版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設集合,,若,則()A. B. C. D.2.已知函數.設,若對任意不相等的正數,,恒有,則實數a的取值范圍是()A. B.C. D.3.已知函數,且),則“在上是單調函數”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件4.已知函數,,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.5.在中,,則=()A. B.C. D.6.已知集合A={y|y},B={x|y=lg(x﹣2x2)},則?R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)7.若單位向量,夾角為,,且,則實數()A.-1 B.2 C.0或-1 D.2或-18.函數的部分圖象大致是()A. B.C. D.9.若復數()在復平面內的對應點在直線上,則等于()A. B. C. D.10.已知正項等比數列中,存在兩項,使得,,則的最小值是()A. B. C. D.11.已知等差數列的前項和為,若,,則數列的公差為()A. B. C. D.12.設等比數列的前項和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要二、填空題:本題共4小題,每小題5分,共20分。13.已知復數滿足(為虛數單位),則復數的實部為____________.14.若方程有兩個不等實根,則實數的取值范圍是_____________.15.已知圓C:經過拋物線E:的焦點,則拋物線E的準線與圓C相交所得弦長是__________.16.(5分)在長方體中,已知棱長,體對角線,兩異面直線與所成的角為,則該長方體的表面積是____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知都是大于零的實數.(1)證明;(2)若,證明.18.(12分)已知函數.(1)當時,求不等式的解集;(2)若對任意成立,求實數的取值范圍.19.(12分)已知函數,其中.(Ⅰ)若,求函數的單調區(qū)間;(Ⅱ)設.若在上恒成立,求實數的最大值.20.(12分)a,b,c分別為△ABC內角A,B,C的對邊.已知a=3,,且B=60°.(1)求△ABC的面積;(2)若D,E是BC邊上的三等分點,求.21.(12分)已知函數(1)求f(x)的單調遞增區(qū)間;(2)△ABC內角A、B、C的對邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.22.(10分)已知曲線C的極坐標方程是.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數方程是:(是參數).(1)若直線l與曲線C相交于A、B兩點,且,試求實數m值.(2)設為曲線上任意一點,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據交集的結果可得是集合的元素,代入方程后可求的值,從而可求.【詳解】依題意可知是集合的元素,即,解得,由,解得.【點睛】本題考查集合的交,注意根據交集的結果確定集合中含有的元素,本題屬于基礎題.2、D【解析】
求解的導函數,研究其單調性,對任意不相等的正數,構造新函數,討論其單調性即可求解.【詳解】的定義域為,,當時,,故在單調遞減;不妨設,而,知在單調遞減,從而對任意、,恒有,即,,,令,則,原不等式等價于在單調遞減,即,從而,因為,所以實數a的取值范圍是故選:D.【點睛】此題考查含參函數研究單調性問題,根據參數范圍化簡后構造新函數轉換為含參恒成立問題,屬于一般性題目.3、C【解析】
先求出復合函數在上是單調函數的充要條件,再看其和的包含關系,利用集合間包含關系與充要條件之間的關系,判斷正確答案.【詳解】,且),由得或,即的定義域為或,(且)令,其在單調遞減,單調遞增,在上是單調函數,其充要條件為即.故選:C.【點睛】本題考查了復合函數的單調性的判斷問題,充要條件的判斷,屬于基礎題.4、C【解析】
根據總有恒成立可構造函數,求導后分情況討論的最大值可得最大值最大值,即.根據題意化簡可得,求得,再換元求導分析最大值即可.【詳解】由題,總有即恒成立.設,則的最大值小于等于0.又,若則,在上單調遞增,無最大值.若,則當時,,在上單調遞減,當時,,在上單調遞增.故在處取得最大值.故,化簡得.故,令,可令,故,當時,,在遞減;當時,,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點睛】本題主要考查了根據導數求解函數的最值問題,需要根據題意分析導數中參數的范圍,再分析函數的最值,進而求導構造函數求解的最大值.屬于難題.5、B【解析】
在上分別取點,使得,可知為平行四邊形,從而可得到,即可得到答案.【詳解】如下圖,,在上分別取點,使得,則為平行四邊形,故,故答案為B.【點睛】本題考查了平面向量的線性運算,考查了學生邏輯推理能力,屬于基礎題.6、D【解析】
求函數的值域得集合,求定義域得集合,根據交集和補集的定義寫出運算結果.【詳解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴?R(A∩B)=(﹣∞,0]∪[,+∞).故選:D.【點睛】該題考查的是有關集合的問題,涉及到的知識點有函數的定義域,函數的值域,集合的運算,屬于基礎題目.7、D【解析】
利用向量模的運算列方程,結合向量數量積的運算,求得實數的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數量積的運算,屬于基礎題.8、C【解析】
判斷函數的性質,和特殊值的正負,以及值域,逐一排除選項.【詳解】,函數是奇函數,排除,時,,時,,排除,當時,,時,,排除,符合條件,故選C.【點睛】本題考查了根據函數解析式判斷函數圖象,屬于基礎題型,一般根據選項判斷函數的奇偶性,零點,特殊值的正負,以及單調性,極值點等排除選項.9、C【解析】
由題意得,可求得,再根據共軛復數的定義可得選項.【詳解】由題意得,解得,所以,所以,故選:C.【點睛】本題考查復數的幾何表示和共軛復數的定義,屬于基礎題.10、C【解析】
由已知求出等比數列的公比,進而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當,時;當,時;當,時,,所以最小值為.故選:C.【點睛】本題考查等比數列通項公式基本量的計算及最小值,屬于基礎題.11、D【解析】
根據等差數列公式直接計算得到答案.【詳解】依題意,,故,故,故,故選:D.【點睛】本題考查了等差數列的計算,意在考查學生的計算能力.12、A【解析】
首先根據等比數列分別求出滿足,的基本量,根據基本量的范圍即可確定答案.【詳解】為等比數列,若成立,有,因為恒成立,故可以推出且,若成立,當時,有,當時,有,因為恒成立,所以有,故可以推出,,所以“”是“”的充分不必要條件.故選:A.【點睛】本題主要考查了等比數列基本量的求解,充分必要條件的集合關系,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用復數的概念與復數的除法運算計算即可得到答案.【詳解】,所以復數的實部為2.故答案為:2【點睛】本題考查復數的除法運算,考查學生的基本計算能力,是一道基礎題.14、【解析】
由知x>0,故.令,則.當時,;當時,.所以在(0,e)上遞增,在(e,+)上遞減.故,即.15、【解析】
求出拋物線的焦點坐標,代入圓的方程,求出的值,再求出準線方程,利用點到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長的一半,進而求出弦長.【詳解】拋物線E:的準線為,焦點為(0,1),把焦點的坐標代入圓的方程中,得,所以圓心的坐標為,半徑為5,則圓心到準線的距離為1,所以弦長.【點睛】本題考查了拋物線的準線、圓的弦長公式.16、10【解析】
作出長方體如圖所示,由于,則就是異面直線與所成的角,且,在等腰直角三角形中,由,得,又,則,從而長方體的表面積為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案見解析.(2)答案見解析【解析】
(1)利用基本不等式可得,兩式相加即可求解.(2)由(1)知,代入不等式,利用基本不等式即可求解.【詳解】(1)兩式相加得(2)由(1)知于是,.【點睛】本題考查了基本不等式的應用,屬于基礎題.18、(1)(2)【解析】
(1)把代入,利用零點分段討論法求解;(2)對任意成立轉化為求的最小值可得.【詳解】解:(1)當時,不等式可化為.討論:①當時,,所以,所以;②當時,,所以,所以;③當時,,所以,所以.綜上,當時,不等式的解集為.(2)因為,所以.又因為,對任意成立,所以,所以或.故實數的取值范圍為.【點睛】本題主要考查含有絕對值不等式的解法及恒成立問題,恒成立問題一般是轉化為最值問題求解,側重考查數學建模和數學運算的核心素養(yǎng).19、(Ⅰ)單調遞減區(qū)間為,單調遞增區(qū)間為;(Ⅱ).【解析】
(Ⅰ)求出函數的定義域以及導數,利用導數可求出該函數的單調遞增區(qū)間和單調遞減區(qū)間;(Ⅱ)由題意可知在上恒成立,分和兩種情況討論,在時,構造函數,利用導數證明出在上恒成立;在時,經過分析得出,然后構造函數,利用導數證明出在上恒成立,由此得出,進而可得出實數的最大值.【詳解】(Ⅰ)函數的定義域為.當時,.令,解得(舍去),.當時,,所以,函數在上單調遞減;當時,,所以,函數在上單調遞增.因此,函數的單調遞減區(qū)間為,單調遞增區(qū)間為;(Ⅱ)由題意,可知在上恒成立.(i)若,,,,構造函數,,則,,,.又,在上恒成立.所以,函數在上單調遞增,當時,在上恒成立.(ii)若,構造函數,.,所以,函數在上單調遞增.恒成立,即,,即.由題意,知在上恒成立.在上恒成立.由(Ⅰ)可知,又,當,即時,函數在上單調遞減,,不合題意,,即.此時構造函數,.,,,,恒成立,所以,函數在上單調遞增,恒成立.綜上,實數的最大值為【點睛】本題考查利用導數求解函數的單調區(qū)間,同時也考查了利用導數研究函數不等式恒成立問題,本題的難點在于不斷構造新函數來求解,考查推理能力與運算求解能力,屬于難題.20、(1);(2)【解析】
(1)根據正弦定理,可得△ABC為直角三角形,然后可計算b,可得結果.(2)計算,然后根據余弦定理,可得,利用平方關系,可得結果.【詳解】(1)△ABC中,由csinC=asinA+bsinB,利用正弦定理得c2=a2+b2,所以△ABC是直角三角形.又a=3,B=60°,所以;所以△ABC的面積為.(2)設D靠近點B,則BD=DE=EC=1.,所以所以.【點睛】本題考查正弦定理的應用,屬基礎題.21、(1)(2)【解析】
(1)利用降次公式、輔助角公式化簡解析式,根據三角函數單調區(qū)間的求法,求得的單調遞增區(qū)間.(2)先由求得,利用正弦定理得到,結合余弦定理列方程,求得,由此求得三角形的面積.【詳解】(1)函數,,由,得.所以的單調遞增區(qū)間為.(2)因為且為銳角,所以.由及正弦定理可得,又,由余弦定理可得,解得,.【點睛】本小題主要考查三角恒等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度融資租賃合同單方面終止的條件與法律責任合同
- 2025年度海洋船舶租賃保險服務合同
- 2025年度寧波舟山港綜合物流樞紐運營管理合同
- 2025年度金蝶企業(yè)資源計劃系統全面升級支持服務合同
- 2025年度智能物流系統采購合同范本二零二五
- 2025年度網紅直播戶外廣告合作合同
- 二零二五年度門面出租合同(三零版)購物中心租賃規(guī)范
- 生活心理健康教育
- 電商企業(yè)如何構建自己的智能物流體系
- 2025年陽泉貨運資格證安檢考試題
- (2024年)剪映入門教程課件
- 《寵物飼養(yǎng)》課程標準
- 快餐品牌全案推廣方案
- 環(huán)境衛(wèi)生整治推進行動實施方案
- 口腔醫(yī)院感染預防與控制1
- 緒論中國文化概論張岱年
- 發(fā)生輸液反應時的應急預案及處理方法課件
- 中國旅游地理(高職)全套教學課件
- 數字貨幣的匿名性與反洗錢
- 門脈高壓性消化道出血的介入治療課件
- 民航保密培訓課件
評論
0/150
提交評論