高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)_第1頁
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)_第2頁
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)_第3頁
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)_第4頁
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

考點(diǎn)一、映射的概念

1.了解對應(yīng)大千世界的對應(yīng)共分四類,分別是:一對一多對——對多多對多

2.映射:設(shè)A和B是兩個(gè)非空集合,如果按照某種對應(yīng)關(guān)系f,對于集合A中的任意

一個(gè)元素x,在集合B中都存在的一個(gè)元素y與之對應(yīng),那么,就稱對應(yīng)f:A-B為集合

A到集合B的一個(gè)映射(mapping).映射是特殊的對應(yīng),簡稱"對一"的對應(yīng).包括:一

對一多對一

考點(diǎn)二、函數(shù)的概念

1.函數(shù):設(shè)A和B是兩個(gè)非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系f,對于集合A

中的任意一個(gè)數(shù)x,在集合B中都存在確定的數(shù)V與之對應(yīng),那么,就稱對應(yīng)f:A-B為

集合A到集合B的一個(gè)函數(shù).記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數(shù)

的定義域;與x的值相對應(yīng)的v的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域.函數(shù)是特殊的

映射,是非空數(shù)集A到非空數(shù)集B的映射.

2.函數(shù)的三要素:定義域、值域、對應(yīng)關(guān)系.這是判斷兩個(gè)函數(shù)是否為同一函數(shù)的依據(jù).

3.區(qū)間的概念:設(shè)a,bR,且a

①(a,b)={xa

⑤(a,+8)={>a}⑥[a,+8)={2a}⑦(—8,b)={

考點(diǎn)三、函數(shù)的表示方法

1.函數(shù)的三種表示方法列表法圖象法解析法

2.分段函數(shù):定義域的不同部分,有不同的對應(yīng)法則的函數(shù).注意兩點(diǎn):①分段函數(shù)是

一個(gè)函數(shù),不要誤認(rèn)為是幾個(gè)函數(shù).②分段函數(shù)的定義域是各段定義域的并集,值域是各段

值域的并集.

考點(diǎn)四、求定義域的幾種情況

①若f(x)是整式,則函數(shù)的定義域是實(shí)數(shù)集R;

②若f(x)是分式,則函數(shù)的定義域是使分母不等于0的實(shí)數(shù)集;

③若f(x)是二次根式,則函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實(shí)數(shù)集合;

④若f(x)是對數(shù)函數(shù),真數(shù)應(yīng)大于零.

⑤.因?yàn)榱愕牧愦文粵]有意義,所以底數(shù)和指數(shù)不能同時(shí)為零.

⑥若f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意

義的實(shí)數(shù)集合;

⑦若f(X)是由實(shí)際問題抽象出來的函數(shù),則函數(shù)的定義域應(yīng)符合實(shí)際問題

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

空間兩條直線只有三種位置關(guān)系:平行、相交、異面。

按是否共面可分為兩類:

(1)共面:平行、相交

(2)異面:

異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線

是異面直線。

兩異面直線所成的角:范圍為(0°,90°)espo空間向量法。

兩異面直線間距離:公垂線段(有且只有一條)espo空間向量法。

若從有無公共點(diǎn)的角度看可分為兩類:

(1)有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒有公共點(diǎn)——平行或異面。

直線和平面的位置關(guān)系:

直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行。

①直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)

②直線和平面相交——有且只有一個(gè)公共點(diǎn)

直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。

空間向量法(找平面的法向量)

規(guī)定:a、直線與平面垂直時(shí),所成的角為直角;b、直線與平面平行或在平面內(nèi),所

成的角為0°角。

由此得直線和平面所成角的取值范圍為[0°,90。]。

最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角。

三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,

那么它也與這條斜線垂直。

直線和平面垂直

直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們

就說直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。

直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那

么這條直線垂直于這個(gè)平面。

直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。

直線和平面平行——沒有公共點(diǎn)

直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說這條直

線和這個(gè)平面平行。

直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那

么這條直線和這個(gè)平面平行。

直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和

這個(gè)平面相交,那么這條直線和交線平行。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

1.求函數(shù)的單調(diào)性:

利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如

果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函

數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,

b)上為常數(shù)函數(shù).

利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);

③解不等式f(x)O,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(X)0,解集

在定義域內(nèi)的不間斷區(qū)間為減區(qū)間.

反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):

設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),

(1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的

x值不構(gòu)成區(qū)間);

(2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的

x值不構(gòu)成區(qū)間);

(3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立.

2.求函數(shù)的極值:

設(shè)函數(shù)yf(x)在xO及其附近有定義,如果對xO附近的所有的點(diǎn)都有f(x)f(xO)

(或f(x)f(xO)),則稱f(xO)是函數(shù)f(x)的極小值(或極大值).

可導(dǎo)函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:

(1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)O的全部

實(shí)根,xlx2xn,順次將定義域分成若干個(gè)小區(qū)間,并列表:x變化時(shí),f(x)和f(x)值

的變化情況:

(4)檢查f(x)的符號并由表格判斷極值.

3.求函數(shù)的值與最小值:

如果函數(shù)f(x)在定義域I內(nèi)存在xO,使得對任意的xl,總有f(x)f(xO),則稱f

(xO)為函數(shù)在定義域上的值.函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的最值是的.

求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)

上的極值;

(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的

值與最小值.

4.解決不等式的有關(guān)問題:

(1)不等式恒成立問題(絕對不等式問題)可考慮值域.

f(x)(xA)的值域是[a,b]時(shí),

不等式f(x)0恒成立的充要條件是f(x)maxO,即bO;

不等式f(x)0恒成立的充要條件是f(x)minO,即aO.

f(x)(xA)的值域是(a,b)時(shí),

不等式f(x)0恒成立的充要條件是bO;不等式f(x)0恒成立的充要條件是aO.

(2)證明不等式f(x)O可轉(zhuǎn)化為證明f(x)maxO,或利用函數(shù)f(x)的單調(diào)性,

轉(zhuǎn)化為證明f(x)f(xO)0.

5.導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用:

實(shí)際生活求解(?。┲祮栴},通常都可轉(zhuǎn)化為函數(shù)的最值.在利用導(dǎo)數(shù)來求函數(shù)最值時(shí),

一定要注意,極值點(diǎn)的單峰函數(shù),極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說明.

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

考點(diǎn)一:集合與簡易邏輯

集合部分一般以選擇題出現(xiàn),屬容易題。重點(diǎn)考查集合間關(guān)系的理解和認(rèn)識(shí)。近年的

試題加強(qiáng)了對集合計(jì)算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這

些問題時(shí),要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡。簡易邏輯考查

有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、"充要關(guān)系"、

命題真?zhèn)蔚呐袛唷⑷Q命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語

表達(dá)數(shù)學(xué)解題過程和邏輯推理。

考點(diǎn)二:函數(shù)與導(dǎo)數(shù)

函數(shù)是高考的重點(diǎn)內(nèi)容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、

函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、幕函數(shù))的應(yīng)用

等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的1?。導(dǎo)數(shù)部分一方面考查導(dǎo)

數(shù)的運(yùn)算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值

與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要

是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、

參數(shù)的取值范圍問題、方程根的個(gè)數(shù)問題、不等式的證明等問題。

考點(diǎn)三:三角函數(shù)與平面向量

一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運(yùn)算等,另一

道對三角知識(shí)點(diǎn)的補(bǔ)充。大題中如果沒有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道

和解答題相互補(bǔ)充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向

量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點(diǎn)考查平面向量數(shù)量積的概

念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、

共線等問題是"新熱點(diǎn)”題型.

考點(diǎn)四:數(shù)列與不等式

不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基

本不等式的應(yīng)用等,通常會(huì)在小題中設(shè)置1到2道題。對不等式的工具性穿插在數(shù)列、解

析幾何、函數(shù)導(dǎo)數(shù)等解答題中進(jìn)行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性

質(zhì)、通項(xiàng)公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識(shí)為工具,綜合運(yùn)

用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目.

考點(diǎn)五:立體幾何與空間向量

一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點(diǎn)、線、面之間的位

置關(guān)系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求

空間角等(文科不要求)在高考試卷中,一般有1~2個(gè)客觀題和一個(gè)解答題,多為中檔題。

考點(diǎn)六:解析幾何

一般有1~2個(gè)客觀題和1個(gè)解答題,其中客觀題主要考查直線斜率、直線方程、圓的

方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標(biāo)準(zhǔn)方程的求解、離心率的計(jì)算等,

解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問題,經(jīng)常與平面向量、函數(shù)與不等

式交匯,考查一些存在性問題、證明問題、定點(diǎn)與定值、最值與范圍問題等。

考點(diǎn)七:算法復(fù)數(shù)推理與證明

高考對算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層"外衣".考查的熱

點(diǎn)是流程圖的識(shí)別與算法語言的閱讀理解.算法與數(shù)列知識(shí)的絡(luò)交匯命題是考查的主流.復(fù)

數(shù)考查的重點(diǎn)是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運(yùn)算及運(yùn)算的幾何意義,一般是選擇

題、填空題,難度不大.推理證明部分命題的方向主要會(huì)在函數(shù)、三角、數(shù)列、立體幾何、

解析幾何等方面,單獨(dú)出題的可能性較小。對于理科,數(shù)學(xué)歸納法可能作為解答題的一小

問.

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

軌跡,包含兩個(gè)方面的問題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹

性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)

必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

一、求動(dòng)點(diǎn)的軌跡方程的基本步驟。

1、建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);

2、寫出點(diǎn)M的集合;

3、列出方程=0;

4、化簡方程為最簡形式;

5、檢驗(yàn)。

二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定

義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。

1、直譯法:直接將條件翻譯成等式,整理化簡后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方

程的方法通常叫做直譯法。

2、定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義

寫出方程,這種求軌跡方程的方法叫做定義法。

3、相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的

坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的

方法叫做相關(guān)點(diǎn)法。

4、參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變

數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法

叫做參數(shù)法。

5、交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)

的軌跡方程,這種求軌跡方程的方法叫做交軌法。

求動(dòng)點(diǎn)軌跡方程的一般步驟:

①建系——建立適當(dāng)?shù)淖鴺?biāo)系;

②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);

③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;

④代換依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程

式,并化簡;

⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

有界性

設(shè)函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對于一切屬于區(qū)間X上的x,恒

有|f(x)|4M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無界.

單調(diào)性

設(shè)函數(shù)f(X)的定義域?yàn)镈,區(qū)間I包含于D.如果對于區(qū)間上任意兩點(diǎn)xl及x2,當(dāng)

xlf(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的.單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為

單調(diào)函數(shù).

奇偶性

設(shè)為一個(gè)實(shí)變量實(shí)值函數(shù),若有f(—X)=—f(X),則f(X)為奇函數(shù).

幾何上,一個(gè)奇函數(shù)關(guān)于原點(diǎn)對稱,亦即其圖像在繞原點(diǎn)做180度旋轉(zhuǎn)后不會(huì)改變.

奇函數(shù)的例子有X、sin(X)、sinh(x)和erf(x).

設(shè)f(x)為一實(shí)變量實(shí)值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù).

幾何上,一個(gè)偶函數(shù)關(guān)于y軸對稱,亦即其圖在對y軸映射后不會(huì)改變.

偶函數(shù)的例子有岡、x2、cos(x)和cosh(x).

偶函數(shù)不可能是個(gè)雙射映射.

連續(xù)性

在數(shù)學(xué)中,連續(xù)是函數(shù)的一種屬性.直觀上來說,連續(xù)的函數(shù)就是當(dāng)輸入值的變化足夠

小的時(shí)候,輸出的變化也會(huì)隨之足夠小的函數(shù).如果輸入值的某種微小的變化會(huì)產(chǎn)生輸出值

的一個(gè)突然的跳躍甚至無法定義,則這個(gè)函數(shù)被稱為是不連續(xù)的函數(shù)(或者說具有不連續(xù)

性).

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

(1)不等關(guān)系

感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實(shí)際背景。

(2)一元二次不等式

①經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過程。

②通過函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。

③會(huì)解一元二次不等式,對給定的一元二次不等式,嘗試設(shè)計(jì)求解的程序框圖。

(3)二元一次不等式組與簡單線性規(guī)劃問題

①從實(shí)際情境中抽象出二元一次不等式組。

②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見例2)。

③從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。

(4)基本不等式

①探索并了解基本不等式的證明過程。

②會(huì)用基本不等式解決簡單的(小)值問題。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

一、高中數(shù)列基本公式:

1、一般數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系:an=

2、等差數(shù)列的通項(xiàng)公式:an=al+(n-l)dan=ak+(n-k)d(其中al為首項(xiàng)、ak為已

知的第k項(xiàng))當(dāng)“0時(shí),an是關(guān)于n的一次式;當(dāng)d=0時(shí),an是一個(gè)常數(shù)。

3、等差數(shù)列的前n項(xiàng)和公式:Sn=

Sn二

Sn=

當(dāng)“0時(shí),Sn是關(guān)于n的二次式且常數(shù)項(xiàng)為0;當(dāng)d=0時(shí)(alwO),Sn=nal是關(guān)于n

的正比例式。

4、等比數(shù)列的通項(xiàng)公式:an=alqn-lan=akqn-k

(其中al為首項(xiàng)、ak為已知的第k項(xiàng),anwO)

5、等比數(shù)列的前n項(xiàng)和公式:當(dāng)q=l時(shí),Sn=nal(是關(guān)于n的正比例式);

當(dāng)qwl時(shí),Sn=

Sn二

二、高中數(shù)學(xué)中有關(guān)等差、等比數(shù)列的結(jié)論

1、等差數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m-

S3m.........仍為等差數(shù)列。

2、等差數(shù)列{an}中,若m+n=p+q,則

3、等比數(shù)列{an}中,若m+n=p+q,則

4、等比數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m-

S3m.........仍為等比數(shù)列。

5、兩個(gè)等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。

6、兩個(gè)等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列仍為等比數(shù)列。

7、等差數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等差數(shù)列。

8、等比數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等比數(shù)列。

9、三個(gè)數(shù)成等差數(shù)列的設(shè)法:a-d,a,a+d;四個(gè)數(shù)成等差的設(shè)法:a-3d,a-d,,a+d,a+3d

10、三個(gè)數(shù)成等比數(shù)列的設(shè)法:a/q,a,aq;

四個(gè)數(shù)成等比的錯(cuò)誤設(shè)法:a/q3,a/q,aq,aq3(為什么?)

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

(一)導(dǎo)數(shù)第一定義

設(shè)函數(shù)y=f(x)在點(diǎn)xO的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在xO處有增量(xO

AA

+X也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)取得增量y=f(xO+AX)-f(xO);如果Ay與AX

之比當(dāng)AX—O時(shí)極限存在,則稱函數(shù)y=f(x)在點(diǎn)xO處可導(dǎo),并稱這個(gè)極限值為函數(shù)

y=f(x)在點(diǎn)xO處的導(dǎo)數(shù)記為f1(xO),即導(dǎo)數(shù)第一定義

(二)導(dǎo)數(shù)第二定義

設(shè)函數(shù)y=f(x)在點(diǎn)xO的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量X在X。處有變化AX(X-

xO也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)變化7=f(x)-f(xO);如果Ay與AX之比當(dāng)AX—0

時(shí)極限存在,則稱函數(shù)y=f(x)在點(diǎn)xO處可導(dǎo),并稱這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)

xO處的導(dǎo)數(shù)記為f1(xO),即導(dǎo)數(shù)第二定義

(三)導(dǎo)函數(shù)與導(dǎo)數(shù)

如果函數(shù)y=f(x)在開區(qū)間I內(nèi)每一點(diǎn)都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這

時(shí)函數(shù)y=f(x)對于區(qū)間I內(nèi)的每一個(gè)確定的x值,都對應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就構(gòu)

成一個(gè)新的函數(shù),稱這個(gè)函數(shù)為原來函數(shù)y=f(x)的導(dǎo)函數(shù),記作y1,f1(x),dy/dx,

df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。

(四)單調(diào)性及其應(yīng)用

L利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟

⑴求f(x)

(2)確定f(x)在(a,b)內(nèi)符號⑶若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函

數(shù)若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)

2.用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟

⑴求f(x)

(2)f(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間;f(x)<0的解集與定義域的交集

的對應(yīng)區(qū)間為減區(qū)間

學(xué)習(xí)了導(dǎo)數(shù)基礎(chǔ)知識(shí)點(diǎn),接下來可以學(xué)習(xí)高二數(shù)學(xué)中涉及到的導(dǎo)數(shù)應(yīng)用的部分。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

第一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章

節(jié)。

主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)

考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重

點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個(gè)分布重點(diǎn)還包含

兩個(gè)分析就是二次方程的分布的問題,這是第一個(gè)板塊。

第二、平面向量和三角函數(shù)。

重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公

式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,

正弦定理和余弦定理來解三角形。難度比較小。

第三、數(shù)列。

數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。

第四、空間向量和立體幾何,在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。

第五、概率和統(tǒng)計(jì)。

這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當(dāng)然應(yīng)該掌握下面幾個(gè)方面,第一……等可

能的概率,第二………事件,第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。

第六、解析幾何。

這是我們比較頭疼的問題,是整個(gè)試卷里難度比較大,計(jì)算量的題,當(dāng)然這一類題,

我總結(jié)下面五類常考的題型,包括:

第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容。考生應(yīng)該掌握它的通法;

第二類我們所講的動(dòng)點(diǎn)問題;

第三類是弦長問題;

第四類是對稱問題,這也是20—年高考已經(jīng)考過的一點(diǎn);

第五類重點(diǎn)問題,這類題時(shí)往往覺得有思路,但是沒有答案,

當(dāng)然這里我相等的是,這道題盡管計(jì)算量很大,但是造成計(jì)算量大的原因,往往有這

個(gè)原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來提高

我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。

第七、押軸題。

考生在備考復(fù)習(xí)時(shí),應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說難度比較大,我建議考生,

采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

一、求動(dòng)點(diǎn)的軌跡方程的基本步驟

1.建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);

2.寫出點(diǎn)M的集合;

3.列出方程=0;

4.化簡方程為最簡形式;

5.檢驗(yàn)。

二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定

義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。

1.直譯法:直接將條件翻譯成等式,整理化簡后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方

程的方法通常叫做直譯法。

2.定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義

寫出方程,這種求軌跡方程的方法叫做定義法。

3.相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)xO、yO,然后代入點(diǎn)P的坐

標(biāo)(xO,yO)所滿足的曲線方程,整理化簡便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法

叫做相關(guān)點(diǎn)法。

4.參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變

數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法

叫做參數(shù)法。

5.交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)

的軌跡方程,這種求軌跡方程的方法叫做交軌法。

-直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟

①建系——建立適當(dāng)?shù)淖鴺?biāo)系;

②設(shè)點(diǎn)----設(shè)軌跡上的任一點(diǎn)P(x,y);

③列式——列出動(dòng)點(diǎn)P所滿足的關(guān)系式;

④代換依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,丫的方程

式,并化簡;

⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

一、集合有關(guān)概念

1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。

2、集合的中元素的三個(gè)特性:

1)元素的確定性;

2)元素的互異性;

3)元素的無序性。

說明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者

不是這個(gè)給定的集合的元素。

(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集

合時(shí),僅算一個(gè)元素。

(3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較

它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋大西洋印度洋北冰洋}

1)用拉丁字母表示集合:A={我校的籃球隊(duì)員}B={12345}。

2)集合的表示方法:列舉法與描述法。

注意?。撼S脭?shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集1\1_或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

關(guān)于"屬于"的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A

記作aeA,相反,a不屬于集合A記作a:Ao

列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號括上。

描述法:將集合中的‘元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確

定的條件表示某些對象是否屬于這個(gè)集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數(shù)學(xué)式子描述法:例:不等式X—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

4、集合的分類:

1)有限集含有有限個(gè)元素的集合。

2)無限集含有無限個(gè)元素的集合。

3)空集不含任何元素的集合例:{x|x2=—5}。

二、集合間的基本關(guān)系

1、"包含"關(guān)系子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA。

2、"相等"關(guān)系(525,且5<5,則5=5)

實(shí)例:?A={x|x2—1=O}B={—11}"元素相同"

結(jié)論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集

合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B。

①任何一個(gè)集合是它本身的子集。AA

②真子集:如果A?B且A?B那就說集合A是集合B的真子集,記作AB(或BA)

③如果ABBC那么AC

④如果AB同時(shí)BA那么A=B

3、不含任何元素的集合叫做空集,記為①。

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的運(yùn)算

1、交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交

集。

記作ADB(讀作"A交B"),即ADB={x|xeA,且xGB}。

2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫

做AB的并集。記作:AUB(讀作"A并B"),即AUB={x|xCA,或XGB}。

3、交集與并集的性質(zhì):AnA=AAn(p=(pAnB=BnA,AUA=A,AU(p=AAUB=BU

Ao

4、全集與補(bǔ)集

(1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A的元

素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

記作:CSA即CSA={x?x?S且x?A}。

(2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看

作一個(gè)全集。通常用U來表示。

(3)性質(zhì):(i)CU(CUA)=A(2)(CUA)DA-)(CUA)UA=UO

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

1.定義法:

判斷B是A的條件,實(shí)際上就是判斷B=>A或者A=>B是否成立,只要把題目中所

給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可.

2.轉(zhuǎn)換法:

當(dāng)所給命題的充要條件不易判斷時(shí),可對命題進(jìn)行等價(jià)裝換,例如改用其逆否命題進(jìn)

行判斷.

3.集合法

在命題的條件和結(jié)論間的關(guān)系判斷有困難時(shí),可從集合的角度考慮,記條件p、q對

應(yīng)的集合分別為A、B,則:

若ACIB,則p是q的充分條件.

若AUB,則p是q的必要條件.

若人=8,則p是q的充要條件.

若AWB,且BWA,則p是q的既不充分也不必要條件.

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

等比數(shù)列公式性質(zhì)知識(shí)點(diǎn)

1.等比數(shù)列的有關(guān)概念

(1)定義:

如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù)(不為零),那么

這個(gè)數(shù)列就叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的表達(dá)

式為an+l/an=q(n£N_,q為非零常數(shù)).

(2)等比中項(xiàng):

如果a、G、b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng).即:G是a與b的等比中

項(xiàng)a,G,b成等比數(shù)列G2=ab.

2.等比數(shù)列的有關(guān)公式

(1)通項(xiàng)公式:an=alqn-l.

3.等比數(shù)列{an}的常用性質(zhì)

Q)在等比數(shù)列{an}中,若m+n=p+q=2r(m,n,p,q,reN_),則aman=apaq=a.

特別地,alan=a2an-l=a3an-2=....

(2)在公比為q的等比數(shù)列{an}中,數(shù)歹Uam,am+k,am+2k,am+3k,…仍是等比

數(shù)列,公比為qk;數(shù)列Sm,S2m-Sm,S3m-S2m,…仍是等比數(shù)列(此時(shí)qR

-l);an=amqn-m.

4.等比數(shù)列的特征

(1)從等比數(shù)列的定義看,等比數(shù)列的任意項(xiàng)都是非零的‘,公比q也是非零常數(shù).

(2)由an+l=qan,qwO并不能立即斷言{an}為等比數(shù)歹心還要驗(yàn)證alwO.

5.等比數(shù)歹的前n項(xiàng)和Sn

(1)等比數(shù)列的前n項(xiàng)和Sn是用錯(cuò)位相減法求得的,注意這種思想方法在數(shù)列求和中

的運(yùn)用.

(2)在運(yùn)用等比數(shù)列的前n項(xiàng)和公式時(shí),必須注意對q=l與qW1分類討論,防止因忽

略q=l這一特殊情形導(dǎo)致解題失誤.

等比數(shù)列知識(shí)點(diǎn)

1.等比中項(xiàng)

如果在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等

比中項(xiàng)。

有關(guān)系:

注:兩個(gè)非零同號的實(shí)數(shù)的等比中項(xiàng)有兩個(gè),它們互為相反數(shù),所以G2=ab是a,G,b

三數(shù)成等比數(shù)列的必要不充分條件。

2.等比數(shù)列通項(xiàng)公式

an=al_q'(n-1)(其中首項(xiàng)是al,公比是q)

an=Sn-S(n-l)(n>2)

前n項(xiàng)和

當(dāng)qwl時(shí),等比數(shù)列的前n項(xiàng)和的公式為

Sn=al(l-q,n)/Q-q)=(al-al_q'n)/(l-q)(q^l)

當(dāng)q=l時(shí),等比數(shù)列的前n項(xiàng)和的公式為

Sn=nal

3.等比數(shù)列前n項(xiàng)和與通項(xiàng)的關(guān)系

an=al=sl(n=l)

an=sn-s(n-l)(n>2)

4.等比數(shù)列性質(zhì)

(1)若m、n、p、qeN_,且m+n=p+q,貝[Jam-an=ap,aq;

(2)在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列。

(3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:

al-an=a2-an-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論