內蒙古翁牛特旗烏丹二中2022年高三數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第1頁
內蒙古翁牛特旗烏丹二中2022年高三數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第2頁
內蒙古翁牛特旗烏丹二中2022年高三數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第3頁
內蒙古翁牛特旗烏丹二中2022年高三數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第4頁
內蒙古翁牛特旗烏丹二中2022年高三數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)(表示不超過x的最大整數(shù)),若有且僅有3個零點,則實數(shù)a的取值范圍是()A. B. C. D.2.已知函數(shù),,若存在實數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.3.在中,,,,若,則實數(shù)()A. B. C. D.4.已知函數(shù)且的圖象恒過定點,則函數(shù)圖象以點為對稱中心的充要條件是()A. B.C. D.5.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.2826.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻.十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于.若第一個單音的頻率為f,則第八個單音的頻率為A. B.C. D.7.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調遞增區(qū)間為()A. B. C. D.8.已知函數(shù),滿足對任意的實數(shù),都有成立,則實數(shù)的取值范圍為()A. B. C. D.9.設集合,,若,則()A. B. C. D.10.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件11.設x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②12.設,則(

)A.10 B.11 C.12 D.13二、填空題:本題共4小題,每小題5分,共20分。13.已知在等差數(shù)列中,,,前n項和為,則________.14.三對父子去參加親子活動,坐在如圖所示的6個位置上,有且僅有一對父子是相鄰而坐的坐法有________種(比如:B與D、B與C是相鄰的,A與D、C與D是不相鄰的).15.在中,角的對邊分別為,且,若外接圓的半徑為,則面積的最大值是______.16.已知實數(shù),滿足約束條件,則的最小值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為了響應國家號召,促進垃圾分類,某校組織了高三年級學生參與了“垃圾分類,從我做起”的知識問卷作答隨機抽出男女各20名同學的問卷進行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.(Ⅰ)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認為“性別”與“問卷結果”有關?男女總計合格不合格總計(Ⅱ)從上述樣本中,成績在60分以下(不含60分)的男女學生問卷中任意選2個,記來自男生的個數(shù)為,求的分布列及數(shù)學期望.附:0.1000.0500.0100.0012.7063.8416.63510.82818.(12分)已知公比為正數(shù)的等比數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.19.(12分)已知在平面直角坐標系中,橢圓的焦點為為橢圓上任意一點,且.(1)求橢圓的標準方程;(2)若直線交橢圓于兩點,且滿足(分別為直線的斜率),求的面積為時直線的方程.20.(12分)在銳角中,角A,B,C所對的邊分別為a,b,c.已知.(1)求的值;(2)當,且時,求的面積.21.(12分)在銳角中,分別是角的對邊,,,且.(1)求角的大??;(2)求函數(shù)的值域.22.(10分)已知為坐標原點,點,,,動點滿足,點為線段的中點,拋物線:上點的縱坐標為,.(1)求動點的軌跡曲線的標準方程及拋物線的標準方程;(2)若拋物線的準線上一點滿足,試判斷是否為定值,若是,求這個定值;若不是,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)[x]的定義先作出函數(shù)f(x)的圖象,利用函數(shù)與方程的關系轉化為f(x)與g(x)=ax有三個不同的交點,利用數(shù)形結合進行求解即可.【詳解】當時,,當時,,當時,,當時,,若有且僅有3個零點,則等價為有且僅有3個根,即與有三個不同的交點,作出函數(shù)和的圖象如圖,當a=1時,與有無數(shù)多個交點,當直線經(jīng)過點時,即,時,與有兩個交點,當直線經(jīng)過點時,即時,與有三個交點,要使與有三個不同的交點,則直線處在過和之間,即,故選:A.【點睛】利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)直接法:直接根據(jù)題設條件構建關于參數(shù)的不等式,再通過解不等式確定參數(shù)的范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉化成求函數(shù)的值域(最值)問題加以解決;(3)數(shù)形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結合求解.2、A【解析】

根據(jù)實數(shù)滿足的等量關系,代入后將方程變形,構造函數(shù),并由導函數(shù)求得的最大值;由基本不等式可求得的最小值,結合存在性問題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調遞增,在上單調遞減,∴,而,當且僅當,即當時,等號成立,∴,∴.故選:A.【點睛】本題考查了導數(shù)在求函數(shù)最值中的應用,由基本不等式求函數(shù)的最值,存在性成立問題的解法,屬于中檔題.3、D【解析】

將、用、表示,再代入中計算即可.【詳解】由,知為的重心,所以,又,所以,,所以,.故選:D【點睛】本題考查平面向量基本定理的應用,涉及到向量的線性運算,是一道中檔題.4、A【解析】

由題可得出的坐標為,再利用點對稱的性質,即可求出和.【詳解】根據(jù)題意,,所以點的坐標為,又,所以.故選:A.【點睛】本題考查指數(shù)函數(shù)過定點問題和函數(shù)對稱性的應用,屬于基礎題.5、B【解析】

將三視圖還原成幾何體,然后分別求出各個面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長交于點,其中,,,所以表面積.故選B項.【點睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題6、D【解析】分析:根據(jù)等比數(shù)列的定義可知每一個單音的頻率成等比數(shù)列,利用等比數(shù)列的相關性質可解.詳解:因為每一個單音與前一個單音頻率比為,所以,又,則故選D.點睛:此題考查等比數(shù)列的實際應用,解決本題的關鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列是等比數(shù)列;(2)等比中項公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.7、D【解析】

根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進而求出,再根據(jù)復合函數(shù)的單調性,即可求出結論.【詳解】依題意有,①,②①②得,又因為,所以,在上單調遞增,所以函數(shù)的單調遞增區(qū)間為.故選:D.【點睛】本題考查求函數(shù)的解析式、函數(shù)的性質,要熟記復合函數(shù)單調性判斷方法,屬于中檔題.8、B【解析】

由題意可知函數(shù)為上為減函數(shù),可知函數(shù)為減函數(shù),且,由此可解得實數(shù)的取值范圍.【詳解】由題意知函數(shù)是上的減函數(shù),于是有,解得,因此,實數(shù)的取值范圍是.故選:B.【點睛】本題考查利用分段函數(shù)的單調性求參數(shù),一般要分析每支函數(shù)的單調性,同時還要考慮分段點處函數(shù)值的大小關系,考查運算求解能力,屬于中等題.9、A【解析】

根據(jù)交集的結果可得是集合的元素,代入方程后可求的值,從而可求.【詳解】依題意可知是集合的元素,即,解得,由,解得.【點睛】本題考查集合的交,注意根據(jù)交集的結果確定集合中含有的元素,本題屬于基礎題.10、B【解析】

試題分析:通過逆否命題的同真同假,結合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點:邏輯命題11、C【解析】

①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側面時.【詳解】①當直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側面時,不正確.故選:C.【點睛】此題考查立體幾何中線面關系,選擇題一般可通過特殊值法進行排除,屬于簡單題目.12、B【解析】

根據(jù)題中給出的分段函數(shù),只要將問題轉化為求x≥10內的函數(shù)值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點睛】本題主要考查了分段函數(shù)中求函數(shù)的值,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、39【解析】

設等差數(shù)列公差為d,首項為,再利用基本量法列式求解公差與首項,進而求得即可.【詳解】設等差數(shù)列公差為d,首項為,根據(jù)題意可得,解得,所以.故答案為:39【點睛】本題考查等差數(shù)列的基本量計算以及前n項和的公式,屬于基礎題.14、192【解析】

根據(jù)題意,分步進行分析:①,在三對父子中任選1對,安排在相鄰的位置上,②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,由分步計數(shù)原理計算可得答案.【詳解】根據(jù)題意,分步進行分析:①,在三對父子中任選1對,有3種選法,由圖可得相鄰的位置有4種情況,將選出的1對父子安排在相鄰的位置,有種安排方法;②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,有種安排方法,則有且僅有一對父子是相鄰而坐的坐法種;故答案為:【點睛】本題考查排列、組合的應用,涉及分步計數(shù)原理的應用,屬于基礎題.15、【解析】

由正弦定理,三角函數(shù)恒等變換的應用化簡已知等式,結合范圍可求的值,利用正弦定理可求的值,進而根據(jù)余弦定理,基本不等式可求的最大值,進而根據(jù)三角形的面積公式即可求解.【詳解】解:,由正弦定理可得:,,,又,,,即,可得:,外接圓的半徑為,,解得,由余弦定理,可得,又,(當且僅當時取等號),即最大值為4,面積的最大值為.故答案為:.【點睛】本題主要考查了正弦定理,三角函數(shù)恒等變換的應用,余弦定理,基本不等式,三角形的面積公式在解三角形中的應用,考查了轉化思想,屬于中檔題.16、【解析】

作出滿足約束條件的可行域,將目標函數(shù)視為可行解與點的斜率,觀察圖形斜率最小在點B處,聯(lián)立,解得點B坐標,即可求得答案.【詳解】作出滿足約束條件的可行域,該目標函數(shù)視為可行解與點的斜率,故由題可知,聯(lián)立得,聯(lián)立得所以,故所以的最小值為故答案為:【點睛】本題考查分式型目標函數(shù)的線性規(guī)劃問題,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)填表見解析,有95%以上的把握認為“性別”與“問卷結果”有關;(Ⅱ)分布列見解析,【解析】

(Ⅰ)根據(jù)莖葉圖填寫列聯(lián)表,計算得到答案.(Ⅱ),計算,,,得到分布列,再計算數(shù)學期望得到答案.【詳解】(Ⅰ)根據(jù)莖葉圖可得:男女總計合格101626不合格10414總計202040,故有95%以上的把握認為“性別”與“問卷結果””有關.(Ⅱ)從莖葉圖可知,成績在60分以下(不含60分)的男女學生人數(shù)分別是4人和2人,從中任意選2人,基本事件總數(shù)為,,,,012.【點睛】本題考查了獨立性檢驗,分布列,數(shù)學期望,意在考查學生的綜合應用能力.18、(1)(2)【解析】

(1)判斷公比不為1,運用等比數(shù)列的求和公式,解方程可得公比,進而得到所求通項公式;(2)求得,運用數(shù)列的錯位相減法求和,以及等比數(shù)列的求和公式,計算可得所求和.【詳解】解:(1)設公比為正數(shù)的等比數(shù)列的前項和為,且,,可得時,,不成立;當時,,即,解得(舍去),則;(2),前項和,,兩式相減可得,化簡可得.【點睛】本題考查等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的錯位相減法求和,考查方程思想和運算能力,屬于中檔題.19、(1)(2)或【解析】

(1)根據(jù)橢圓定義求得,得橢圓方程;(2)設,由得,應用韋達定理得,代入已知條件可得,再由橢圓中弦長公式求得弦長,原點到直線的距離,得三角形面積,從而可求得,得直線方程.【詳解】解:(1)據(jù)題意設橢圓的方程為則橢圓的標準方程為.(2)據(jù)得設,則又原點到直線的距離解得或所求直線的方程為或【點睛】本題考查求橢圓標準方程,考查直線與橢圓相交問題.解題時采取設而不求思想,即設交點坐標為,直線方程與橢圓方程聯(lián)立消元后應用韋達定理得,把這個結論代入題中條件求得參數(shù),用它求弦長等等,從而解決問題.20、(1);(2)【解析】

(1)利用二倍角公式求解即可,注意隱含條件.(2)利用(1)中的結論,結合正弦定理和同角三角函數(shù)的關系易得的值,又由求出的值,最后由正弦定理求出的值,根據(jù)三角形的面積公式即可計算得出.【詳解】(1)由已知可得,所以,因為在銳角中,,所以(2)因為,所以,因為是銳角三角形,所以,所以.由正弦定理可得:,所以,所以【點睛】此類問題是高考的??碱}型,主要考查了正弦定理、三角函數(shù)以及三角恒等變換等知識,同時考查了

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論