




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGEPAGE10概率論與數(shù)理統(tǒng)計(jì)教學(xué)教案第一章隨機(jī)事件與概率授課序號(hào)01教學(xué)基本指標(biāo)教學(xué)課題第一章第一節(jié)隨機(jī)事件及其運(yùn)算課的類(lèi)型新知識(shí)課教學(xué)方法講授、課堂提問(wèn)、討論、啟發(fā)、自學(xué)教學(xué)手段黑板多媒體結(jié)合教學(xué)重點(diǎn)隨機(jī)事件的定義、隨機(jī)事件的運(yùn)算與關(guān)系教學(xué)難點(diǎn)隨機(jī)事件的運(yùn)算參考教材高教版、浙大版《概率論與梳理統(tǒng)計(jì)》作業(yè)布置課后習(xí)題大綱要求了解隨機(jī)試驗(yàn)的概念了解樣本空間的概念理解隨機(jī)事件的關(guān)系和運(yùn)算教學(xué)基本內(nèi)容一、基本概念:1、在一定條件下必然發(fā)生,稱(chēng)這類(lèi)現(xiàn)象稱(chēng)為確定性現(xiàn)象。2、在這些現(xiàn)象中,結(jié)果都不止一個(gè),并且事先無(wú)法預(yù)知會(huì)出現(xiàn)哪個(gè)結(jié)果,這類(lèi)現(xiàn)象被稱(chēng)為隨機(jī)現(xiàn)象。3、隨機(jī)現(xiàn)象在一次試驗(yàn)中呈現(xiàn)不確定的結(jié)果,而在大量重復(fù)試驗(yàn)中結(jié)果呈現(xiàn)某種規(guī)律性,例如相對(duì)比較穩(wěn)定的性別比例,這種規(guī)律性稱(chēng)為統(tǒng)計(jì)規(guī)律性。4、為了研究隨機(jī)現(xiàn)象的統(tǒng)計(jì)規(guī)律性,就要對(duì)客觀(guān)事物進(jìn)行觀(guān)察,觀(guān)察的過(guò)程叫試驗(yàn)。5、隨機(jī)試驗(yàn)的一切可能結(jié)果組成的集合稱(chēng)為樣本空間,記為,其中表示試驗(yàn)的每一個(gè)可能結(jié)果,又稱(chēng)為樣本點(diǎn),即樣本空間為全體樣本點(diǎn)的集合。6、在一次試驗(yàn)中可能出現(xiàn),也可能不出現(xiàn)的一類(lèi)結(jié)果稱(chēng)為隨機(jī)事件。二、定理與性質(zhì)1、隨機(jī)試驗(yàn)的三個(gè)特點(diǎn):在相同的條件下試驗(yàn)可以重復(fù)進(jìn)行;每次試驗(yàn)的結(jié)果不止一個(gè),但是試驗(yàn)之前可以明確試驗(yàn)的所有可能結(jié)果;每次試驗(yàn)將要發(fā)生什么樣的結(jié)果是事先無(wú)法預(yù)知的。2、事件的定義解析任一隨機(jī)事件A是樣本空間的一個(gè)子集。當(dāng)試驗(yàn)的結(jié)果屬于該子集時(shí),就說(shuō)事件A發(fā)生了。相反地,如果試驗(yàn)結(jié)果不屬于該子集,就說(shuō)事件A沒(méi)有發(fā)生。例如,如果擲骰子擲出了1,則事件A發(fā)生,如果擲出2,則事件A不發(fā)生。僅含一個(gè)樣本點(diǎn)的隨機(jī)事件稱(chēng)為基本事件。樣本空間也是自己的一個(gè)子集,所以它也稱(chēng)為一個(gè)事件。由于包含所有可能試驗(yàn)結(jié)果,所以在每一次試驗(yàn)中一定發(fā)生,又稱(chēng)為必然事件。空集也是樣本空間的一個(gè)子集,所以它也稱(chēng)為一個(gè)事件。由于中不包含任何元素,所以在每一次試驗(yàn)中一定不發(fā)生,又稱(chēng)為不可能事件。3、隨機(jī)事件間的關(guān)系(1)如果(或),則稱(chēng)事件被包含在B中(或稱(chēng)B包含A),見(jiàn)圖1.1。從概率論的角度來(lái)說(shuō):事件發(fā)生必導(dǎo)致事件發(fā)生。(2)如果同時(shí)成立,則稱(chēng)事件與相等,記為。從概率論的角度來(lái)說(shuō):事件發(fā)生必導(dǎo)致事件發(fā)生,且發(fā)生必導(dǎo)致發(fā)生,即與是同一個(gè)事件。(3)如果與沒(méi)有相同的樣本點(diǎn),則稱(chēng)事件與互不相容(或稱(chēng)為互斥),見(jiàn)圖1.2。從概率論的角度來(lái)說(shuō):事件與事件不可能同時(shí)發(fā)生。4、隨機(jī)事件間的運(yùn)算(1)事件與的并,記為,見(jiàn)圖1.3,表示由事件與中所有樣本點(diǎn)組成的新事件。從概率論的角度來(lái)說(shuō):事件與中至少有一個(gè)發(fā)生。(2)事件與的交,記為(或),見(jiàn)圖1.4,表示由事件與中公共的樣本點(diǎn)組成的新事件。從概率論的角度來(lái)說(shuō):事件與同時(shí)發(fā)生。(3)事件與的差,記為,見(jiàn)圖1.5,表示由在事件中且不在事件中的樣本點(diǎn)組成的新事件。從概率論的角度來(lái)說(shuō):事件發(fā)生而不發(fā)生。(4)事件的對(duì)立事件(或稱(chēng)為逆事件、余事件),記為,見(jiàn)圖1.6,表示由中且不在事件中的所有樣本點(diǎn)組成的新事件,即。從概率論的角度來(lái)說(shuō):事件不發(fā)生。5、事件的運(yùn)算性質(zhì)定律:(1)交換律:=,=;(2)結(jié)合律:,;(3)分配律:,;(4)對(duì)偶律(德?)摩根公式):,并事件的對(duì)立等于對(duì)立事件的交,,交事件的對(duì)立等于對(duì)立事件的并。三、主要例題:例1隨機(jī)試驗(yàn)的例子:(1)拋擲一枚均勻的硬幣,有可能正面朝上,也有可能反面朝上;(2)拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù);(3)某快餐店一天內(nèi)接到的訂單量;(4)航班起飛延誤的時(shí)間;(5)一支正常交易的A股股票每天的漲跌幅。例2下面給出例1中隨機(jī)試驗(yàn)的樣本空間:(1)拋擲一枚均勻硬幣的樣本空間為,其中表示正面朝上,表示反面朝上;(2)拋擲一枚均勻骰子的樣本空間為;(3)某快餐店一天內(nèi)接到的訂單量的樣本空間為;(4)航班起飛延誤時(shí)間的樣本空間為;(5)一支正常交易的A股股票每天漲跌幅的樣本空間為。例3拋擲一枚均勻的骰子的樣本空間為隨機(jī)事件A=“出現(xiàn)6點(diǎn)”=;隨機(jī)事件B=“出現(xiàn)偶數(shù)點(diǎn)”=;隨機(jī)事件C=“出現(xiàn)的點(diǎn)數(shù)不超過(guò)6”,即一定會(huì)發(fā)生的必然事件;隨機(jī)事件D=“出現(xiàn)的點(diǎn)數(shù)超過(guò)6”=,即一定不會(huì)發(fā)生的不可能事件。例4用事件的運(yùn)算關(guān)系式表示下列事件,則:(1)出現(xiàn),都不出現(xiàn)(記為);(2)所有三個(gè)事件都出現(xiàn)(記為);(3)三個(gè)事件都不出現(xiàn)(記為);(4)三個(gè)事件中至少有一個(gè)出現(xiàn)(記為);(5)三個(gè)事件中至少有兩個(gè)出現(xiàn)(記為);(6)至多一個(gè)事件出現(xiàn)(記為);(7)至多二個(gè)事件出現(xiàn)(記為)授課序號(hào)02教學(xué)基本指標(biāo)教學(xué)課題第一章第二節(jié)概率的定義及其性質(zhì)課的類(lèi)型新知識(shí)課教學(xué)方法講授、課堂提問(wèn)、討論、啟發(fā)、自學(xué)教學(xué)手段黑板多媒體結(jié)合教學(xué)重點(diǎn)概率的性質(zhì)教學(xué)難點(diǎn)公理化定義的理解參考教材高教版、浙大版《概率論與梳理統(tǒng)計(jì)》作業(yè)布置課后習(xí)題大綱要求理解概率的公理化定義掌握概率的基本性質(zhì)掌握加法公式、減法公式的運(yùn)用教學(xué)基本內(nèi)容一、基本概念:1、概率的公理化定義設(shè)任一隨機(jī)試驗(yàn),為相應(yīng)的樣本空間,若對(duì)任意事件,有實(shí)數(shù)與之對(duì)應(yīng),且滿(mǎn)足下面條件,則數(shù)稱(chēng)為事件的概率:(1)非負(fù)性公理對(duì)于任意事件,總有;(2)規(guī)范性公理;(3)可列可加性公理若為兩兩互不相容事件組,則有.二、定理與性質(zhì):性質(zhì)1。性質(zhì)2(有限可加性)設(shè)為兩兩互不相容的事件,則有。性質(zhì)3對(duì)任意事件,有。性質(zhì)4若事件,則。推論若事件,則。性質(zhì)5(減法公式)設(shè)為任意事件,則。性質(zhì)6(加法公式)設(shè)為任意事件,則。三、主要例題:例1(生日問(wèn)題)個(gè)人中至少有兩個(gè)人的生日相同的概率是多少?例2已知事件的概率依次為0.2,0.4,0.5,求概率.例3設(shè)事件為三個(gè)隨機(jī)事件,已知,,,,則至少發(fā)生一個(gè)的概率是多少?都不發(fā)生的概率是多少?授課序號(hào)03教學(xué)基本指標(biāo)教學(xué)課題第一章第三節(jié)等可能概型課的類(lèi)型新知識(shí)課教學(xué)方法講授、課堂提問(wèn)、討論、啟發(fā)、自學(xué)教學(xué)手段黑板多媒體結(jié)合教學(xué)重點(diǎn)古典概型的求解教學(xué)難點(diǎn)事件中樣本點(diǎn)的計(jì)算參考教材高教版、浙大版《概率論與梳理統(tǒng)計(jì)》作業(yè)布置課后習(xí)題大綱要求掌握古典概型和幾何概型的定義掌握古典概型和幾何概型問(wèn)題的求解教學(xué)基本內(nèi)容一、基本概念:1、古典概型(1)隨機(jī)試驗(yàn)的樣本空間只有有限個(gè)樣本點(diǎn),不妨記作;(2)每個(gè)樣本點(diǎn)發(fā)生的可能性相等,即若隨機(jī)事件A中含有個(gè)樣本點(diǎn),則事件A的概率為2、幾何概型(1)隨機(jī)試驗(yàn)的樣本空間是某個(gè)區(qū)域(可以是一維區(qū)間、二維平面區(qū)域或三維空間區(qū)域),(2)每個(gè)樣本點(diǎn)發(fā)生的可能性相等,則事件的概率公式為:其中在一維情形下表示長(zhǎng)度,在二維情形下表示面積,在三維情形下表示體積。二、主要例題:例1拋擲兩顆均勻的骰子,觀(guān)察出現(xiàn)的點(diǎn)數(shù),設(shè)事件A表示“兩個(gè)骰子的點(diǎn)數(shù)一樣”,求.例2(抽樣模型)已知件產(chǎn)品中有件是不合格品,其余是合格品。今從中隨機(jī)地抽取件。試求:(1)不放回抽樣件中恰有件不合格品的概率;(2)有放回抽樣件中恰有件不合格品的概率。例3(抽獎(jiǎng)問(wèn)題)今有某公司年會(huì)的抽獎(jiǎng)活動(dòng),設(shè)共有張券,其中只有一張有獎(jiǎng),每人只能抽一張,設(shè)事件表示為“第個(gè)人抽到有獎(jiǎng)的券”,試在有放回、無(wú)放回兩種抽樣方式下,求.例4在區(qū)間內(nèi)任取一個(gè)數(shù),求這個(gè)數(shù)落在區(qū)間內(nèi)的概率;這個(gè)數(shù)落在區(qū)間中點(diǎn)的概率;這個(gè)數(shù)落在區(qū)間內(nèi)的概率。例5(碰面問(wèn)題)甲、乙兩人約定在中午的12時(shí)到13時(shí)之間在學(xué)校咖啡屋碰面,并約定先到者等候另一人10分鐘,過(guò)時(shí)即可離去。求兩人能碰面的概率.例6(蒲豐投針問(wèn)題)蒲豐投針試驗(yàn)是第一個(gè)用幾何形式表達(dá)概率問(wèn)題的例子。假設(shè)平面上畫(huà)滿(mǎn)間距為的平行直線(xiàn),向該平面隨機(jī)投擲一枚長(zhǎng)度為的針,求針與任一平行線(xiàn)相交的概率.授課序號(hào)04教學(xué)基本指標(biāo)教學(xué)課題第一章第四節(jié)條件概率及事件的獨(dú)立性課的類(lèi)型新知識(shí)課教學(xué)方法講授、課堂提問(wèn)、討論、啟發(fā)、自學(xué)教學(xué)手段黑板多媒體結(jié)合教學(xué)重點(diǎn)條件概率的定義,乘法公式,獨(dú)立性的定義教學(xué)難點(diǎn)獨(dú)立性定義的理解參考教材高教版、浙大版《概率論與梳理統(tǒng)計(jì)》作業(yè)布置課后習(xí)題大綱要求理解條件概率的概念理解隨機(jī)事件相互獨(dú)立的概念掌握用事件相互獨(dú)立性進(jìn)行概率計(jì)算的方法教學(xué)基本內(nèi)容一、基本概念:1,設(shè)是隨機(jī)試驗(yàn),是樣本空間,是事件且,稱(chēng)為在事件發(fā)生的條件下事件發(fā)生的概率,稱(chēng)為條件概率,記為.2,設(shè)為試驗(yàn)的兩個(gè)事件,如果滿(mǎn)足等式:,稱(chēng)事件相互獨(dú)立,簡(jiǎn)稱(chēng)獨(dú)立。3,設(shè)是試驗(yàn)的三個(gè)事件,如果滿(mǎn)足等式:,,。稱(chēng)事件兩兩獨(dú)立。4,設(shè)是試驗(yàn)的三個(gè)事件,如果滿(mǎn)足等式:,,,.稱(chēng)事件相互獨(dú)立。5,一般地,設(shè)是試驗(yàn)的個(gè)事件,如果對(duì)于其中任意兩個(gè)事件的積事件的概率等于各事件概率的積,則稱(chēng)事件兩兩獨(dú)立;如果對(duì)于其中任意兩個(gè)事件、任意三個(gè)事件、…、任意個(gè)事件的積事件的概率等于各事件概率的積,則稱(chēng)事件相互獨(dú)立。二、定理與性質(zhì):1,條件概率也滿(mǎn)足概率的公理化定義的三條基本性質(zhì),即非負(fù)性、規(guī)范性和可列可加性,如下:(1)非負(fù)性公理對(duì)于任意事件,總有;(2)規(guī)范性公理;(3)可列可加性公理若為兩兩互不相容事件組,則有.2,(概率的乘法定理)設(shè)為試驗(yàn)的事件,且,則有.同理,若,有。3,設(shè)為任意的三個(gè)事件,且則。4,更一般的,有下面公式:設(shè)為事件組,且,則.5,若事件與事件相互獨(dú)立,則下列各對(duì)事件也相互獨(dú)立:與、與、與。主要例題:例1假設(shè)拋擲一顆均勻的骰子,已知擲出的點(diǎn)數(shù)是偶數(shù),求點(diǎn)數(shù)超過(guò)3的概率?例2假設(shè)一批產(chǎn)品中一二三等品各有60個(gè),30個(gè)和10個(gè),從中任取一件,發(fā)現(xiàn)不是三等品,則取到的是一等品的概率是多少?例3設(shè)為事件,且已知,求。例4一批零件共100個(gè),次品率為10%,從中不放回取三次(每次取一個(gè)),求第三次才取得正品的概率.例6把一枚硬幣獨(dú)立的擲兩次.事件表示“擲第次時(shí)出現(xiàn)正面”,;事件表示“正、反面各出現(xiàn)一次”.試證,兩兩獨(dú)立,但不相互獨(dú)立.例7設(shè)某車(chē)間有三條獨(dú)立工作的生產(chǎn)流水線(xiàn),在一天內(nèi)每條流水線(xiàn)要求工人維護(hù)的概率依次為0.9、0.8和0.7.求一天中三臺(tái)車(chē)床至少有一條流水線(xiàn)需要工人維護(hù)的概率.例8設(shè)有n個(gè)元件獨(dú)立工作,分別按照串聯(lián)、并聯(lián)的方式組成兩個(gè)系統(tǒng)和(如圖),已知每個(gè)元件正常工作的概率都為p,分別求系統(tǒng)A和B的可靠性(即為系統(tǒng)正常工作的概率)例9設(shè)事件相互獨(dú)立。試求授課序號(hào)05教學(xué)基本指標(biāo)教學(xué)課題第一章第五節(jié)全概率公式與貝葉斯公式課的類(lèi)型新知識(shí)課教學(xué)方法講授、課堂提問(wèn)、討論、啟發(fā)、自學(xué)教學(xué)手段黑板多媒體結(jié)合教學(xué)重點(diǎn)全概率公式和貝葉斯公式教學(xué)難點(diǎn)掌握用全概率公式和貝葉斯公式進(jìn)行計(jì)算參考教材高教版、浙大版《概率論與梳理統(tǒng)計(jì)》作業(yè)布置課后習(xí)題大綱要求理解全概率公式和貝葉斯公式的定義,掌握用全概率公式和貝葉斯公式進(jìn)行概率計(jì)算教學(xué)基本內(nèi)容一、基本概念:1、設(shè)是隨機(jī)試驗(yàn),是相應(yīng)的樣本空間,為事件組,若滿(mǎn)足條件: ①②則稱(chēng)事件組為樣本空間的一個(gè)完備事件組.完備事件組完成了對(duì)樣本空間的一個(gè)分割.二、定理與性質(zhì):(全概率公式)設(shè)為完備事件組,且,為任一事件,則。(貝葉斯公式)設(shè)為完備事件組,,為任一事件,則.三、主要例題:例1某手機(jī)制造企業(yè)有二個(gè)生產(chǎn)基地,一個(gè)在S市,一個(gè)在T市,但都生產(chǎn)同型號(hào)手機(jī).S市生產(chǎn)的手機(jī)占總數(shù)的60%,而T市的則占40%.二個(gè)基地生產(chǎn)的手機(jī)都送到二地之間的一個(gè)中心倉(cāng)庫(kù),且產(chǎn)品混合放在一起.從質(zhì)量檢查可知S市生產(chǎn)的手機(jī)有5%不合格;T市生產(chǎn)的手機(jī)則有10%不合格.求:從中心倉(cāng)庫(kù)隨機(jī)抽出一個(gè)手機(jī),求它是不合格品的概率;從中心倉(cāng)庫(kù)隨機(jī)抽出一個(gè)手機(jī)發(fā)現(xiàn)它是不合格的,求它是來(lái)自S市生產(chǎn)的概率是多少?例2有三只箱子,第一個(gè)箱子中有四個(gè)黑球和一個(gè)白球,第二個(gè)箱子中有三個(gè)黑球和三個(gè)白球,第三個(gè)箱子中有三個(gè)黑球和五個(gè)白球.現(xiàn)隨機(jī)取一箱,再?gòu)倪@個(gè)箱子中取一球,已知取到的是白球,這個(gè)白球是屬于第二個(gè)箱子的概率是多少?例3某種疾病的患病率為0.1%,某項(xiàng)血液醫(yī)學(xué)檢查的誤診率為1%,即非患者中有1%的人驗(yàn)血結(jié)果為陽(yáng)性,患者中有1%的人驗(yàn)血結(jié)果為陰性。現(xiàn)知某人驗(yàn)血結(jié)果是陽(yáng)性,求他確實(shí)患有該種疾病的概率。例4(敏感性問(wèn)題調(diào)查)考試作弊,賭博,偷稅漏稅,酒后駕車(chē)等一些涉及個(gè)人隱私或利害關(guān)系,不受被調(diào)查對(duì)象歡迎或感到尷尬的敏感問(wèn)題。即使做無(wú)記名的直接調(diào)查,很難消除被調(diào)查者的顧慮,極有可能拒絕應(yīng)答或故意做出錯(cuò)誤的回答,很難保證數(shù)據(jù)的真實(shí)性,使得調(diào)查的結(jié)果存在很大的誤差。如何設(shè)計(jì)合理的調(diào)查方案,來(lái)提高應(yīng)答率并降低不真實(shí)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇歷屆考編試題及答案
- 單詞認(rèn)讀測(cè)試題及答案
- 確保設(shè)計(jì)成果一致性的國(guó)際商業(yè)美術(shù)設(shè)計(jì)師考試實(shí)施方案與試題及答案
- 2024年助理廣告師考試信息獲取技巧試題及答案
- 對(duì)應(yīng)課本測(cè)試題及答案
- 2024年助理廣告師考試知識(shí)應(yīng)用分析試題及答案
- 助理廣告師考試中的創(chuàng)意思考與活動(dòng)設(shè)計(jì)試題及答案
- 專(zhuān)科工程地質(zhì)試題及答案
- 如何提高紡織品檢驗(yàn)的效率與準(zhǔn)確性試題及答案
- 江門(mén)中考英語(yǔ)試題及答案
- 全國(guó)各省市郵編對(duì)照表
- 行政區(qū)域代碼表Excel
- 《試種一粒籽》第1課時(shí)示范課教學(xué)設(shè)計(jì)【部編人教版二年級(jí)道德與法治下冊(cè)】
- YS/T 837-2012濺射靶材-背板結(jié)合質(zhì)量超聲波檢驗(yàn)方法
- 燒烤類(lèi)菜單表格
- DB11∕T 583-2022 扣件式和碗扣式鋼管腳手架安全選用技術(shù)規(guī)程
- 酒水購(gòu)銷(xiāo)合同范本(3篇)
- 海康威視系統(tǒng)圖標(biāo)
- 印染廠(chǎng)管理手冊(cè)
- 保潔服務(wù)崗位檢查考核評(píng)分標(biāo)準(zhǔn)
- 《字體與版式設(shè)計(jì)》教學(xué)課件(全)
評(píng)論
0/150
提交評(píng)論