2022-2023學年湖南省長沙市長雅實、西雅、雅洋九年級數(shù)學第一學期期末檢測試題含解析_第1頁
2022-2023學年湖南省長沙市長雅實、西雅、雅洋九年級數(shù)學第一學期期末檢測試題含解析_第2頁
2022-2023學年湖南省長沙市長雅實、西雅、雅洋九年級數(shù)學第一學期期末檢測試題含解析_第3頁
2022-2023學年湖南省長沙市長雅實、西雅、雅洋九年級數(shù)學第一學期期末檢測試題含解析_第4頁
2022-2023學年湖南省長沙市長雅實、西雅、雅洋九年級數(shù)學第一學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在?ABCD中,E是AB的中點,EC交BD于點F,則△BEF與△DCB的面積比為()A. B. C. D.2.“割圓術(shù)”是我國古代的一位偉大的數(shù)學家劉徽首創(chuàng)的,該割圓術(shù),就是通過不斷倍增圓內(nèi)接正多邊形的邊數(shù)來求出圓周率的一種方法,某同學在學習“割圓術(shù)”的過程中,畫了一個如圖所示的圓的內(nèi)接正十二邊形,若該圓的半徑為1,則這個圓的內(nèi)接正十二邊形的面積為().A.1 B.3 C.3.1 D.3.143.如圖,網(wǎng)格中小正方形的邊長為1個單位長度,△ABC的頂點均在小正方形的頂點上,若將△ABC繞著點A逆時針旋轉(zhuǎn)得到△AB′C′,點C在AB′上,則的長為()A.π B. C.7π D.6π4.如圖,是的內(nèi)接正十邊形的一邊,平分交于點,則下列結(jié)論正確的有()①;②;③;④.A.1個 B.2個 C.3個 D.4個5.如圖,中,,,,分別為邊的中點,將繞點順時針旋轉(zhuǎn)到的位置,則整個旋轉(zhuǎn)過程中線段所掃過部分的面積(即陰影部分面積)為()A. B. C. D.6.若(、均不為0),則下列等式成立的是()A. B. C. D.7.口袋中有2個紅球和1個黑球,每次摸到后放回,兩次都摸到紅球的概率為()A. B. C. D.8.下列事件是必然事件的是()A.通常加熱到100℃,水沸騰B.拋一枚硬幣,正面朝上C.明天會下雨D.經(jīng)過城市中某一有交通信號燈的路口,恰好遇到紅燈9.如圖,在平面直角坐標系xOy中,點A為(0,3),點B為(2,1),點C為(2,-3).則經(jīng)畫圖操作可知:△ABC的外心坐標應是()A. B. C. D.10.下列事件中是隨機事件的是()A.校運會上立定跳遠成績?yōu)?0米B.在只裝有5個紅球的袋中,摸出一個紅球C.慈溪市明年五一節(jié)是晴天D.在標準大氣壓下,氣溫3°C時,冰熔化為水11.下列交通標志中,是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.12.如圖所示,拋物線的頂點為,與軸的交點在點和之間,以下結(jié)論:①;②;③;④.其中正確的是()A.①② B.③④ C.②③ D.①③二、填空題(每題4分,共24分)13.如圖,在平面直角坐標系中,點,點.若與關(guān)于原點成中心對稱,則點的對應點的坐標是___________;和的位置關(guān)系和數(shù)量關(guān)系是____________.14.在一個不透明的袋子中有1個紅球和3個白球,這些球除顏色外都相同,在袋子中再放入個白球后,從袋子中隨機摸出1個球,記錄下顏色后放回袋子中并攪勻,經(jīng)大量試驗,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.95左右,則______.15.如圖,在△ABC中,P是AB邊上的點,請補充一個條件,使△ACP∽△ABC,這個條件可以是:___(寫出一個即可),16.如圖,⊙O是正五邊形ABCDE的外接圓,則∠CAD=_____.17.一個正多邊形的每個外角都等于,那么這個正多邊形的中心角為______.18.若關(guān)于x的方程kx2+2x﹣1=0有實數(shù)根,則k的取值范圍是_____.三、解答題(共78分)19.(8分)如圖,反比例函數(shù)的圖象過點A(2,3).(1)求反比例函數(shù)的解析式;(2)過A點作AC⊥x軸,垂足為C.若P是反比例函數(shù)圖象上的一點,求當△PAC的面積等于6時,點P的坐標.20.(8分)已知函數(shù)y=ax2+bx+c(a≠0,a、b、c為常數(shù))的圖像經(jīng)過點A(-1,0)、B(0,2).(1)b=(用含有a的代數(shù)式表示),c=;(2)點O是坐標原點,點C是該函數(shù)圖像的頂點,若△AOC的面積為1,則a=;(3)若x>1時,y<1.結(jié)合圖像,直接寫出a的取值范圍.21.(8分)如圖,拋物線y=ax2+bx(a<0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設(shè)A(t,0),當t=2時,AD=1.(1)求拋物線的函數(shù)表達式.(2)當t為何值時,矩形ABCD的周長有最大值?最大值是多少?(3)保持t=2時的矩形ABCD不動,向右平移拋物線.當平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.22.(10分)如圖,AB為⊙O的直徑,PD切⊙O于點C,交AB的延長線于點D,且∠D=2∠CAD.(1)求∠D的度數(shù);(2)若CD=2,求BD的長.23.(10分)某校為了弘揚中華傳統(tǒng)文化,了解學生整體閱讀能力,組織全校的1000名學生進行一次閱讀理解大賽.從中抽取部分學生的成績進行統(tǒng)計分析,根據(jù)測試成績繪制了頻數(shù)分布表和頻數(shù)分布直方圖:分組/分頻數(shù)頻率50≤x<6060.1260≤x<700.2870≤x<80160.3280≤x<90100.2090≤x≤10040.08(1)頻數(shù)分布表中的;(2)將上面的頻數(shù)分布直方圖補充完整;(3)如果成績達到90及90分以上者為優(yōu)秀,可推薦參加決賽,估計該校進入決賽的學生大約有人.24.(10分)李師傅駕駛出租車勻速地從西安市送客到咸陽國際機場,全程約,設(shè)小汽車的行駛時間為(單位:),行駛速度為(單位:),且全程速度限定為不超過.(1)求關(guān)于的函數(shù)表達式;(2)李師傅上午點駕駛小汽車從西安市出發(fā).需在分鐘后將乘客送達咸陽國際機場,求小汽車行駛速度.25.(12分)如圖,點C在⊙O上,聯(lián)結(jié)CO并延長交弦AB于點D,,聯(lián)結(jié)AC、OB,若CD=40,AC=20.(1)求弦AB的長;(2)求sin∠ABO的值.26.如圖,已知直線交于,兩點;是的直徑,點為上一點,且平分,過作,垂足為.(1)求證:為的切線;(2)若,的直徑為10,求的長.

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)平行四邊形的性質(zhì)得出AB=CD,AB∥CD,根據(jù)相似三角形的判定得出△BEF∽△DCF,根據(jù)相似三角形的性質(zhì)和三角形面積公式求出即可.【詳解】解:∵四邊形ABCD是平行四邊形,E為AB的中點,∴AB=DC=2BE,AB∥CD,∴△BEF∽△DCF,∴==,∴DF=2BF,=()2=,∴=,∴S△BEF=S△DCF,S△DCB=S△DCF,∴==,故選D.【點睛】本題考查了相似三角形的性質(zhì)和判定和平行四邊形的性質(zhì),能熟記相似三角形的性質(zhì)是解此題的關(guān)鍵.2、B【分析】先求出,進而得出,根據(jù)這個圓的內(nèi)接正十二邊形的面積為進行求解.【詳解】∵是圓的內(nèi)接正十二邊形,∴,∵,∴,∴這個圓的內(nèi)接正十二邊形的面積為,故選B.【點睛】本題考查正十二邊形的面積計算,先求出是解題的關(guān)鍵.3、A【分析】根據(jù)圖示知∠BAB′=45°,所以根據(jù)弧長公式l=求得的長.【詳解】根據(jù)圖示知,∠BAB′=45°,的長l==π,故選:A.【點睛】此題考查了弧長的計算、旋轉(zhuǎn)的性質(zhì).解答此題時采用了“數(shù)形結(jié)合”是數(shù)學思想.4、C【分析】①③,根據(jù)已知把∠ABD,∠CBD,∠A角度確定相等關(guān)系,得到等腰三角形證明腰相等即可;②通過證△ABC∽△BCD,從而確定②是否正確,根據(jù)AD=BD=BC,即解得BC=AC,故④正確.【詳解】①BC是⊙A的內(nèi)接正十邊形的一邊,因為AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因為BD平分∠ABC交AC于點D,∴∠ABD=∠CBD=∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正確;又∵△ABD中,AD+BD>AB∴2AD>AB,故③錯誤.②根據(jù)兩角對應相等的兩個三角形相似易證△ABC∽△BCD,∴,又AB=AC,故②正確,根據(jù)AD=BD=BC,即,解得BC=AC,故④正確,故選C.【點睛】本題主要考查圓的幾何綜合,解決本題的關(guān)鍵是要熟練掌握圓的基本性質(zhì)和幾何圖形的性質(zhì).5、C【分析】連接BH,BH1,先證明△OBH≌△O1BH1,再根據(jù)勾股定理算出BH,再利用扇形面積公式求解即可.【詳解】∵O、H分別為邊AB,AC的中點,將△ABC繞點B順時針旋轉(zhuǎn)120°到△A1BC1的位置,∴△OBH≌△O1BH1,利用勾股定理可求得BH=,所以利用扇形面積公式可得.故選C.【點睛】本題考查全等三角形的判定及性質(zhì)、勾股定理、扇形面積的計算,利用全等對面積進行等量轉(zhuǎn)換方便計算是關(guān)鍵.6、D【分析】直接利用比例的性質(zhì)分別判斷得出答案.【詳解】解:A、,則xy=21,故此選項錯誤;

B、,則xy=21,故此選項錯誤;

C、,則3y=7x,故此選項錯誤;

D、,則3x=7y,故此選項正確.

故選:D.【點睛】此題主要考查了比例的性質(zhì),正確將比例式變形是解題關(guān)鍵.7、D【分析】根據(jù)題意畫出樹形圖即可求出兩次都摸到紅球的概率,進而得出選項.【詳解】解:設(shè)紅球為1,黑球為2,畫樹形圖得:由樹形圖可知:兩次都摸到紅球的概率為.故選:D.【點睛】本題考查用列表法與樹狀圖法求隨機事件的概率,列舉法(樹形圖法)求概率的關(guān)鍵在于列舉出所有可能的結(jié)果,列表法是一種,但當一個事件涉及三個或更多元素時,為不重不漏地列出所有可能的結(jié)果,通常采用樹形圖.8、A【解析】解:A.通常加熱到100℃,水沸騰,是必然事件,故A選項符合題意;B.拋一枚硬幣,正面朝上,是隨機事件,故B選項不符合題意;C.明天會下雨,是隨機事件,故C選項不符合題意;D.經(jīng)過城市中某一有交通信號燈的路口,恰好遇到紅燈,是隨機事件,故D選項不符合題意.故選A.【點睛】解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件;不可能事件是指在一定條件下,一定不發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.9、C【解析】外心在BC的垂直平分線上,則外心縱坐標為-1.故選C.10、C【分析】根據(jù)隨機事件的定義,就是可能發(fā)生也可能不發(fā)生的事件進行判斷即可.【詳解】解:A.“校運會上立定跳遠成績?yōu)?0米”是不可能事件,因此選項A不符合題意;B.“在只裝有5個紅球的袋中,摸出一個紅球”是必然事件,因此選項B不符合題意;C.“慈溪市明年五一節(jié)是晴天”可能發(fā)生,也可能不發(fā)生,是隨機事件,因此選項C符合題意;D.“在標準大氣壓下,氣溫3°C時,冰熔化為水”是必然事件,因此選項D不符合題意;故選:C.【點睛】本題考查了隨機事件、必然事件、不可能事件的定義,理解隨機事件的定義是解題的關(guān)鍵.11、A【解析】試題分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解.A、是軸對稱圖形,不是中心對稱圖形,符合題意;B、不是軸對稱圖形,也不是中心對稱圖形,不符合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不符合題意;D、是軸對稱圖形,也是中心對稱圖形,不符合題意.考點:(1)中心對稱圖形;(2)軸對稱圖形12、B【分析】根據(jù)二次函數(shù)的圖象可逐項判斷求解即可.【詳解】解:拋物線與x軸有兩個交點,

∴△>0,

∴b2?4ac>0,故①錯誤;

由于對稱軸為x=?1,

∴x=?3與x=1關(guān)于x=?1對稱,

∵x=?3,y<0,

∴x=1時,y=a+b+c<0,故②錯誤;

∵對稱軸為x=?=?1,

∴2a?b=0,故③正確;

∵頂點為B(?1,3),

∴y=a?b+c=3,

∴y=a?2a+c=3,

即c?a=3,故④正確,

故選B.【點睛】本題考查拋物線的圖象與性質(zhì),解題的關(guān)鍵是熟練運用拋物線的圖象與性質(zhì),本題屬于中等題型.二、填空題(每題4分,共24分)13、平行且相等【分析】根據(jù)關(guān)于原點對稱的點的坐標特征即可寫出對應點坐標,再根據(jù)中心對稱的性質(zhì)即可判斷對應線段的關(guān)系.【詳解】如圖,∵關(guān)于原點對稱的兩個點,橫、縱坐標都互為相反數(shù),且,∴,根據(jù)旋轉(zhuǎn)的性質(zhì)可知,AB=A′B′,∠A=∠A′,∴AB∥A′B′.故答案為:;平行且相等.【點睛】本題考查坐標與圖形變化-旋轉(zhuǎn),明確關(guān)于原點對稱的點的坐標特征及旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.14、1【分析】根據(jù)用頻率估計概率即可求出摸到白球的概率,然后利用概率公式列出方程即可求出x的值.【詳解】解:∵經(jīng)大量試驗,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.95左右∴摸到白球的概率為0.95∴解得:1經(jīng)檢驗:1是原方程的解.故答案為:1.【點睛】此題考查的是用頻率估計概率和根據(jù)概率求數(shù)量問題,掌握概率公式是解決此題的關(guān)鍵.15、∠ACP=∠B(或).【分析】由于△ACP與△ABC有一個公共角,所以可利用兩組對應邊的比相等且夾角對應相等的兩個三角形相似或有兩組角對應相等的兩個三角形相似進行添加條件.【詳解】解:∵∠PAC=∠CAB,∴當∠ACP=∠B時,△ACP∽△ABC;當時,△ACP∽△ABC.故答案為:∠ACP=∠B(或).【點睛】本題考查了相似三角形的判定:兩組對應邊的比相等且夾角對應相等的兩個三角形相似:有兩組角對應相等的兩個三角形相似.16、36°.【分析】由正五邊形的性質(zhì)得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出==,由圓周角定理即可得出答案.【詳解】∵⊙O是正五邊形ABCDE的外接圓,∴∠BAE=(n﹣2)×180°=(5﹣2)×180°=108°,BC=CD=DE,∴==,∴∠CAD=×108°=36°;故答案為:36°.【點睛】本題主要考查了正多邊形和圓的關(guān)系,以及圓周角定理的應用;熟練掌握正五邊形的性質(zhì)和圓周角定理是解題的關(guān)鍵.17、60°【分析】根據(jù)題意首先由多邊形外角和定理求出正多邊形的邊數(shù)n,再由正多邊形的中心角=,即可得出結(jié)果.【詳解】解:正多邊形的邊數(shù)為,故這個正多邊形的中心角為.故答案為:60°.【點睛】本題考查正多邊形的性質(zhì)和多邊形外角和定理以及正多邊形的中心角的計算方法,熟練掌握正多邊形的性質(zhì),并根據(jù)題意求出正多邊形的邊數(shù)是解決問題的關(guān)鍵.18、k≥-1【解析】首先討論當時,方程是一元一次方程,有實數(shù)根,當時,利用根的判別式△=b2-4ac=4+4k≥0,兩者結(jié)合得出答案即可.【詳解】當時,方程是一元一次方程:,方程有實數(shù)根;當時,方程是一元二次方程,解得:且.綜上所述,關(guān)于的方程有實數(shù)根,則的取值范圍是.故答案為【點睛】考查一元二次方程根的判別式,注意分類討論思想在解題中的應用,不要忽略這種情況.三、解答題(共78分)19、(1)y=;(2)(1,1),(﹣2,﹣3).【分析】(1)把點A的坐標代入反比例函數(shù)解析式,列出關(guān)于系數(shù)m的方程,通過解方程來求m的值;(2)設(shè)點P的坐標是(a,),然后根據(jù)三角形的面積公式來求點P的坐標.【詳解】解:(1)設(shè)反比例函數(shù)為y=,∵反比例函數(shù)的圖象過點A(2,3).則=3,解得m=1.故該反比例函數(shù)的解析式為y=;(2)設(shè)點P的坐標是(a,).∵A(2,3),∴AC=3,OC=2.∵△PAC的面積等于1,∴×AC×|a﹣2|=1,解得:|a﹣2|=4,∴a1=1,a2=﹣2,∴點P的坐標是(1,1),(﹣2,﹣3).【點睛】本題考查了反比例函數(shù)的面積問題,涉及的知識點有:待定系數(shù)法求函數(shù)解析式,坐標和圖形性質(zhì),以及反比例函數(shù)的圖像和性質(zhì),熟練掌握反比例函數(shù)的幾何意義是解題的關(guān)鍵20、(1)a+2;2;(2)-2或;(3)【分析】(1)將點B的坐標代入解析式,求得c的值;將點A代入解析式,從而求得b;;(2)由題意可得AO=1,設(shè)C點坐標為(x,y),然后利用三角形的面積求出點C的縱坐標,然后代入頂點坐標公式求得a的值;(3)結(jié)合圖像,若x>1時,y<1,則頂點縱坐標大于等于1,根據(jù)頂點縱坐標公式列不等式求解即可.【詳解】解:(1)將B(0,2)代入解析式得:c=2將A(-1,0)代入解析式得:a×(-1)2+b×(-1)+c=0∴a-b+2=0∴b=a+2故答案為:a+2;2(2)由題意可知:AO=1設(shè)C點坐標為(x,y)則解得:當y=2時,由(1)可知,b=a+2;c=2∴解得:a=-2當y=-2時,由(1)可知,b=a+2;c=2∴解得:∴a的值為-2或(3)若x>1時,y<1,又因為圖像過點A(-1,0)、B(0,2)∴圖像開口向下,即a<0則該圖像頂點縱坐標大于等于1∴即解得:或(舍去)∴a的取值范圍為【點睛】本題考查二次函數(shù)的性質(zhì),掌握頂點坐標公式及數(shù)形結(jié)合思想解題是本題的解題關(guān)鍵.21、(1);(2)當t=1時,矩形ABCD的周長有最大值,最大值為;(3)拋物線向右平移的距離是1個單位.【分析】(1)由點E的坐標設(shè)拋物線的交點式,再把點D的坐標(2,1)代入計算可得;

(2)由拋物線的對稱性得BE=OA=t,據(jù)此知AB=10-2t,再由x=t時AD=,根據(jù)矩形的周長公式列出函數(shù)解析式,配方成頂點式即可得;

(3)由t=2得出點A、B、C、D及對角線交點P的坐標,由直線GH平分矩形的面積知直線GH必過點P,根據(jù)AB∥CD知線段OD平移后得到的線段是GH,由線段OD的中點Q平移后的對應點是P知PQ是△OBD中位線,據(jù)此可得.【詳解】(1)設(shè)拋物線解析式為,當時,,點的坐標為,將點坐標代入解析式得,解得:,拋物線的函數(shù)表達式為;(2)由拋物線的對稱性得,,當時,,矩形的周長,,,,當時,矩形的周長有最大值,最大值為;(3)如圖,當時,點、、、的坐標分別為、、、,矩形對角線的交點的坐標為,直線平分矩形的面積,點是和的中點,,由平移知,是的中位線,,所以拋物線向右平移的距離是1個單位.【點睛】本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)及平移變換的性質(zhì)等知識點.22、(1)45°;(2).【解析】試題分析:(1)根據(jù)等腰三角形性質(zhì)和三角形外角性質(zhì)求出∠COD=2∠A,求出∠D=∠COD,根據(jù)切線性質(zhì)求出∠OCD=90°,即可求出答案;(2)求出OC=CD=2,根據(jù)勾股定理求出BD即可.試題解析:(1)∵OA=OC,∴∠A=∠ACO,∴∠COD=∠A+∠ACO=2∠A,∵∠D=2∠A,∴∠D=∠COD,∵PD切⊙O于C,∴∠OCD=90°,∴∠D=∠COD=45°;(2)∵∠D=∠COD,CD=2,∴OC=OB=CD=2,在Rt△OCD中,由勾股定理得:22+22=(2+BD)2,解得:BD=.考點:切線的性質(zhì)23、(1)14;(2)補圖見解析;(3)1.【解析】(1)根據(jù)第1組頻數(shù)及其頻率求得總?cè)藬?shù),總?cè)藬?shù)乘以第2組頻率可得a的值;(2)把上面的頻數(shù)分布直方圖補充完整;(3)根據(jù)樣本中90分及90分以上的百分比,乘以1000即可得到結(jié)果.【詳解】(1)∵被調(diào)查的總?cè)藬?shù)為6÷0.12=50人,∴a=50×0.28=14,故答案為:14;(2)補全頻數(shù)分布直方圖如下:(3)估計該校進入決賽的學生大約有1000×0.08=1人,故答案為:1.【點睛】此題考查了用樣本估計總體,頻數(shù)(率)分布表,以及頻數(shù)(率)分布直方圖,弄清題中的數(shù)據(jù)是解本題的關(guān)鍵.24、(1);(2)【分析】(1)根據(jù)距離=速度×時間即可得關(guān)于的函數(shù)表達式,根據(jù)全程速度限定為不超過可確定t的取值范圍;(2)把t=0.5代入(1)中關(guān)系式,即可求出速度v的值.【詳解】∵全程約,小汽車的行駛時間為,行駛速度為,∴vt=40,∵全程速度限定為不超過,全程約,∴t≥0.4,∴v關(guān)于的函數(shù)表達式為:.(2)∵需在分鐘后將乘客送達咸陽國際機場,30分鐘=0.5小時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論