山東德州市武城縣2025屆數(shù)學九上期末質量檢測模擬試題含解析_第1頁
山東德州市武城縣2025屆數(shù)學九上期末質量檢測模擬試題含解析_第2頁
山東德州市武城縣2025屆數(shù)學九上期末質量檢測模擬試題含解析_第3頁
山東德州市武城縣2025屆數(shù)學九上期末質量檢測模擬試題含解析_第4頁
山東德州市武城縣2025屆數(shù)學九上期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東德州市武城縣2025屆數(shù)學九上期末質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.小馬虎在計算16-x時,不慎將“-”看成了“+”,計算的結果是17,那么正確的計算結果應該是()A.15 B.13 C.7 D.2.下列命題中正確的是()A.對角線相等的四邊形是矩形B.對角線互相垂直的四邊形是菱形C.對角線互相垂直平分且相等的四邊形是正方形D.一組對邊相等,另一組對邊平行的四邊形是平行四邊形3.如圖,四邊形ABCD內(nèi)接于⊙O,已知∠A=80°,則∠C的度數(shù)是()A.40° B.80° C.100° D.120°4.已知二次函數(shù),關于該函數(shù)在﹣1≤x≤3的取值范圍內(nèi),下列說法正確的是()A.有最大值﹣1,有最小值﹣2 B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1 D.有最大值7,有最小值﹣25.如圖,在△ABC中,點D、E分別是AB、AC的中點,若△ADE的面積為4,則△ABC的面積為()A.8 B.12 C.14 D.166.如圖,一個幾何體的主視圖和左視圖都是邊長為1的正方形,俯視圖是一個圓,那么這個幾何體的側面積為()A. B. C. D.7.拋物線y=x2+2x+m﹣1與x軸有兩個不同的交點,則m的取值范圍是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣28.如圖,AB為⊙O的直徑,點C、D在⊙O上,若∠AOD=30°,則∠BCD的度數(shù)是()A.150° B.120° C.105° D.75°9.方差是刻畫數(shù)據(jù)波動程度的量.對于一組數(shù)據(jù),,,…,,可用如下算式計算方差:,其中“5”是這組數(shù)據(jù)的()A.最小值 B.平均數(shù) C.中位數(shù) D.眾數(shù)10.如圖,一次函數(shù)y1=x+b與一次函數(shù)y2=kx+4的圖象交于點P(1,3),則關于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<111.如圖,△ABC中,∠C=90°,AC=3,∠B=30°,點P是BC邊上的動點,則AP的長不可能是()A.3.5 B.4.2 C.5.8 D.712.已知反比例函數(shù)y=(k>0)的圖象經(jīng)過點A(1,a)、B(3,b),則a與b的關系正確的是()A.a(chǎn)=b B.a(chǎn)=﹣b C.a(chǎn)<b D.a(chǎn)>b二、填空題(每題4分,共24分)13.如圖,為了測量塔的高度,小明在處仰望塔頂,測得仰角為,再往塔的方向前進至處,測得仰角為,那么塔的高度是____________.(小明的身高忽略不計,結果保留根號)14.已知二次函數(shù)y=3x2+2x,當﹣1≤x≤0時,函數(shù)值y的取值范圍是_____.15.已知二次函數(shù)y=x2﹣2mx(m為常數(shù)),當﹣1≤x≤2時,函數(shù)值y的最小值為﹣2,則m的值是_____.16.有4根細木棒,它們的長度分別是2cm、4cm、6cm、8cm.從中任取3根恰好能搭成一個三角形的概率是_____.17.如圖,⊙的半徑于點,連接并延長交⊙于點,連接.若,則的長為___.18.半徑為的圓中,弦、的長分別為2和,則的度數(shù)為_____.三、解答題(共78分)19.(8分)如圖,一農(nóng)戶要建一個矩形豬舍,豬舍的一邊利用長為15m的住房墻,另外三邊用27m長的建筑材料圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門,所圍矩形豬舍的長,寬分別為多少米時,豬舍面積為96m2?20.(8分)直線與雙曲線只有一個交點,且與軸、軸分別交于、兩點,AD垂直平分,交軸于點.(1)求直線、雙曲線的解析式;(2)過點作軸的垂線交雙曲線于點,求的面積.21.(8分)已知二次函數(shù)y=﹣x2+bx+c的圖象如圖所示,它與x軸的一個交點坐標為(﹣1,0),與y軸的交點坐標為(0,3).(1)求出b,c的值,并寫出此二次函數(shù)的解析式;(2)根據(jù)圖象,寫出函數(shù)值y為正數(shù)時,自變量x的取值范圍.22.(10分)已知:直線與y軸交于A,與x軸交于D,拋物線y=x2+bx+c與直線交于A、E兩點,與x軸交于B、C兩點,且B點坐標為(1,0).(1)求拋物線的解析式;(2)點P是直線AE下方拋物線上一動點,求△PAE面積的最大值;(3)動點Q在x軸上移動,當△QAE是直角三角形時,直接寫出點Q的坐標;(4)若點M在y軸上,點F在拋物線上,問是否存在以A、E、M、F為頂點的平行四邊形,若存在直接寫出所有符合條件的點M的坐標;若不存在,請說明理由.23.(10分)已知關于的一元二次方程(是常量),它有兩個不相等的實數(shù)根.(1)求的取值范圍;(2)請你從或或三者中,選取一個符合(1)中條件的的數(shù)值代入原方程,求解出這個一元二次方程的根.24.(10分)如圖所示,線段,,,,點為射線上一點,平分交線段于點(不與端點,重合).(1)當為銳角,且時,求四邊形的面積;(2)當與相似時,求線段的長;(3)設,,求關于的函數(shù)關系式,并寫出定義域.25.(12分)如圖,四邊形ABCD為矩形.(1)如圖1,E為CD上一定點,在AD上找一點F,使得矩形沿著EF折疊后,點D落在BC邊上(尺規(guī)作圖,保留作圖痕跡);(2)如圖2,在AD和CD邊上分別找點M,N,使得矩形沿著MN折疊后BC的對應邊B'C'恰好經(jīng)過點D,且滿足B'C'⊥BD(尺規(guī)作圖,保留作圖痕跡);(3)在(2)的條件下,若AB=2,BC=4,則CN=.26.已知關于的一元二次方程的兩實數(shù)根,滿足,求的取值范圍.

參考答案一、選擇題(每題4分,共48分)1、A【詳解】試題分析:由錯誤的結果求出x的值,代入原式計算即可得到正確結果.解:根據(jù)題意得:16+x=17,解得:x=3,則原式=16﹣x=16﹣1=15,故選A考點:解一元一次方程.2、C【解析】試題分析:A、對角線相等的平行四邊形是矩形,所以A選項錯誤;B、對角線互相垂直的平行四邊形是菱形,所以B選項錯誤;C、對角線互相垂直平分且相等的四邊形是正方形,所以C選項正確;D、一組對邊相等且平行的四邊形是平行四邊形,所以D選項錯誤.故選C.考點:命題與定理.3、C【分析】根據(jù)圓內(nèi)接四邊形的性質得出∠C+∠A=180°,代入求出即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,

∴∠C+∠A=180°,

∵∠A=80°,

∴∠C=100°,

故選:C.【點睛】本題考查了圓內(nèi)接四邊形的性質的應用.熟記圓內(nèi)接四邊形對角互補是解決此題的關鍵.4、D【分析】把函數(shù)解析式整理成頂點式的形式,然后根據(jù)二次函數(shù)的最值問題解答.【詳解】解:∵y=x2?4x+2=(x?2)2?2,∴在?1≤x≤3的取值范圍內(nèi),當x=2時,有最小值?2,當x=?1時,有最大值為y=9?2=1.故選D.【點睛】本題考查了二次函數(shù)的最值問題,把函數(shù)解析式轉化為頂點式是解題的關鍵.5、D【分析】直接利用三角形中位線定理得出DE∥BC,DE=BC,再利用相似三角形的判定與性質得出答案.【詳解】解:∵在△ABC中,點D、E分別是AB、AC的中點,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵=,∴,∵△ADE的面積為4,∴△ABC的面積為:16,故選D.【點睛】考查了三角形的中位線以及相似三角形的判定與性質,正確得出△ADE∽△ABC是解題關鍵.6、D【分析】這個幾何體的側面是以底面圓周長為長、圓柱體的高為寬的矩形,根據(jù)矩形的面積公式計算即可.【詳解】根據(jù)三視圖可得幾何體為圓柱,圓柱體的側面積=底面圓的周長圓柱體的高=故答案為:D.【點睛】本題考查了圓柱體的側面積問題,掌握矩形的面積公式是解題的關鍵.7、A【解析】試題分析:由題意知拋物線y=x2+2x+m﹣1與x軸有兩個交點,所以△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故答案選A.考點:拋物線與x軸的交點.8、C【解析】試題解析:連接AC,∵AB為⊙O的直徑,∴∠ACB=90°,∵∠AOD=30°,∴∠ACD=15°,∴∠BCD=∠ACB+∠ACD=105°,故選C.9、B【分析】根據(jù)方差公式的定義即可求解.【詳解】方差中“5”是這組數(shù)據(jù)的平均數(shù).故選B.【點睛】此題主要考查平均數(shù)與方差的關系,解題的關鍵是熟知方差公式的性質.10、C【解析】試題分析:當x>1時,x+b>kx+4,即不等式x+b>kx+4的解集為x>1.故選C.考點:一次函數(shù)與一元一次不等式.11、D【詳解】解:根據(jù)垂線段最短,可知AP的長不可小于3∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=1,∴AP的長不能大于1.∴故選D.12、D【分析】對于反比例函數(shù)(k≠0)而言,當k>0時,作為該函數(shù)圖象的雙曲線的兩支應該在第一和第三象限內(nèi).由點A與點B的橫坐標可知,點A與點B應該在第一象限內(nèi),然后根據(jù)反比例函數(shù)增減性分析問題.【詳解】解:∵點A的坐標為(1,a),點B的坐標為(3,b),∴與點A對應的自變量x值為1,與點B對應的自變量x值為3,∵當k>0時,在第一象限內(nèi)y隨x的增大而減小,又∵1<3,即點A對應的x值小于點B對應的x值,∴點A對應的y值大于點B對應的y值,即a>b故選D【點睛】本題考查反比例函數(shù)的圖像性質,利用數(shù)形結合思想解題是關鍵.二、填空題(每題4分,共24分)13、【分析】由題意易得:∠A=30°,∠DBC=60°,DC⊥AC,即可證得△ABD是等腰三角形,然后利用三角函數(shù),求得答案.【詳解】解:根據(jù)題意得:∠A=30°,∠DBC=60°,DC⊥AC,

∴∠ADB=∠DBC-∠A=30°,

∴∠ADB=∠A=30°,

∴BD=AB=60m,

∴CD=BD?sin60°=60×=30(m).

故答案為:30.【點睛】此題考查了解直角三角形的應用-仰角俯角問題.注意證得△ABD是等腰三角形,利用特殊角的三角函數(shù)值求解是關鍵.14、﹣≤y≤1【分析】利用配方法轉化二次函數(shù)求出對稱軸,根據(jù)二次函數(shù)的性質即可求解.【詳解】∵y=3x2+2x=3(x+)2﹣,∴函數(shù)的對稱軸為x=﹣,∴當﹣1≤x≤0時,函數(shù)有最小值﹣,當x=﹣1時,有最大值1,∴y的取值范圍是﹣≤y≤1,故答案為﹣≤y≤1.【點睛】本題考查二次函數(shù)的性質、一般式和頂點式之間的轉化,解題的關鍵是熟練掌握二次函數(shù)的性質.15、﹣1.5或2【解析】將二次函數(shù)配方成頂點式,分m<-1、m>2和-1≤m≤2三種情況,根據(jù)y的最小值為-2,結合二次函數(shù)的性質求解可得.【詳解】y=x2-2mx=(x-m)2-m2,

①若m<-1,當x=-1時,y=1+2m=-2,

解得:m=-32=-1.5;

②若m>2,當x=2時,y=4-4m=-2,

解得:m=32<2(舍);

③若-1≤m≤2,當x=m時,y=-m2=-2,

解得:m=2或m=-2<-1(舍),

∴m的值為-1.5或2,

故答案為:﹣1.5或【點睛】本題考查了二次函數(shù)的最值,根據(jù)二次函數(shù)的增減性分類討論是解題的關鍵.16、【分析】根據(jù)題意列舉出所有4種等可能的結果數(shù),再根據(jù)題意得出能夠構成三角形的結果數(shù),最后根據(jù)概率公式即可求解.【詳解】從中任取3根共有4種等可能的結果數(shù),它們?yōu)?、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一個三角形為4、6、8,所以恰好能搭成一個三角形的概率=.故答案為.【點睛】本題考查列表法或樹狀圖法和三角形三邊關系,解題的關鍵是通過列表法或樹狀圖法展示出所有等可能的結果數(shù)及求出構成三角形的結果數(shù).17、【詳解】解:連接BE∵⊙的半徑,AB=2∴且,若設⊙的半徑為,則.在△ACO中,根據(jù)勾股定理有,即,解得:.∴.∵是⊙的直徑,∴.故答案為:【點睛】在與圓的有關的線段的計算中,一定要注意各種情況下構成的直角三角形,有了直角三角形就有可能用勾股定理、三角函數(shù)等知識點進行相關計算.本題抓住由半徑、弦心距、半弦構成的直角三角形和半圓上所含的直角三角形,三次利用勾股定理并借助方程思想解決問題.18、或【分析】根據(jù)題意利用垂徑定理及特殊三角函數(shù)進行分析求解即可.【詳解】解:分別作OD⊥AB,OE⊥AC,垂足分別是D、E.∵OE⊥AC,OD⊥AB,弦、的長分別為1和,直徑為,∴AO=,∴∴,即有,同理∴∠BAC=45°+30°=75°,或∠BAC′=45°-30°=15°.∴∠BAC=15°或75°.故答案為:或.【點睛】本題考查圓的垂徑定理及解直角三角形的相關性質,解答此題時要進行分類討論,不要漏解,避免失分.三、解答題(共78分)19、所圍矩形豬舍的長為1m、寬為8m【分析】設矩形豬舍垂直于住房墻一邊長為xm可以得出平行于墻的一邊的長為(27﹣2x+1)m.根據(jù)矩形的面積公式建立方程求出其解就可以了.【詳解】解:設矩形豬舍垂直于住房墻一邊長為xm可以得出平行于墻的一邊的長為(27﹣2x+1)m,由題意得x(27﹣2x+1)=96,解得:x1=6,x2=8,當x=6時,27﹣2x+1=16>15(舍去),當x=8時,27﹣2x+1=1.答:所圍矩形豬舍的長為1m、寬為8m.【點睛】本題考查了列一元二次方程解實際問題的運用,矩形的面積公式的運用及一元二次方程的解法的運用,解答時尋找題目的等量關系是關鍵.20、(1);;(2).【分析】(1)由題意利用待定系數(shù)法求一次函數(shù)以及反比例函數(shù)解析式即可;(2)根據(jù)題意求出BE和BD的值,運用三角形面積公式即可得解.【詳解】解:(1)由已知得,,∴.將點、點坐標代入,得,解得,直線解析式為;將點坐標代入得,∴反比例函數(shù)的解析式為.(2)∵E和B同橫軸坐標,∴當時,即,∵,,D(1,0)∴BD=1,即為以BE為底的高,∴.【點睛】本題考查反比例函數(shù)和幾何圖形的綜合問題,熟練掌握待定系數(shù)法求反比例函數(shù)解析式以及運用數(shù)形結合思維分析是解題的關鍵.21、(1)b=2,c=3,y=-x+2x+3;(2)【分析】(1)把拋物線上的兩點代入解析式,解方程組可求b、c的值;(2)令y=1,求拋物線與x軸的兩交點坐標,觀察圖象,求y>1時,x的取值范圍.【詳解】解:(1)將點(-1,1),(1,3)代入y=-x2+bx+c中,得解得.∴(2)當y=1時,解方程,得,又∵拋物線開口向下,∴當-1<x<3時,y>1.【點睛】本題考查了待定系數(shù)法求拋物線解析式,根據(jù)拋物線與x軸的交點,開口方向,可求y>1時,自變量x的取值范圍.22、(1);(2);(3)或;(4)存在,【分析】(1)求出點A坐標后再利用待定系數(shù)法求解;(2)先聯(lián)立直線與拋物線的解析式求出點E坐標,然后過點P作y軸的平行線交拋物線于點N,如圖,設點P的橫坐標為m,則PN的長可與含m的代數(shù)式表示,而△PAE的面積==,于是求△PAE面積的最大值轉化為求PN的最大值,再利用二次函數(shù)的性質求解即可;(3)先求出AE的長,再設出P點的坐標,然后分三種情況利用勾股定理得到有關P點的橫坐標的方程,解方程即可;(4)分兩種情況討論:若AE為對角線,則AM∥EF,由于過點E與y軸平行的直線與拋物線再無交點,故此種情況不存在;若AE為邊,根據(jù)平行四邊形的性質可設M(0,n),則F(6,n+3)或(﹣6,n-3),然后代入拋物線的解析式求解即可.【詳解】解:(1)∵直線與y軸交于A,∴A點的坐標為(0,2),又∵B點坐標為(1,0),∴解得:∴;(2)根據(jù)題意得:,解得:或,∴A(0,2),E(6,5),過點P作y軸的平行線交拋物線于點N,如圖,設P(m,)則N(m,)則PN=()-()=(0<m<6),=+==,∴==,∴當m=3時,△PAE面積有最大值;(3)∵A(0,2),E(6,5),∴AE=3,設Q(x,0),則AQ2=x2+4,EQ2=(x﹣6)2+25,①若Q為直角頂點,則AQ2+EQ2=AE2,即x2+4+(x﹣6)2+25=45,此時方程無解,故此時不存在x的值;②若點A為直角頂點,則AQ2+AE2=EQ2,即x2+4+45=(x﹣6)2+25,解得:x=1,即Q(1,0);③若E為直角頂點,則AQ2=AE2+EQ2,即x2+4=45+(x﹣6)2+25,解得:x=,即Q(,0);∴Q(1,0)或(,0);(4)若AE為對角線,則AM∥EF,由于過點E與y軸平行的直線與拋物線再無交點,故此時不存在符合題意的點M;若AE為邊,設M(0,n),則F(6,n+3)或(﹣6,n-3),當F(6,n+3)時,此時點E、F重合,不合題意;當F(﹣6,n-3)時,n-3=,解得:n=38,此時點M坐標為(0,38);綜上,存在點M,使以A、E、M、F為頂點的平行四邊形,且點M的坐標是(0,38).【點睛】本題是二次函數(shù)的綜合題,主要考查了待定系數(shù)法求拋物線的解析式、二次函數(shù)的圖象與性質、兩函數(shù)的交點、一元二次方程的解法、勾股定理以及平行四邊形的性質等知識,涉及的知識點多、綜合性強,屬于中考壓軸題,熟練掌握上述知識、靈活應用數(shù)形結合以及分類的思想是解題的關鍵.23、(1);(2),【分析】(1)由一元二次方程有兩個不相等的實數(shù)根,根據(jù)根的判別式,建立關于k的不等式,即可求出k的取值范圍;(2)在k的取值范圍內(nèi)確定一個k的值,代入求得方程的解即可.【詳解】解:(1)由題意,得整理,得,所以的取值范圍是;(2)由(1),知,所以在或或三者中取,將代入原方程得:,化簡得:,因式分解得:,解得兩根為,.【點睛】本題考查了一元二次方程根的判別式及因式分解法解一元二次方程的知識,題目難度一般,需要注意計算的準確度和正確確定k的值.24、(1)16;(2)2或;(3)【分析】(1)過C作CH⊥AB與H,在Rt△BCH中,求出CH、BH,再求出CD即可解決問題;

(2)分兩種情形①∠BCE=∠BAE=90°,由BE=BE,得△BEC≌△BEA;②∠BEC=∠BAE=90°,延長CE交BA延長線于T,得△BEC≌△BET;分別求解即可;

(3)根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論