版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
小升初數(shù)學(xué)典型應(yīng)用題應(yīng)用題類型:1、歸一問題2、歸總問題3、和差問題4、和倍問題5、差倍問題6、倍比問題7、相遇問題8、追及問題9、植樹問題10、年齡問題11、行船問題12、列車問題13、時鐘問題14、盈虧問題15、工程問題16、正反比例問題17、按比例分派18、百分數(shù)問題19、“牛吃草”問題20、雞兔同籠問題21、方陣問題22、商品利潤問題23、存款利率問題24、溶液濃度問題25、構(gòu)圖布數(shù)問題26、幻方問題27、抽屜原則問題28、公約公倍問題29、最值問題30、列方程問題1歸一問題【含義】在解題時,先求出一份是多少(即單一量),然后以單一量為標準,求出所規(guī)定的數(shù)量。這類應(yīng)用題叫做歸一問題?!緮?shù)量關(guān)系】總量÷份數(shù)=1份數(shù)量1份數(shù)量×所占份數(shù)=所求幾份的數(shù)量另一總量÷(總量÷份數(shù))=所求份數(shù)【解題思緒和方法】先求出單一量,以單一量為標準,求出所規(guī)定的數(shù)量。例1買5支鉛筆要0.6元錢,買同樣的鉛筆16支,需要多少錢?解(1)買1支鉛筆多少錢?0.6÷5=0.12(元)(2)買16支鉛筆需要多少錢?0.12×16=1.92(元)列成綜合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。例23臺拖拉機3天耕地90公頃,照這樣計算,5臺拖拉機6天耕地多少公頃?解(1)1臺拖拉機1天耕地多少公頃?90÷3÷3=10(公頃)(2)5臺拖拉機6天耕地多少公頃?10×5×6=300(公頃)列成綜合算式90÷3÷3×5×6=10×30=300(公頃)答:5臺拖拉機6天耕地300公頃。例35輛汽車4次可以運送100噸鋼材,假如用同樣的7輛汽車運送105噸鋼材,需要運幾次?解(1)1輛汽車1次能運多少噸鋼材?100÷5÷4=5(噸)(2)7輛汽車1次能運多少噸鋼材?5×7=35(噸)(3)105噸鋼材7輛汽車需要運幾次?105÷35=3(次)列成綜合算式105÷(100÷5÷4×7)=3(次)答:需要運3次。2歸總問題【含義】解題時,經(jīng)常先找出“總數(shù)量”,然后再根據(jù)其它條件算出所求的問題,叫歸總問題。所謂“總數(shù)量”是指貨品的總價、幾小時(幾天)的總工作量、幾公畝地上的總產(chǎn)量、幾小時行的總路程等?!緮?shù)量關(guān)系】1份數(shù)量×份數(shù)=總量總量÷1份數(shù)量=份數(shù)總量÷另一份數(shù)=另一每份數(shù)量【解題思緒和方法】先求出總數(shù)量,再根據(jù)題意得出所求的數(shù)量。例1服裝廠本來做一套衣服用布3.2米,改善裁剪方法后,每套衣服用布2.8米。本來做791套衣服的布,現(xiàn)在可以做多少套?解(1)這批布總共有多少米?3.2×791=2531.2(米)(2)現(xiàn)在可以做多少套?2531.2÷2.8=904(套)列成綜合算式3.2×791÷2.8=904(套)答:現(xiàn)在可以做904套。例2小華天天讀24頁書,12天讀完了《紅巖》一書。小明天天讀36頁書,幾天可以讀完《紅巖》?解(1)《紅巖》這本書總共多少頁?24×12=288(頁)(2)小明幾天可以讀完《紅巖》?288÷36=8(天)列成綜合算式24×12÷36=8(天)答:小明8天可以讀完《紅巖》。例3食堂運來一批蔬菜,原計劃天天吃50公斤,30天慢慢消費完這批蔬菜。后來根據(jù)大家的意見,天天比原計劃多吃10公斤,這批蔬菜可以吃多少天?解(1)這批蔬菜共有多少公斤?50×30=1500(公斤)(2)這批蔬菜可以吃多少天?1500÷(50+10)=25(天)列成綜合算式50×30÷(50+10)=1500÷60=25(天)答:這批蔬菜可以吃25天。3和差問題【含義】已知兩個數(shù)量的和與差,求這兩個數(shù)量各是多少,這類應(yīng)用題叫和差問題?!緮?shù)量關(guān)系】大數(shù)=(和+差)÷2小數(shù)=(和-差)÷2【解題思緒和方法】簡樸的題目可以直接套用公式;復(fù)雜的題目變通后再用公式。例1甲乙兩班共有學(xué)生98人,甲班比乙班多6人,求兩班各有多少人?解甲班人數(shù)=(98+6)÷2=52(人)乙班人數(shù)=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。例2長方形的長和寬之和為18厘米,長比寬多2厘米,求長方形的面積。解長=(18+2)÷2=10(厘米)寬=(18-2)÷2=8(厘米)長方形的面積=10×8=80(平方厘米)答:長方形的面積為80平方厘米。例3有甲乙丙三袋化肥,甲乙兩袋共重32公斤,乙丙兩袋共重30公斤,甲丙兩袋共重22公斤,求三袋化肥各重多少公斤。解甲乙兩袋、乙丙兩袋都具有乙,從中可以看出甲比丙多(32-30)=2公斤,且甲是大數(shù),丙是小數(shù)。由此可知甲袋化肥重量=(22+2)÷2=12(公斤)丙袋化肥重量=(22-2)÷2=10(公斤)乙袋化肥重量=32-12=20(公斤)答:甲袋化肥重12公斤,乙袋化肥重20公斤,丙袋化肥重10公斤。例4甲乙兩車本來共裝蘋果97筐,從甲車取下14筐放到乙車上,結(jié)果甲車比乙車還多3筐,兩車本來各裝蘋果多少筐?解“從甲車取下14筐放到乙車上,結(jié)果甲車比乙車還多3筐”,這說明甲車是大數(shù),乙車是小數(shù),甲與乙的差是(14×2+3),甲與乙的和是97,因此甲車筐數(shù)=(97+14×2+3)÷2=64(筐)乙車筐數(shù)=97-64=33(筐)答:甲車本來裝蘋果64筐,乙車本來裝蘋果33筐。4和倍問題【含義】已知兩個數(shù)的和及大數(shù)是小數(shù)的幾倍(或小數(shù)是大數(shù)的幾分之幾),規(guī)定這兩個數(shù)各是多少,這類應(yīng)用題叫做和倍問題?!緮?shù)量關(guān)系】總和÷(幾倍+1)=較小的數(shù)總和-較小的數(shù)=較大的數(shù)較小的數(shù)×幾倍=較大的數(shù)【解題思緒和方法】簡樸的題目直接運用公式,復(fù)雜的題目變通后運用公式。例1果園里有杏樹和桃樹共248棵,桃樹的棵數(shù)是杏樹的3倍,求杏樹、桃樹各多少棵?解(1)杏樹有多少棵?248÷(3+1)=62(棵)(2)桃樹有多少棵?62×3=186(棵)答:杏樹有62棵,桃樹有186棵。例2東西兩個倉庫共存糧480噸,東庫存糧數(shù)是西庫存糧數(shù)的1.4倍,求兩庫各存糧多少噸?解(1)西庫存糧數(shù)=480÷(1.4+1)=200(噸)(2)東庫存糧數(shù)=480-200=280(噸)答:東庫存糧280噸,西庫存糧200噸。例3甲站原有車52輛,乙站原有車32輛,若天天從甲站開往乙站28輛,從乙站開往甲站24輛,幾天后乙站車輛數(shù)是甲站的2倍?解天天從甲站開往乙站28輛,從乙站開往甲站24輛,相稱于天天從甲站開往乙站(28-24)輛。把幾天以后甲站的車輛數(shù)當(dāng)作1倍量,這時乙站的車輛數(shù)就是2倍量,兩站的車輛總數(shù)(52+32)就相稱于(2+1)倍,那么,幾天以后甲站的車輛數(shù)減少為(52+32)÷(2+1)=28(輛)所求天數(shù)為(52-28)÷(28-24)=6(天)答:6天以后乙站車輛數(shù)是甲站的2倍。例4甲乙丙三數(shù)之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三數(shù)各是多少?解乙丙兩數(shù)都與甲數(shù)有直接關(guān)系,因此把甲數(shù)作為1倍量。由于乙比甲的2倍少4,所以給乙加上4,乙數(shù)就變成甲數(shù)的2倍;又由于丙比甲的3倍多6,所以丙數(shù)減去6就變?yōu)榧讛?shù)的3倍;這時(170+4-6)就相稱于(1+2+3)倍。那么,甲數(shù)=(170+4-6)÷(1+2+3)=28乙數(shù)=28×2-4=52丙數(shù)=28×3+6=90答:甲數(shù)是28,乙數(shù)是52,丙數(shù)是90。5差倍問題【含義】已知兩個數(shù)的差及大數(shù)是小數(shù)的幾倍(或小數(shù)是大數(shù)的幾分之幾),規(guī)定這兩個數(shù)各是多少,這類應(yīng)用題叫做差倍問題。【數(shù)量關(guān)系】兩個數(shù)的差÷(幾倍-1)=較小的數(shù)較小的數(shù)×幾倍=較大的數(shù)【解題思緒和方法】簡樸的題目直接運用公式,復(fù)雜的題目變通后運用公式。例1果園里桃樹的棵數(shù)是杏樹的3倍,并且桃樹比杏樹多124棵。求杏樹、桃樹各多少棵?解(1)杏樹有多少棵?124÷(3-1)=62(棵)(2)桃樹有多少棵?62×3=186(棵)答:果園里杏樹是62棵,桃樹是186棵。例2爸爸比兒子大27歲,今年,爸爸的年齡是兒子年齡的4倍,求父子二人今年各是多少歲?解(1)兒子年齡=27÷(4-1)=9(歲)(2)爸爸年齡=9×4=36(歲)答:父子二人今年的年齡分別是36歲和9歲。例3商場改革經(jīng)營管理辦法后,本月賺錢比上月賺錢的2倍還多12萬元,又知本月賺錢比上月賺錢多30萬元,求這兩個月賺錢各是多少萬元?解假如把上月賺錢作為1倍量,則(30-12)萬元就相稱于上月賺錢的(2-1)倍,因此上月賺錢=(30-12)÷(2-1)=18(萬元)本月賺錢=18+30=48(萬元)答:上月賺錢是18萬元,本月賺錢是48萬元。例4糧庫有94噸小麥和138噸玉米,假如天天運出小麥和玉米各是9噸,問幾天后剩下的玉米是小麥的3倍?解由于天天運出的小麥和玉米的數(shù)量相等,所以剩下的數(shù)量差等于本來的數(shù)量差(138-94)。把幾天后剩下的小麥看作1倍量,則幾天后剩下的玉米就是3倍量,那么,(138-94)就相稱于(3-1)倍,因此剩下的小麥數(shù)量=(138-94)÷(3-1)=22(噸)運出的小麥數(shù)量=94-22=72(噸)運糧的天數(shù)=72÷9=8(天)答:8天以后剩下的玉米是小麥的3倍。6倍比問題【含義】有兩個已知的同類量,其中一個量是另一個量的若干倍,解題時先求出這個倍數(shù),再用倍比的方法算出規(guī)定的數(shù),這類應(yīng)用題叫做倍比問題?!緮?shù)量關(guān)系】總量÷一個數(shù)量=倍數(shù)另一個數(shù)量×倍數(shù)=另一總量【解題思緒和方法】先求出倍數(shù),再用倍比關(guān)系求出規(guī)定的數(shù)。例1100公斤油菜籽可以榨油40公斤,現(xiàn)在有油菜籽3700公斤,可以榨油多少?解(1)3700公斤是100公斤的多少倍?3700÷100=37(倍)(2)可以榨油多少公斤?40×37=1480(公斤)列成綜合算式40×(3700÷100)=1480(公斤)答:可以榨油1480公斤。例2今年植樹節(jié)這天,某小學(xué)300名師生共植樹400棵,照這樣計算,全縣48000名師生共植樹多少棵?解(1)48000名是300名的多少倍?48000÷300=160(倍)(2)共植樹多少棵?400×160=64000(棵)列成綜合算式400×(48000÷300)=64000(棵)答:全縣48000名師生共植樹64000棵。例3鳳翔縣今年蘋果大豐收,田家莊一戶人家4畝果園收入11111元,照這樣計算,全鄉(xiāng)800畝果園共收入多少元?全縣16000畝果園共收入多少元?解(1)800畝是4畝的幾倍?800÷4=200(倍)(2)800畝收入多少元?11111×200=2222200(元)(3)16000畝是800畝的幾倍?16000÷800=20(倍)(4)16000畝收入多少元?2222200×20=44444000(元)答:全鄉(xiāng)800畝果園共收入2222200元,全縣16000畝果園共收入44444000元。7相遇問題【含義】兩個運動的物體同時由兩地出發(fā)相向而行,在途中相遇。這類應(yīng)用題叫做相遇問題。【數(shù)量關(guān)系】相遇時間=總路程÷(甲速+乙速)總路程=(甲速+乙速)×相遇時間【解題思緒和方法】簡樸的題目可直接運用公式,復(fù)雜的題目變通后再運用公式。例1南京到上海的水路長392千米,同時從兩港各開出一艘輪船相對而行,從南京開出的船每小時行28千米,從上海開出的船每小時行21千米,通過幾小時兩船相遇?解392÷(28+21)=8(小時)答:通過8小時兩船相遇。例2小李和小劉在周長為400米的環(huán)形跑道上跑步,小李每秒鐘跑5米,小劉每秒鐘跑3米,他們從同一地點同時出發(fā),反向而跑,那么,二人從出發(fā)到第二次相遇需多長時間?解“第二次相遇”可以理解為二人跑了兩圈。因此總路程為400×2相遇時間=(400×2)÷(5+3)=100(秒)答:二人從出發(fā)到第二次相遇需100秒時間。例3甲乙二人同時從兩地騎自行車相向而行,甲每小時行15千米,乙每小時行13千米,兩人在距中點3千米處相遇,求兩地的距離。解“兩人在距中點3千米處相遇”是對的理解本題題意的關(guān)鍵。從題中可知甲騎得快,乙騎得慢,甲過了中點3千米,乙距中點3千米,就是說甲比乙多走的路程是(3×2)千米,因此,相遇時間=(3×2)÷(15-13)=3(小時)兩地距離=(15+13)×3=84(千米)答:兩地距離是84千米。8追及問題【含義】兩個運動物體在不同地點同時出發(fā)(或者在同一地點而不是同時出發(fā),或者在不同地點又不是同時出發(fā))作同向運動,在后面的,行進速度要快些,在前面的,行進速度較慢些,在一定期間之內(nèi),后面的追上前面的物體。這類應(yīng)用題就叫做追及問題。【數(shù)量關(guān)系】追及時間=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及時間【解題思緒和方法】簡樸的題目直接運用公式,復(fù)雜的題目變通后運用公式。例1好馬天天走120千米,劣馬天天走75千米,劣馬先走12天,好馬幾天能追上劣馬?解(1)劣馬先走12天能走多少千米?75×12=900(千米)(2)好馬幾天追上劣馬?900÷(120-75)=20(天)列成綜合算式75×12÷(120-75)=900÷45=20(天)答:好馬20天能追上劣馬。例2小明和小亮在200米環(huán)形跑道上跑步,小明跑一圈用40秒,他們從同一地點同時出發(fā),同向而跑。小明第一次追上小亮?xí)r跑了500米,求小亮的速度是每秒多少米。解小明第一次追上小亮?xí)r比小亮多跑一圈,即200米,此時小亮跑了(500-200)米,要知小亮的速度,須知追及時間,即小明跑500米所用的時間。又知小明跑200米用40秒,則跑500米用[40×(500÷200)]秒,所以小亮的速度是(500-200)÷[40×(500÷200)]=300÷100=3(米)答:小亮的速度是每秒3米。例3我人民解放軍追擊一股逃竄的敵人,敵人在下午16點開始從甲地以每小時10千米的速度逃跑,解放軍在晚上22點接到命令,以每小時30千米的速度開始從乙地追擊。已知甲乙兩地相距60千米,問解放軍幾個小時可以追上敵人?解敵人逃跑時間與解放軍追擊時間的時差是(22-16)小時,這段時間敵人逃跑的路程是[10×(22-16)]千米,甲乙兩地相距60千米。由此推知追及時間=[10×(22-16)+60]÷(30-10)=120÷20=6(小時)答:解放軍在6小時后可以追上敵人。例4一輛客車從甲站開往乙站,每小時行48千米;一輛貨車同時從乙站開往甲站,每小時行40千米,兩車在距兩站中點16千米處相遇,求甲乙兩站的距離。解這道題可以由相遇問題轉(zhuǎn)化為追及問題來解決。從題中可知客車落后于貨車(16×2)千米,客車追上貨車的時間就是前面所說的相遇時間,這個時間為16×2÷(48-40)=4(小時)所以兩站間的距離為(48+40)×4=352(千米)列成綜合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米)答:甲乙兩站的距離是352千米。例5兄妹二人同時由家上學(xué),哥哥每分鐘走90米,妹妹每分鐘走60米。哥哥到校門口時發(fā)現(xiàn)忘掉帶課本,立即沿原路回家去取,行至離校180米處和妹妹相遇。問他們家離學(xué)校有多遠?解規(guī)定距離,速度已知,所以關(guān)鍵是求出相遇時間。從題中可知,在相同時間(從出發(fā)到相遇)內(nèi)哥哥比妹妹多走(180×2)米,這是由于哥哥比妹妹每分鐘多走(90-60)米,那么,二人從家出走到相遇所用時間為180×2÷(90-60)=12(分鐘)家離學(xué)校的距離為90×12-180=900(米)答:家離學(xué)校有900米遠。例6孫亮打算上課前5分鐘到學(xué)校,他以每小時4千米的速度從家步行去學(xué)校,當(dāng)他走了1千米時,發(fā)現(xiàn)手表慢了10分鐘,因此立即跑步前進,到學(xué)校恰好準時上課。后來算了一下,假如孫亮從家一開始就跑步,可比本來步行早9分鐘到學(xué)校。求孫亮跑步的速度。解手表慢了10分鐘,就等于晚出發(fā)10分鐘,假如按原速走下去,就要遲到(10-5)分鐘,后段路程跑步恰準時到學(xué)校,說明后段路程跑比走少用了(10-5)分鐘。假如從家一開始就跑步,可比步行少9分鐘,由此可知,行1千米,跑步比步行少用[9-(10-5)]分鐘。所以步行1千米所用時間為1÷[9-(10-5)]=0.25(小時)=15(分鐘)跑步1千米所用時間為15-[9-(10-5)]=11(分鐘)跑步速度為每小時1÷11/60=5.5(千米)答:孫亮跑步速度為每小時5.5千米。9植樹問題【含義】按相等的距離植樹,在距離、棵距、棵數(shù)這三個量之間,已知其中的兩個量,規(guī)定第三個量,這類應(yīng)用題叫做植樹問題?!緮?shù)量關(guān)系】線形植樹棵數(shù)=距離÷棵距+1環(huán)形植樹棵數(shù)=距離÷棵距方形植樹棵數(shù)=距離÷棵距-4三角形植樹棵數(shù)=距離÷棵距-3面積植樹棵數(shù)=面積÷(棵距×行距)【解題思緒和方法】先弄清楚植樹問題的類型,然后可以運用公式。例1一條河堤136米,每隔2米栽一棵垂柳,頭尾都栽,一共要栽多少棵垂柳?解136÷2+1=68+1=69(棵)答:一共要栽69棵垂柳。例2一個圓形池塘周長為400米,在岸邊每隔4米栽一棵白楊樹,一共能栽多少棵白楊樹?解400÷4=100(棵)答:一共能栽100棵白楊樹。例3一個正方形的運動場,每邊長220米,每隔8米安裝一個照明燈,一共可以安裝多少個照明燈?解220×4÷8-4=110-4=106(個)答:一共可以安裝106個照明燈。例4給一個面積為96平方米的住宅鋪設(shè)地板磚,所用地板磚的長和寬分別是60厘米和40厘米,問至少需要多少塊地板磚?解96÷(0.6×0.4)=96÷0.24=400(塊)答:至少需要400塊地板磚。例5一座大橋長500米,給橋兩邊的電桿上安裝路燈,若每隔50米有一個電桿,每個電桿上安裝2盞路燈,一共可以安裝多少盞路燈?解(1)橋的一邊有多少個電桿?500÷50+1=11(個)(2)橋的兩邊有多少個電桿?11×2=22(個)(3)大橋兩邊可安裝多少盞路燈?22×2=44(盞)答:大橋兩邊一共可以安裝44盞路燈。10年齡問題【含義】這類問題是根據(jù)題目的內(nèi)容而得名,它的重要特點是兩人的年齡差不變,但是,兩人年齡之間的倍數(shù)關(guān)系隨著年齡的增長在發(fā)生變化?!緮?shù)量關(guān)系】年齡問題往往與和差、和倍、差倍問題有著密切聯(lián)系,特別與差倍問題的解題思緒是一致的,要緊緊抓住“年齡差不變”這個特點?!窘忸}思緒和方法】可以運用“差倍問題”的解題思緒和方法。兩個數(shù)的差÷(幾倍-1)=較小的數(shù)例1爸爸今年35歲,亮亮今年5歲,今年爸爸的年齡是亮亮的幾倍?明年呢?解35÷5=7(倍)(35+1)÷(5+1)=6(倍)答:今年爸爸的年齡是亮亮的7倍,明年爸爸的年齡是亮亮的6倍。例2母親今年37歲,女兒今年7歲,幾年后母親的年齡是女兒的4倍?解(1)母親比女兒的年齡大多少歲?37-7=30(歲)(2)幾年后母親的年齡是女兒的4倍?30÷(4-1)-7=3(年)列成綜合算式(37-7)÷(4-1)-7=3(年)答:3年后母親的年齡是女兒的4倍。例33年前父子的年齡和是49歲,今年父親的年齡是兒子年齡的4倍,父子今年各多少歲?解今年父子的年齡和應(yīng)當(dāng)比3年前增長(3×2)歲,今年二人的年齡和為49+3×2=55(歲)把今年兒子年齡作為1倍量,則今年父子年齡和相稱于(4+1)倍,因此,今年兒子年齡為55÷(4+1)=11(歲)今年父親年齡為11×4=44(歲)答:今年父親年齡是44歲,兒子年齡是11歲。例4甲對乙說:“當(dāng)我的歲數(shù)曾經(jīng)是你現(xiàn)在的歲數(shù)時,你才4歲”。乙對甲說:“當(dāng)我的歲數(shù)將來是你現(xiàn)在的歲數(shù)時,你將61歲”。求甲乙現(xiàn)在的歲數(shù)各是多少?(可用方程解)解這里涉及到三個年份:過去某一年、今年、將來某一年。列表分析:
過去某一年今年將來某一年甲□歲△歲61歲乙4歲□歲△歲表中兩個“□”表達同一個數(shù),兩個“△”表達同一個數(shù)。由于兩個人的年齡差總相等:□-4=△-□=61-△,也就是4,□,△,61成等差數(shù)列,所以,61應(yīng)當(dāng)比4大3個年齡差,因此二人年齡差為(61-4)÷3=19(歲)甲今年的歲數(shù)為△=61-19=42(歲)乙今年的歲數(shù)為□=42-19=23(歲)答:甲今年的歲數(shù)是42歲,乙今年的歲數(shù)是23歲。11行船問題【含義】行船問題也就是與航行有關(guān)的問題。解答這類問題要弄清船速與水速,船速是船只自身航行的速度,也就是船只在靜水中航行的速度;水速是水流的速度,船只順水航行的速度是船速與水速之和;船只逆水航行的速度是船速與水速之差?!緮?shù)量關(guān)系】(順水速度+逆水速度)÷2=船速(順水速度-逆水速度)÷2=水速順水速=船速×2-逆水速=逆水速+水速×2逆水速=船速×2-順水速=順水速-水速×2【解題思緒和方法】大多數(shù)情況可以直接運用數(shù)量關(guān)系的公式。例1一只船順水行320千米需用8小時,水流速度為每小時15千米,這只船逆水行這段路程需用幾小時?解由條件知,順水速=船速+水速=320÷8,而水速為每小時15千米,所以,船速為每小時320÷8-15=25(千米)船的逆水速為25-15=10(千米)船逆水行這段路程的時間為320÷10=32(小時)答:這只船逆水行這段路程需用32小時。例2甲船逆水行360千米需18小時,返回原地需10小時;乙船逆水行同樣一段距離需15小時,返回原地需多少時間?解由題意得甲船速+水速=360÷10=36甲船速-水速=360÷18=20可見(36-20)相稱于水速的2倍,所以,水速為每小時(36-20)÷2=8(千米)又由于,乙船速-水速=360÷15,所以,乙船速為360÷15+8=32(千米)乙船順水速為32+8=40(千米)所以,乙船順水航行360千米需要360÷40=9(小時)答:乙船返回原地需要9小時。例3一架飛機飛行在兩個城市之間,飛機的速度是每小時576千米,風(fēng)速為每小時24千米,飛機逆風(fēng)飛行3小時到達,順風(fēng)飛回需要幾小時?解這道題可以按照流水問題來解答。(1)兩城相距多少千米?(576-24)×3=1656(千米)(2)順風(fēng)飛回需要多少小時?1656÷(576+24)=2.76(小時)列成綜合算式[(576-24)×3]÷(576+24)=2.76(小時)答:飛機順風(fēng)飛回需要2.76小時。12列車問題【含義】這是與列車行駛有關(guān)的一些問題,解答時要注意列車車身的長度?!緮?shù)量關(guān)系】火車過橋:過橋時間=(車長+橋長)÷車速火車追及:追及時間=(甲車長+乙車長+距離)÷(甲車速-乙車速)火車相遇:相遇時間=(甲車長+乙車長+距離)÷(甲車速+乙車速)【解題思緒和方法】大多數(shù)情況可以直接運用數(shù)量關(guān)系的公式。例1一座大橋長2400米,一列火車以每分鐘900米的速度通過大橋,從車頭開上橋到車尾離開橋共需要3分鐘。這列火車長多少米?解火車3分鐘所行的路程,就是橋長與火車車身長度的和。(1)火車3分鐘行多少米?900×3=2700(米)(2)這列火車長多少米?2700-2400=300(米)列成綜合算式900×3-2400=300(米)答:這列火車長300米。例2一列長200米的火車以每秒8米的速度通過一座大橋,用了2分5秒鐘時間,求大橋的長度是多少米?解火車過橋所用的時間是2分5秒=125秒,所走的路程是(8×125)米,這段路程就是(200米+橋長),所以,橋長為8×125-200=800(米)答:大橋的長度是800米。例3一列長225米的慢車以每秒17米的速度行駛,一列長140米的快車以每秒22米的速度在后面追趕,求快車從追上到追過慢車需要多長時間?解從追上到追過,快車比慢車要多行(225+140)米,而快車比慢車每秒多行(22-17)米,因此,所求的時間為(225+140)÷(22-17)=73(秒)答:需要73秒。例4一列長150米的列車以每秒22米的速度行駛,有一個扳道工人以每秒3米的速度迎面走來,那么,火車從工人身旁駛過需要多少時間?解假如把人看作一列長度為零的火車,原題就相稱于火車相遇問題。150÷(22+3)=6(秒)答:火車從工人身旁駛過需要6秒鐘。例5一列火車穿越一條長2023米的隧道用了88秒,以同樣的速度通過一條長1250米的大橋用了58秒。求這列火車的車速和車身長度各是多少?解車速和車長都沒有變,但通過隧道和大橋所用的時間不同,是由于隧道比大橋長。可知火車在(88-58)秒的時間內(nèi)行駛了(2023-1250)米的路程,因此,火車的車速為每秒(2023-1250)÷(88-58)=25(米)進而可知,車長和橋長的和為(25×58)米,因此,車長為25×58-1250=200(米)答:這列火車的車速是每秒25米,車身長200米。13時鐘問題【含義】就是研究鐘面上時針與分針關(guān)系的問題,如兩針重合、兩針垂直、兩針成一線、兩針夾角為60度等。時鐘問題可與追及問題相類比?!緮?shù)量關(guān)系】分針的速度是時針的12倍,兩者的速度差為11/12。通常按追及問題來對待,也可以按差倍問題來計算。【解題思緒和方法】變通為“追及問題”后可以直接運用公式。例1從時針指向4點開始,再通過多少分鐘時針正好與分針重合?解鐘面的一周分為60格,分針每分鐘走一格,每小時走60格;時針每小時走5格,每分鐘走5/60=1/12格。每分鐘分針比時針多走(1-1/12)=11/12格。4點整,時針在前,分針在后,兩針相距20格。所以分針追上時針的時間為20÷(1-1/12)≈22(分)答:再通過22分鐘時針正好與分針重合。例2四點和五點之間,時針和分針在什么時候成直角?解鐘面上有60格,它的1/4是15格,因而兩針成直角的時候相差15格(涉及分針在時針的前或后15格兩種情況)。四點整的時候,分針在時針后(5×4)格,假如分針在時針后與它成直角,那么分針就要比時針多走(5×4-15)格,假如分針在時針前與它成直角,那么分針就要比時針多走(5×4+15)格。再根據(jù)1分鐘分針比時針多走(1-1/12)格就可以求出二針成直角的時間。(5×4-15)÷(1-1/12)≈6(分)(5×4+15)÷(1-1/12)≈38(分)答:4點06分及4點38分時兩針成直角。例3六點與七點之間什么時候時針與分針重合?解六點整的時候,分針在時針后(5×6)格,分針要與時針重合,就得追上時針。這事實上是一個追及問題。(5×6)÷(1-1/12)≈33(分)答:6點33分的時候分針與時針重合。14盈虧問題【含義】根據(jù)一定的人數(shù),分派一定的物品,在兩次分派中,一次有余(盈),一次局限性(虧),或兩次都有余,或兩次都局限性,求人數(shù)或物品數(shù),這類應(yīng)用題叫做盈虧問題?!緮?shù)量關(guān)系】一般地說,在兩次分派中,假如一次盈,一次虧,則有:參與分派總?cè)藬?shù)=(盈+虧)÷分派差假如兩次都盈或都虧,則有:參與分派總?cè)藬?shù)=(大盈-小盈)÷分派差參與分派總?cè)藬?shù)=(大虧-小虧)÷分派差【解題思緒和方法】大多數(shù)情況可以直接運用數(shù)量關(guān)系的公式。例1給幼兒園小朋友分蘋果,若每人分3個就余11個;若每人分4個就少1個。問有多少小朋友?有多少個蘋果?解按照“參與分派的總?cè)藬?shù)=(盈+虧)÷分派差”的數(shù)量關(guān)系:(1)有小朋友多少人?(11+1)÷(4-3)=12(人)(2)有多少個蘋果?3×12+11=47(個)答:有小朋友12人,有47個蘋果。例2修一條公路,假如天天修260米,修完全長就得延長8天;假如天天修300米,修完全長仍得延長4天。這條路全長多少米?解題中原定完畢任務(wù)的天數(shù),就相稱于“參與分派的總?cè)藬?shù)”,按照“參與分派的總?cè)藬?shù)=(大虧-小虧)÷分派差”的數(shù)量關(guān)系,可以得知原定完畢任務(wù)的天數(shù)為(260×8-300×4)÷(300-260)=22(天)這條路全長為300×(22+4)=7800(米)答:這條路全長7800米。例3學(xué)校組織春游,假如每輛車坐40人,就余下30人;假如每輛車坐45人,就剛好坐完。問有多少車?多少人?解本題中的車輛數(shù)就相稱于“參與分派的總?cè)藬?shù)”,于是就有(1)有多少車?(30-0)÷(45-40)=6(輛)(2)有多少人?40×6+30=270(人)答:有6輛車,有270人。15工程問題【含義】工程問題重要研究工作量、工作效率和工作時間三者之間的關(guān)系。這類問題在已知條件中,經(jīng)常不給出工作量的具體數(shù)量,只提出“一項工程”、“一塊土地”、“一條水渠”、“一件工作”等,在解題時,經(jīng)常用單位“1”表達工作總量?!緮?shù)量關(guān)系】解答工程問題的關(guān)鍵是把工作總量看作“1”,這樣,工作效率就是工作時間的倒數(shù)(它表達單位時間內(nèi)完畢工作總量的幾分之幾),進而就可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版園林景觀設(shè)計施工一體化合同范本4篇
- 二零二五年度空場地租賃合同示范文本(含8項租賃合同解除條件)3篇
- 2025年度個人股權(quán)交易合規(guī)審查與服務(wù)合同4篇
- 2025年食堂食材采購與互聯(lián)網(wǎng)+服務(wù)合同范本大全3篇
- 個人獨資企業(yè)2024年度合同3篇
- 2024私企公司股權(quán)轉(zhuǎn)讓及海外市場拓展合作協(xié)議3篇
- 個人汽車抵押貸款合同:2024年標準版版B版
- 2025版五星級酒店員工工作績效評估及獎懲合同3篇
- 2025年暑假工招工合同范本:職業(yè)健康檢查與保護3篇
- 二零二五年特種空調(diào)設(shè)備采購與安全檢測合同2篇
- 2024-2025學(xué)年山東省濰坊市高一上冊1月期末考試數(shù)學(xué)檢測試題(附解析)
- 數(shù)學(xué)-湖南省新高考教學(xué)教研聯(lián)盟(長郡二十校聯(lián)盟)2024-2025學(xué)年2025屆高三上學(xué)期第一次預(yù)熱演練試題和答案
- 決勝中層:中層管理者的九項修煉-記錄
- 幼兒園人民幣啟蒙教育方案
- 高考介詞練習(xí)(附答案)
- 單位就業(yè)人員登記表
- 衛(wèi)生監(jiān)督協(xié)管-醫(yī)療機構(gòu)監(jiān)督
- 記錄片21世紀禁愛指南
- 腰椎間盤的診斷證明書
- 移動商務(wù)內(nèi)容運營(吳洪貴)任務(wù)七 裂變傳播
- 單級倒立擺系統(tǒng)建模與控制器設(shè)計
評論
0/150
提交評論