(shù))=24=1【點(diǎn)睛】此題主要考查了幾何概率,正確應(yīng)用概率公式是解題關(guān)鍵.10、B【解析】

根據(jù)第四象限內(nèi)點(diǎn)的橫坐標(biāo)是正數(shù),縱坐標(biāo)是負(fù)數(shù)列出不等式組,然后求解即可.【詳解】解:∵點(diǎn)A(m-1,1-2m)在第四象限,

∴解不等式①得,m>1,

解不等式②得,m>所以,不等式組的解集是m>1,

即m的取值范圍是m>1.

故選B.【點(diǎn)睛】本題考查各象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)特征以及解不等式,記住各象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)是解決的關(guān)鍵,四個(gè)象限的符號(hào)特點(diǎn)分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).11、C【解析】根據(jù)倒數(shù)的定義可知.解:3的倒數(shù)是.主要考查倒數(shù)的定義,要求熟練掌握.需要注意的是:倒數(shù)的性質(zhì):負(fù)數(shù)的倒數(shù)還是負(fù)數(shù),正數(shù)的倒數(shù)是正數(shù),0沒(méi)有倒數(shù).倒數(shù)的定義:若兩個(gè)數(shù)的乘積是1,我們就稱這兩個(gè)數(shù)互為倒數(shù).12、A【解析】

首先求出∠MPO=∠QON,利用AAS證明△PMO≌△ONQ,即可得到PM=ON,OM=QN,進(jìn)而求出Q點(diǎn)坐標(biāo).【詳解】作圖如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P點(diǎn)坐標(biāo)為(﹣4,2),∴Q點(diǎn)坐標(biāo)為(2,4),故選A.【點(diǎn)睛】此題主要考查了旋轉(zhuǎn)的性質(zhì),以及全等三角形的判定和性質(zhì),關(guān)鍵是掌握旋轉(zhuǎn)后對(duì)應(yīng)線段相等.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、.【解析】

如圖,根據(jù)正方形的性質(zhì)得:DE∥BC,則△ADE∽△ACB,列比例式可得結(jié)論.【詳解】如圖,∵四邊形CDEF是正方形,∴CD=ED,DE∥CF,設(shè)ED=x,則CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,∴x=,故答案為.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì)、正方形的性質(zhì),設(shè)未知數(shù),構(gòu)建方程是解題的關(guān)鍵.14、1.【解析】

設(shè)大量角器的左端點(diǎn)是A,小量角器的圓心是B,連接AP,BP,則∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所對(duì)的圓心角是1°,因而P在大量角器上對(duì)應(yīng)的度數(shù)為1°.故答案為1.15、2,【解析】試題分析:根據(jù)相反數(shù)和倒數(shù)的定義分別進(jìn)行求解,﹣2的相反數(shù)是2,﹣2的倒數(shù)是.考點(diǎn):倒數(shù);相反數(shù).16、1【解析】解:∵直線y=kx與雙曲線y=(x>0)交于點(diǎn)A(1,a),∴a=1,k=1.故答案為1.17、【解析】

首先由折疊的性質(zhì)與矩形的性質(zhì),證得是等腰三角形,則在中,利用勾股定理,借助于方程即可求得AN的長(zhǎng),又由≌,易得:,由三角函數(shù)的性質(zhì)即可求得MF的長(zhǎng),又由中位線的性質(zhì)求得EM的長(zhǎng),則問(wèn)題得解【詳解】如圖,設(shè)與AD交于N,EF與AD交于M,根據(jù)折疊的性質(zhì)可得:,,,四邊形ABCD是矩形,,,,,,,設(shè),則,在中,,,,即,,,,≌,,,,,,由折疊的性質(zhì)可得:,,,,,故答案為.【點(diǎn)睛】本題考查了折疊的性質(zhì),全等三角形的判定與性質(zhì),三角函數(shù)的性質(zhì)以及勾股定理等知識(shí),綜合性較強(qiáng),有一定的難度,解題時(shí)要注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.18、3【解析】

按照二次根式的運(yùn)算法則進(jìn)行運(yùn)算即可.【詳解】【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是二次根式的運(yùn)算,解題關(guān)鍵是注意化簡(jiǎn)算式.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、見(jiàn)解析,.【解析】

畫(huà)樹(shù)狀圖展示所有9種等可能的結(jié)果數(shù),找出兩次抽取的卡片上的數(shù)字都是偶數(shù)的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:畫(huà)樹(shù)狀圖為:共有9種等可能的結(jié)果數(shù),其中兩次抽取的卡片上的數(shù)字都是偶數(shù)的結(jié)果數(shù)為4,所以兩次抽取的卡片上的數(shù)字都是偶數(shù)的概率=.【點(diǎn)睛】本題考查了列表法與樹(shù)狀圖法:利用列表法或樹(shù)狀圖法展示所有等可能的結(jié)果n,再?gòu)闹羞x出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率.20、(1)證明見(jiàn)解析;(2)110°.【解析】分析:(1)欲證明DB=DE,只要證明∠BED=∠ABD即可;(2)因?yàn)椤鱋AB是等腰三角形,屬于只要求出∠OBA即可解決問(wèn)題;詳解:(1)證明:∵DC⊥OA,∴∠OAB+∠CEA=90°,∵BD為切線,∴OB⊥BD,∴∠OBA+∠ABD=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠CEA=∠ABD,∵∠CEA=∠BED,∴∠BED=∠ABD,∴DE=DB.(2)∵DE=DB,∠BDE=70°,∴∠BED=∠ABD=55°,∵BD為切線,∴OB⊥BD,∴∠OBA=35°,∵OA=OB,∴∠OBA=180°-2×35°=110°.點(diǎn)睛:本題考查圓周角定理、切線的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考常考題型.21、(1)弦AB長(zhǎng)度的最大值為4,最小值為2;(2)面積最大值為(2500+2400)平方米,周長(zhǎng)最大值為340米.【解析】

(1)當(dāng)AB是過(guò)P點(diǎn)的直徑時(shí),AB最長(zhǎng);當(dāng)AB⊥OP時(shí),AB最短,分別求出即可.(2)如圖在△ABC的一側(cè)以AC為邊做等邊三角形AEC,再做△AEC的外接圓,則滿足∠ADC=60°的點(diǎn)D在優(yōu)弧AEC上(點(diǎn)D不與A、C重合),當(dāng)D與E重合時(shí),S△ADC最大值=S△AEC,由S△ABC為定值,故此時(shí)四邊形ABCD的面積最大,再根據(jù)勾股定理和等邊三角形的性質(zhì)求出此時(shí)的面積與周長(zhǎng)即可.【詳解】(1)(1)當(dāng)AB是過(guò)P點(diǎn)的直徑時(shí),AB最長(zhǎng)=2×2=4;當(dāng)AB⊥OP時(shí),AB最短,AP=∴AB=2(2)如圖,在△ABC的一側(cè)以AC為邊做等邊三角形AEC,再做△AEC的外接圓,當(dāng)D與E重合時(shí),S△ADC最大故此時(shí)四邊形ABCD的面積最大,∵∠ABC=90°,AB=80,BC=60∴AC=∴周長(zhǎng)為AB+BC+CD+AE=80+60+100+100=340(米)S△ADC=S△ABC=∴四邊形ABCD面積最大值為(2500+2400)平方米.【點(diǎn)睛】此題主要考查圓的綜合利用,解題的關(guān)鍵是熟知圓的性質(zhì)定理與垂徑定理.22、⑴表格中依次填10,100.5,25,0.25,150.5,1;⑵0.25,100;⑶1000×(0.3+0.1+0.05)=450(名).【解析】

(1)由頻數(shù)直方圖知組距是50,分組數(shù)列中依次填寫(xiě)100.5,150.5;0.5-50.5的頻數(shù)=100×0.1=10,由各組的頻率之和等于1可知:100.5-150.5的頻率=1-0.1-0.2-0.3-0.1-0.05=0.25,則頻數(shù)=100×0.25=25,由此填表即可;(2)在頻率分布直方圖中,長(zhǎng)方形ABCD的面積為50×0.25=12.5,這次調(diào)查的樣本容量是100;(3)先求得消費(fèi)在150元以上的學(xué)生的頻率,繼而可求得應(yīng)對(duì)該校1000學(xué)生中約多少名學(xué)生提出該項(xiàng)建議..【詳解】解:填表如下:(2)長(zhǎng)方形ABCD的面積為0.25,樣本容量是100;提出這項(xiàng)建議的人數(shù)人.【點(diǎn)睛】本題考查了頻數(shù)分布表,樣本估計(jì)總體、樣本容量等知識(shí).注意頻數(shù)分布表中總的頻率之和是1.23、(1)y=﹣5x+350;(2)w=﹣5x2+450x﹣7000(30≤x≤40);(3)當(dāng)售價(jià)定為45元時(shí),商場(chǎng)每周銷售這種防塵口罩所獲得的利潤(rùn)w(元)最大,最大利潤(rùn)是1元.【解析】試題分析:(1)根據(jù)題意可以直接寫(xiě)出y與x之間的函數(shù)關(guān)系式;(2)根據(jù)題意可以直接寫(xiě)出w與x之間的函數(shù)關(guān)系式,由供貨廠家規(guī)定市場(chǎng)價(jià)不得低于30元/包,且商場(chǎng)每周完成不少于150包的銷售任務(wù)可以確定x的取值范圍;(3)根據(jù)第(2)問(wèn)中的函數(shù)解析式和x的取值范圍,可以解答本題.試題解析:解:(1)由題意可得:y=200﹣(x﹣30)×5=﹣5x+350即周銷售量y(包)與售價(jià)x(元/包)之間的函數(shù)關(guān)系式是:y=﹣5x+350;(2)由題意可得,w=(x﹣20)×(﹣5x+350)=﹣5x2+450x﹣7000(30≤x≤70),即商場(chǎng)每周銷售這種防塵口罩所獲得的利潤(rùn)w(元)與售價(jià)x(元/包)之間的函數(shù)關(guān)系式是:w=﹣5x2+450x﹣7000(30≤x≤40);(3)∵w=﹣5x2+450x﹣7000=﹣5(x﹣45)2+1∵二次項(xiàng)系數(shù)﹣5<0,∴x=45時(shí),w取得最大值,最大值為1.答:當(dāng)售價(jià)定為45元時(shí),商場(chǎng)每周銷售這種防塵口罩所獲得的利潤(rùn)最大,最大利潤(rùn)是1元.點(diǎn)睛:本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是明確題意,可以寫(xiě)出相應(yīng)的函數(shù)解析式,并確定自變量的取值范圍以及可以求出函數(shù)的最值.24、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②C′(,﹣)【解析】

(I)如圖①,當(dāng)OB∥AC′,四邊形OBC′A是平行四邊形,只要證明B、C′、D′共線即可解決問(wèn)題,再根據(jù)對(duì)稱性確定D″的坐標(biāo);(II)如圖②,當(dāng)α=60°時(shí),作C′K⊥AC于K.解直角三角形求出OK,C′K即可解決問(wèn)題;(III)分兩種情形分別求解即可解決問(wèn)題;【詳解】解:(I)如圖①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴當(dāng)OB∥AC′,四邊形OBC′A是平行四邊形,∵∠AOB=90°,∴四邊形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共線,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=OB=2,∴D′(10,4),根據(jù)對(duì)稱性可知,點(diǎn)D″在線段BC′上時(shí),D″(6,4)也滿足條件.綜上所述,滿足條件的點(diǎn)D坐標(biāo)(10,4)或(6,4).(II)如圖②,當(dāng)α=60°時(shí),作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,C′K=2,∴OK=6,∴C′(6,2).(III)①如圖③中,當(dāng)B、C′、D′共線時(shí),由(Ⅰ)可知,C′(8,4).②如圖④中,當(dāng)B、C′、D′共線時(shí),BD′交OA于F,易證△BOF≌△AC′F,∴OF=FC′,設(shè)OF=FC′=x,在Rt△ABC′中,BC′==8,在RT△BOF中,OB=4,OF=x,BF=8﹣x,∴(8﹣x)2=42+x2,解得x=3,∴OF=FC′=3,BF=5,作C′K⊥OA于K,∵OB∥KC′,∴==,∴==,∴KC′=,KF=,∴OK=,∴C′(,﹣).【點(diǎn)睛】本題考查三角形綜合題、旋轉(zhuǎn)變換、矩形的判定和性質(zhì)、平行線的性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是靈活應(yīng)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)用分類討論的思想思考問(wèn)題,屬于中考?jí)狠S題.25、(1)6π;(2)GB=DF,理由詳見(jiàn)解析.【解析】

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論