版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.二次函數(shù)的圖象如圖所示,下列說法中錯誤的是(
)A.函數(shù)的對稱軸是直線x=1B.當(dāng)x<2時,y隨x的增大而減小C.函數(shù)的開口方向向上D.函數(shù)圖象與y軸的交點坐標(biāo)是(0,-3)2.如圖所示,已知A(,y1),B(2,y2)為反比例函數(shù)圖像上的兩點,動點P(x,0)在x正半軸上運動,當(dāng)線段AP與線段BP之差達(dá)到最大時,點P的坐標(biāo)是()A.(,0) B.(1,0) C.(,0) D.(,0)3.已知反比例函數(shù)y=﹣,下列結(jié)論不正確的是()A.函數(shù)的圖象經(jīng)過點(﹣1,3) B.當(dāng)x<0時,y隨x的增大而增大C.當(dāng)x>﹣1時,y>3 D.函數(shù)的圖象分別位于第二、四象限4.一個高為3cm的圓錐的底面周長為8πcm,則這個圓錐的母線長度為()A.3cm B.4cm C.5cm D.5πcm5.如圖是二次函數(shù)圖象的一部分,則關(guān)于的不等式的解集是()A. B. C. D.6.如圖,已知⊙O的直徑為4,∠ACB=45°,則AB的長為()A.4 B.2 C.4 D.27.半徑為6的圓上有一段長度為1.5的弧,則此弧所對的圓心角為()A. B. C. D.8.已知一元二次方程的較小根為x1,則下面對x1的估計正確的是A. B. C. D.9.將二次函數(shù)y=2x2-4x+4的圖象向左平移2個單位,再向下平移1個單位后所得圖象的函數(shù)解析式為()A.y=2(x+1)2+1 B.y=2(x+1)2+3 C.y=2(x-3)2+1 D.y=-2(x-3)2+310.二次函數(shù)y=x2﹣6x圖象的頂點坐標(biāo)為()A.(3,0) B.(﹣3,﹣9) C.(3,﹣9) D.(0,﹣6)11.關(guān)于的一元二次方程x2﹣2+k=0有兩個相等的實數(shù)根,則k的值為()A.1 B.﹣1 C.2 D.﹣212.如圖,P為⊙O外一點,PA、PB分別切⊙O于點A、B,CD切⊙O于點E,分別交PA、PB于點C、D,若PA=6,則△PCD的周長為()A.8 B.6 C.12 D.10二、填空題(每題4分,共24分)13.如圖,在菱形中,,,點,,分別為線段,,上的任意一點,則的最小值為__________.14.如果a,b,c,d是成比例線段,其中a=2cm,b=6cm,c=5cm,則線段d=_______cm.15.已知,是關(guān)于的方程的兩根,且滿足,則的值為_______.16.如圖,在正方形鐵皮上剪下一個扇形和一個半徑為的圓形,使之恰好圍成一個圓錐,則圓錐的高為____.17.如圖,在平面直角坐標(biāo)系中,直線l:與坐標(biāo)軸分別交于A,B兩點,點C在x正半軸上,且OC=OB.點P為線段AB(不含端點)上一動點,將線段OP繞點O順時針旋轉(zhuǎn)90°得線段OQ,連接CQ,則線段CQ的最小值為___________.18.一元二次方程的兩根為,,則的值為____________.三、解答題(共78分)19.(8分)(1)某學(xué)?!爸腔鄯綀@”數(shù)學(xué)社團(tuán)遇到這樣一個題目:如圖1,在△ABC中,點O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長.經(jīng)過社團(tuán)成員討論發(fā)現(xiàn),過點B作BD∥AC,交AO的延長線于點D,通過構(gòu)造△ABD就可以解決問題(如圖2).請回答:∠ADB=°,AB=.(2)請參考以上解決思路,解決問題:如圖3,在四邊形ABCD中,對角線AC與BD相交于點O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.20.(8分)如圖,四邊形ABCD內(nèi)接于⊙O,點E在CB的延長線上,BA平分∠EBD,AE=AB.(1)求證:AC=AD.(2)當(dāng),AD=6時,求CD的長.21.(8分)如圖,已知點在的直徑延長線上,點為上,過作,與的延長線相交于,為的切線,,.(1)求證:;(2)求的長;(3)若的平分線與交于點,為的內(nèi)心,求的長.22.(10分)在中,,是邊上的中線,點在射線上.猜想:如圖①,點在邊上,,與相交于點,過點作,交的延長線于點,則的值為.探究:如圖②,點在的延長線上,與的延長線交于點,,求的值.應(yīng)用:在探究的條件下,若,,則.23.(10分)一張長為30cm,寬20cm的矩形紙片,如圖1所示,將這張紙片的四個角各剪去一個邊長相同的正方形后,把剩余部分折成一個無蓋的長方體紙盒,如圖1所示,如果折成的長方體紙盒的底面積為264cm2,求剪掉的正方形紙片的邊長.24.(10分)計算:﹣12119+|﹣2|+2cos31°+(2﹣tan61°)1.25.(12分)如圖,反比例函數(shù)y=的圖象與直線y=x+m在第一象限交于點P(6,2),A、B為直線上的兩點,點A的橫坐標(biāo)為2,點B的橫坐標(biāo)為1.D、C為反比例函數(shù)圖象上的兩點,且AD、BC平行于y軸.(1)求反比例函數(shù)y=與直線y=x+m的函數(shù)關(guān)系式(2)求梯形ABCD的面積.26.如圖,矩形ABCD的四個頂點在正三角形EFG的邊上.已知△EFG的邊長為2,設(shè)邊長AB為x,矩形ABCD的面積為S.求:(1)S關(guān)于x的函數(shù)表達(dá)式和自變量x的取值范圍.(2)S的最大值及此時x的值.
參考答案一、選擇題(每題4分,共48分)1、B【解析】利用二次函數(shù)的解析式與圖象,判定開口方向,求得對稱軸,與y軸的交點坐標(biāo),進(jìn)一步利用二次函數(shù)的性質(zhì)判定增減性即可.【詳解】解:∵y=x2-2x-3=(x-1)2-4,∴對稱軸為直線x=1,又∵a=1>0,開口向上,∴x<1時,y隨x的增大而減小,令x=0,得出y=-3,∴函數(shù)圖象與y軸的交點坐標(biāo)是(0,-3).因此錯誤的是B.故選:B.【點睛】本題考查了二次函數(shù)的性質(zhì),拋物線與坐標(biāo)軸的交點坐標(biāo),掌握二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵2、D【分析】求出AB的坐標(biāo),設(shè)直線AB的解析式是y=kx+b,把A、B的坐標(biāo)代入求出直線AB的解析式,根據(jù)三角形的三邊關(guān)系定理得出在△ABP中,|AP-BP|<AB,延長AB交x軸于P′,當(dāng)P在P′點時,PA-PB=AB,此時線段AP與線段BP之差達(dá)到最大,求出直線AB于x軸的交點坐標(biāo)即可.【詳解】∵把A(,y1),B(2,y2)代入反比例函數(shù)y=得:y1=2,y2=,∴A(,2),B(2,),∵在△ABP中,由三角形的三邊關(guān)系定理得:|AP-BP|<AB,∴延長AB交x軸于P′,當(dāng)P在P′點時,PA-PB=AB,即此時線段AP與線段BP之差達(dá)到最大,設(shè)直線AB的解析式是y=kx+b,把A、B的坐標(biāo)代入得:,解得:k=-1,b=,∴直線AB的解析式是y=-x+,當(dāng)y=0時,x=,即P(,0),故選D.【點睛】本題考查了三角形的三邊關(guān)系定理和用待定系數(shù)法求一次函數(shù)的解析式的應(yīng)用,解此題的關(guān)鍵是確定P點的位置,題目比較好,但有一定的難度.3、C【分析】根據(jù)反比例函數(shù)的性質(zhì):當(dāng)k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大.進(jìn)行判斷即可.【詳解】A、反比例函數(shù)y=﹣的圖象必經(jīng)過點(﹣1,3),原說法正確,不合題意;B、k=﹣3<0,當(dāng)x<0,y隨x的增大而增大,原說法正確,不符合題意;C、當(dāng)x>﹣1時,y>3或y<0,原說法錯誤,符合題意;D、k=﹣3<0,函數(shù)的圖象分別位于第二、四象限,原說法正確,不符合題意;故選:C.【點睛】本題主要考查反比例函數(shù)的性質(zhì),掌握反比例函數(shù)的圖象和性質(zhì),是解題的關(guān)鍵.4、C【分析】由底面圓的周長公式算出底面半徑,圓錐的正視圖是以母線長為腰,底面圓直徑為底的等腰三角形,高、底面半徑和母線長三邊構(gòu)成直角三角形,再用勾股定理算出母線長即可.【詳解】解:由圓的周長公式得=4由勾股定理=5故選:C.【點睛】本題考查了圓錐的周長公式,圓錐的正視圖勾股定理等知識點.5、D【分析】先根據(jù)拋物線平移的規(guī)律得到拋物線,通過觀察圖象可知,它的對稱軸以及與軸的交點,利用函數(shù)圖像的性質(zhì)可以直接得到答案.【詳解】解:∵根據(jù)拋物線平移的規(guī)律可知,將二次函數(shù)向左平移個單位可得拋物線,如圖:∴對稱軸為,與軸的交點為,∴由圖像可知關(guān)于的不等式的解集為:.故選:D【點睛】本題考查了二次函數(shù)與不等式,主要利用了二次函數(shù)的平移規(guī)律、對稱性,數(shù)形結(jié)合的思想,解題關(guān)鍵在于通過平移規(guī)律得到新的二次函數(shù)圖象以及與軸的交點坐標(biāo).6、D【分析】連接OA、OB,根據(jù)同弧所對的圓周角是圓心角的一半,即可求出∠AOB=90°,再根據(jù)等腰直角三角形的性質(zhì)即可求出AB的長.【詳解】連接OA、OB,如圖,∵∠AOB=2∠ACB=2×45°=90°,∴△AOB為等腰直角三角形,∴AB=OA=2.故選:D.【點睛】此題考查的是圓周角定理和等腰直角三角形的性質(zhì),掌握同弧所對的圓周角是圓心角的一半是解決此題的關(guān)鍵.7、B【分析】根據(jù)弧長公式,即可求解.【詳解】∵,∴,解得:n=75,故選B.【點睛】本題主要考查弧長公式,掌握是解題的關(guān)鍵.8、A【解析】試題分析:解得,∴較小根為.∵,∴.故選A.9、A【分析】先配方成頂點式,再根據(jù)二次函數(shù)圖象的平移規(guī)律“上加下減,左加右減”解答即可.【詳解】由“上加下減,左加右減”的原則可知,將二次函數(shù)y=2x2-4x+4配方成的圖象向左平移2個單位,再向下平移1個單位,得以新的拋物線的表達(dá)式是y=2(x+1)2+1,故選:A.【點睛】本題主要考查的是函數(shù)圖象的平移,由y=ax2平移得到y(tǒng)=a(x-h)2+k,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式即可.10、C【分析】將二次函數(shù)解析式變形為頂點式,進(jìn)而可得出二次函數(shù)的頂點坐標(biāo).【詳解】解:∵y=x2﹣6x=x2﹣6x+9﹣9=(x﹣3)2﹣9,∴二次函數(shù)y=x2﹣6x圖象的頂點坐標(biāo)為(3,﹣9).故選:C.【點睛】此題主要考查二次函數(shù)的頂點,解題的關(guān)鍵是熟知二次函數(shù)的圖像與性質(zhì).11、A【分析】關(guān)于x的一元二次方程x2+2x+k=0有兩個相等的實數(shù)根,可知其判別式為0,據(jù)此列出關(guān)于k的不等式,解答即可.【詳解】根據(jù)一元二次方程根與判別式的關(guān)系,要使得x2﹣2+k=0有兩個相等實根,只需要△=(-2)2-4k=0,解得k=1.故本題正確答案為A.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.12、C【解析】由切線長定理可求得PA=PB,AC=CE,BD=ED,則可求得答案.【詳解】∵PA、PB分別切⊙O于點A、B,CD切⊙O于點E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周長為12,故選:C.【點睛】本題主要考查切線的性質(zhì),利用切線長定理求得PA=PB、AC=CE和BD=ED是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)菱形的對稱性,在AB上找到點P關(guān)于BD的對稱點,過點作Q⊥CD于Q,交BD于點K,連接PK,過點A作AE⊥CD于E,根據(jù)垂線段最短和平行線之間的距離處處相等,可得此時最小,且最小值為的長,,然后利用銳角三角函數(shù)求AE即可.【詳解】解:根據(jù)菱形的對稱性,在AB上找到點P關(guān)于BD的對稱點,過點作Q⊥CD于Q,交BD于點K,連接PK,過點A作AE⊥CD于E根據(jù)對稱性可知:PK=K,∴此時=,根據(jù)垂線段最短和平行線之間的距離處處相等,∴此時最小,且最小值為的長,∵在菱形中,,∴,∠ADE=180°-∠A=60°在Rt△ADE中,AE=AD·sin∠ADE=∴即的最小值為故答案為.【點睛】此題考查的是菱形的性質(zhì)、求兩線段之和的最值問題和銳角三角函數(shù),掌握菱形的性質(zhì)、垂線段最短、平行線之間的距離處處相等和用銳角三角函數(shù)解直角三角形是解決此題的關(guān)鍵.14、15【分析】根據(jù)比例線段的定義即可求解.【詳解】由題意得:將a,b,c的值代入得:解得:(cm)故答案為:15.【點睛】本題考查了比例線段的定義,掌握比例線段的定義及其基本性質(zhì)是解題關(guān)鍵.15、5【分析】由韋達(dá)定理得,,將其代入即可求得k的值.【詳解】解:、是方程的兩個根,,.,.故答案為:.【點睛】本題主要考查根與系數(shù)的關(guān)系,解題的關(guān)鍵是掌握韋達(dá)定理與方程的解的定義.16、【分析】利用已知得出底面圓的半徑為,周長為,進(jìn)而得出母線長,再利用勾股定理進(jìn)行計算即可得出答案.【詳解】解:∵半徑為的圓形∴底面圓的半徑為∴底面圓的周長為∴扇形的弧長為∴,即圓錐的母線長為∴圓錐的高為.故答案是:【點睛】此題主要考查了圓錐展開圖與原圖對應(yīng)情況,以及勾股定理等知識,根據(jù)已知得出母線長是解決問題的關(guān)鍵.17、【分析】在OA上取使,得,則,根據(jù)點到直線的距離垂線段最短可知當(dāng)⊥AB時,CP最小,由相似求出的最小值即可.【詳解】解:如圖,在OA上取使,∵,∴,在△和△QOC中,,∴△≌△QOC(SAS),∴∴當(dāng)最小時,QC最小,過點作⊥AB,∵直線l:與坐標(biāo)軸分別交于A,B兩點,∴A坐標(biāo)為:(0,8);B點(-4,0),∵,∴,.∵,∴,∴,∴線段CQ的最小值為.故答案為:.【點睛】本題主要考查了一次函數(shù)圖像與坐標(biāo)軸的交點及三角形全等的判定和性質(zhì)、垂線段最短等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,學(xué)會利用垂線段最短解決最值問題,屬于中考壓軸題.18、2【解析】根據(jù)一元二次方程根的意義可得+2=0,根據(jù)一元二次方程根與系數(shù)的關(guān)系可得=2,把相關(guān)數(shù)值代入所求的代數(shù)式即可得.【詳解】由題意得:+2=0,=2,∴=-2,=4,∴=-2+4=2,故答案為2.【點睛】本題考查了一元二次方程根的意義,一元二次方程根與系數(shù)的關(guān)系等,熟練掌握相關(guān)內(nèi)容是解題的關(guān)鍵.三、解答題(共78分)19、(1)75;4;(2)CD=4.【分析】(1)根據(jù)平行線的性質(zhì)可得出∠ADB=∠OAC=75°,結(jié)合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性質(zhì)可求出OD的值,進(jìn)而可得出AD的值,由三角形內(nèi)角和定理可得出∠ABD=75°=∠ADB,由等角對等邊可得出AB=AD=4,此題得解;(2)過點B作BE∥AD交AC于點E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的長度,再在Rt△CAD中,利用勾股定理可求出DC的長,此題得解.【詳解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=4.(2)過點B作BE∥AD交AC于點E,如圖所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴.∵BO:OD=1:3,∴.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=1.在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=4.【點睛】本題考查了相似三角形的性質(zhì)、等腰三角形的判定與性質(zhì)、勾股定理以及平行線的性質(zhì),解題的關(guān)鍵是:(1)利用相似三角形的性質(zhì)求出OD的值;(2)利用勾股定理求出BE、CD的長度.20、(1)證明見解析;(2)CD=1.【分析】(1)利用BA平分∠EBD得到∠ABE=∠ABD,再根據(jù)圓周角定理得到∠ABE=∠ADC,∠ABD=∠ACD,利用等量代換得到∠ACD=∠ADC,從而得到結(jié)論;(2)根據(jù)等腰三角形的性質(zhì)得到∠E=∠ABE,則可證明△ABE∽△ACD,然后根據(jù)相似比求出CD的長.【詳解】(1)證明:∵BA平分∠EBD,∴∠ABE=∠ABD,∵∠ABE=∠ADC,∠ABD=∠ACD,∴∠ACD=∠ADC,∴AC=AD;(2)解:∵AE=AB,∴∠E=∠ABE,∴∠E=∠ABE=∠ACD=∠ADC,∴△ABE∽△ACD,∴==,∴CD=AD=×6=1.【點睛】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形,靈活運用相似三角形的性質(zhì)表示線段之間的關(guān)系;也考查了圓周角定理.21、(1)見解析;(2);(3)【分析】(1)利用同角的余角相等得出∠E=∠ECD,從而得出結(jié)論;(2)利用直角△OCD和直角△ADE中的勾股定理列出方程解得BD的長;(3)連接,,,根據(jù)平分求出,利用同弧所對的圓周角相等得出,從而得出,即FP=FB.【詳解】解:(1)證明:連接,∵是的切線,∴,∴,∵,∴,∵,∴,∴,∴.(2)∵,∴,∵,∴由勾股定理可得,,∵,∴由勾股定理可得,,∵,∴,∴或(舍去).(3)連接,,,∵平分,∴,∴,∵為直徑,,∴,∵為的內(nèi)心,∴,,∵,∴,∴,∴,∴.【點睛】本題屬于圓的綜合題,考查了圓周角的性質(zhì),勾股定理,等腰三角形的判定,內(nèi)心的概念,需要綜合多個條件進(jìn)行推導(dǎo).22、猜想:;探究:6.【分析】猜想:如圖①,證明,利用相似比得,則,再證明,然后利用相似比即可得到;探究:過點作作,交的延長線于點,如圖②,設(shè),則,先證明,得到,即,再證明,從而利用相似比得;應(yīng)用:先利用勾股定理得,則,再證明,利用相似比得到,然后利用比例的性質(zhì)計算BP的長.【詳解】解:猜想:如圖①∵是邊上的中線,∴,∵,∴,∴,∵,∴,∵,∴,∴;探究:過點作作,交的延長線于點,如圖②,設(shè),則,∴,∴,∴,即,∵,∴,∴;應(yīng)用:,,在中,,∴,∵,∴,∴,∴.故答案為,6.【點睛】本題考查了相似三角形的綜合問題,掌握平行線的性質(zhì)以及判定定理、相似三角形的性質(zhì)以及判定定理、勾股定理是解題的關(guān)鍵.23、4cm【解析】試題分析:設(shè)剪掉的正方形紙片的邊長為xcm,則圍成的長方體紙盒的底面長是(32-2x)cm,寬是(32-2x)cm,根據(jù)底面積等于1cm2列方程求解.解:設(shè)剪掉的正方形紙片的邊長為xcm.由題意,得(32-2x)(22-2x)=1.整理,得x2-25x+84=2.解方程,得,(不符合題意,舍去).答:剪掉的正方形的邊長為4cm.24、2【解析】直接利用零指數(shù)冪的性質(zhì)以及特殊角的三角函數(shù)值和絕對值的性質(zhì)分別化簡得出答案.【詳解】解:原式=﹣1+2﹣+1=2【點睛】此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關(guān)鍵.25、(1)y=,y=x-4(2)s=6.5【解析】考點:反比例函數(shù)綜合題.分析:(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度校企合作電子商務(wù)培訓(xùn)課程合同
- 2024年水果電商采購合作協(xié)議3篇
- 2024帳篷材料采購合同范本3篇
- 2024年企業(yè)內(nèi)部招聘委托合同范本3篇
- 玻璃表面涂層技術(shù)與工藝考核試卷
- 2024云服務(wù)器行業(yè)解決方案定制開發(fā)合同3篇
- 人教版八年級英語上冊 Unit 7 Section B 同步練習(xí)(含解析)
- 2024年版多媒體硬件采購協(xié)議版
- 2024年植保作業(yè)環(huán)境保護(hù)合同文本3篇
- 2024年茶館承包經(jīng)營意向書3篇
- 氧化鋁工業(yè)分析化驗手冊
- T∕CIESC 0011-2020 工業(yè)用六甲基二硅氧烷
- (高清版)建筑裝飾裝修職業(yè)技能標(biāo)準(zhǔn)JGJ_T 315-2016
- 天然氣水合物科普PPT
- UG-POST_Builder后處理構(gòu)造器參考模板
- 開放式基金通過交易所認(rèn)購、申購、贖回系統(tǒng)接口指南-券商
- 四軸臥式鉆孔專用機(jī)床液壓系統(tǒng)設(shè)計課程設(shè)計
- LNG安全技術(shù)說明書
- 日本陸上自衛(wèi)隊編制及其駐地
- 五年級信息技術(shù)上冊 轉(zhuǎn)動的風(fēng)車教案 冀教版
- GB∕T 309-2021 滾動軸承 滾針
評論
0/150
提交評論