2024屆廣東省東莞市(莞外、松山湖實驗)中考試題猜想數(shù)學試卷含解析_第1頁
2024屆廣東省東莞市(莞外、松山湖實驗)中考試題猜想數(shù)學試卷含解析_第2頁
2024屆廣東省東莞市(莞外、松山湖實驗)中考試題猜想數(shù)學試卷含解析_第3頁
2024屆廣東省東莞市(莞外、松山湖實驗)中考試題猜想數(shù)學試卷含解析_第4頁
2024屆廣東省東莞市(莞外、松山湖實驗)中考試題猜想數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆廣東省東莞市(莞外、松山湖實驗)中考試題猜想數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.有一個數(shù)用科學記數(shù)法表示為5.2×105,則這個數(shù)是()A.520000 B. C.52000 D.52000002.如圖,在平面直角坐標系xOy中,點A從出發(fā),繞點O順時針旋轉一周,則點A不經過()A.點M B.點N C.點P D.點Q3.甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500m,先到終點的人原地休息.已知甲先出發(fā)2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發(fā)的時間t(s)之間的關系如圖所示,給出以下結論:①a=8;②b=92;③c=1.其中正確的是()A.①②③ B.僅有①② C.僅有①③ D.僅有②③4.已知二次函數(shù)y=x2+bx+c的圖象與x軸相交于A、B兩點,其頂點為P,若S△APB=1,則b與c滿足的關系是()A.b2-4c+1=0 B.b2-4c-1=0 C.b2-4c+4=0 D.b2-4c-4=05.如圖是小強用八塊相同的小正方體搭建的一個積木,它的左視圖是()A. B. C. D.6.如圖,某小區(qū)計劃在一塊長為31m,寬為10m的矩形空地上修建三條同樣寬的道路,剩余的空地上種植草坪,使草坪的面積為570m1.若設道路的寬為xm,則下面所列方程正確的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5707.若一元二次方程x2﹣2x+m=0有兩個不相同的實數(shù)根,則實數(shù)m的取值范圍是()A.m≥1 B.m≤1 C.m>1 D.m<18.如圖,已知AB和CD是⊙O的兩條等弦.OM⊥AB,ON⊥CD,垂足分別為點M、N,BA、DC的延長線交于點P,聯(lián)結OP.下列四個說法中:①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正確的個數(shù)是()A.1 B.2 C.3 D.49.下列各式中,互為相反數(shù)的是()A.和 B.和 C.和 D.和10.如圖,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于點E,點D為AB的中點,連接DE,則△BDE的周長是()A.3 B.4 C.5 D.6二、填空題(共7小題,每小題3分,滿分21分)11.分解因式:a3﹣a=_____.12.如圖,直線經過正方形的頂點分別過此正方形的頂點、作于點、于點.若,則的長為________.13.分解因式:a2b?8ab+16b=_____.14.某商品每件標價為150元,若按標價打8折后,再降價10元銷售,仍獲利10%,則該商品每件的進價為_________元.15.如圖,正方形ABCD和正方形OEFG中,點A和點F的坐標分別為(3,2),(-1,-1),則兩個正方形的位似中心的坐標是_________.16.若代數(shù)式的值不小于代數(shù)式的值,則x的取值范圍是_____.17.百子回歸圖是由1,2,3,…,100無重復排列而成的正方形數(shù)表,它是一部數(shù)化的澳門簡史,如:中央四位“19991220”標示澳門回歸日期,最后一行中間兩位“2350”標示澳門面積,…,同時它也是十階幻方,其每行10個數(shù)之和、每列10個數(shù)之和、每條對角線10個數(shù)之和均相等,則這個和為______.百子回歸三、解答題(共7小題,滿分69分)18.(10分)一定數(shù)量的石子可以擺成如圖所示的三角形和四邊形,古希臘科學家把1,3,6,10,15,21,…,稱為“三角形數(shù)”;把1,4,9,16,25,…,稱為“正方形數(shù)”.將三角形、正方形、五邊形都整齊的由左到右填在所示表格里:三角形數(shù)136101521a…正方形數(shù)1491625b49…五邊形數(shù)151222C5170…(1)按照規(guī)律,表格中a=___,b=___,c=___.(2)觀察表中規(guī)律,第n個“正方形數(shù)”是________;若第n個“三角形數(shù)”是x,則用含x、n的代數(shù)式表示第n個“五邊形數(shù)”是___________.19.(5分)(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.求的值.20.(8分)已知關于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求證:無論實數(shù)m取何值,方程總有兩個實數(shù)根;(2)若方程有一個根的平方等于4,求m的值.21.(10分)已知關于x的一元二次方程x2﹣(2m+3)x+m2+2=1.(1)若方程有實數(shù)根,求實數(shù)m的取值范圍;(2)若方程兩實數(shù)根分別為x1、x2,且滿足x12+x22=31+|x1x2|,求實數(shù)m的值.22.(10分)如圖,小明在一塊平地上測山高,先在B處測得山頂A的仰角為30°,然后向山腳直行60米到達C處,再測得山頂A的仰角為45°,求山高AD的長度.(測角儀高度忽略不計)23.(12分)如圖,已知點C是∠AOB的邊OB上的一點,求作⊙P,使它經過O、C兩點,且圓心在∠AOB的平分線上.24.(14分)科研所計劃建一幢宿舍樓,因為科研所實驗中會產生輻射,所以需要有兩項配套工程.①在科研所到宿舍樓之間修一條高科技的道路;②對宿含樓進行防輻射處理;已知防輻射費y萬元與科研所到宿舍樓的距離xkm之間的關系式為y=ax+b(0≤x≤3).當科研所到宿舍樓的距離為1km時,防輻射費用為720萬元;當科研所到宿含樓的距離為3km或大于3km時,輻射影響忽略不計,不進行防輻射處理,設修路的費用與x2成正比,且比例系數(shù)為m萬元,配套工程費w=防輻射費+修路費.(1)當科研所到宿舍樓的距離x=3km時,防輻射費y=____萬元,a=____,b=____;(2)若m=90時,求當科研所到宿舍樓的距離為多少km時,配套工程費最少?(3)如果最低配套工程費不超過675萬元,且科研所到宿含樓的距離小于等于3km,求m的范圍?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】5.2×105=520000,故選A.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.2、C【解析】

根據(jù)旋轉的性質:對應點到旋轉中心的距離相等,逐一判斷即可.【詳解】解:連接OA、OM、ON、OP,根據(jù)旋轉的性質,點A的對應點到旋轉中心的距離與OA的長度應相等根據(jù)網格線和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5∵OA=OM=ON=OQ≠OP∴則點A不經過點P故選C.【點睛】此題考查的是旋轉的性質和勾股定理,掌握旋轉的性質:對應點到旋轉中心的距離相等和用勾股定理求線段的長是解決此題的關鍵.3、A【解析】

解:∵乙出發(fā)時甲行了2秒,相距8m,∴甲的速度為8/2=4m/s.∵100秒時乙開始休息.∴乙的速度是500/100=5m/s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正確.∵100秒時乙到達終點,甲走了4×(100+2)=408m,∴b=500-408=92m.因此②正確.∵甲走到終點一共需耗時500/4=125s,,∴c=125-2=1s.因此③正確.終上所述,①②③結論皆正確.故選A.4、D【解析】

拋物線的頂點坐標為P(?,),設A、B兩點的坐標為A(,0)、B(,0)則AB=,根據(jù)根與系數(shù)的關系把AB的長度用b、c表示,而S△APB=1,然后根據(jù)三角形的面積公式就可以建立關于b、c的等式.【詳解】解:∵,∴AB==,∵若S△APB=1∴S△APB=×AB×=1,∴?××,∴,設=s,則,故s=2,∴=2,∴.故選D.【點睛】本題主要考查了拋物線與x軸的交點情況與判別式的關系、拋物線頂點坐標公式、三角形的面積公式等知識,綜合性比較強.5、D【解析】

左視圖從左往右,2列正方形的個數(shù)依次為2,1,依此得出圖形D正確.故選D.【詳解】請在此輸入詳解!6、A【解析】六塊矩形空地正好能拼成一個矩形,設道路的寬為xm,根據(jù)草坪的面積是570m1,即可列出方程:(31?1x)(10?x)=570,故選A.7、D【解析】分析:根據(jù)方程的系數(shù)結合根的判別式△>0,即可得出關于m的一元一次不等式,解之即可得出實數(shù)m的取值范圍.詳解:∵方程有兩個不相同的實數(shù)根,∴解得:m<1.故選D.點睛:本題考查了根的判別式,牢記“當△>0時,方程有兩個不相等的實數(shù)根”是解題的關鍵.8、D【解析】如圖連接OB、OD;∵AB=CD,∴=,故①正確∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正確,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正確,∵AM=CN,∴PA=PC,故③正確,故選D.9、A【解析】

根據(jù)乘方的法則進行計算,然后根據(jù)只有符號不同的兩個數(shù)互為相反數(shù),可得答案.【詳解】解:A.=9,=-9,故和互為相反數(shù),故正確;B.=9,=9,故和不是互為相反數(shù),故錯誤;C.=-8,=-8,故和不是互為相反數(shù),故錯誤;D.=8,=8故和不是互為相反數(shù),故錯誤.故選A.【點睛】本題考查了有理數(shù)的乘方和相反數(shù)的定義,關鍵是掌握有理數(shù)乘方的運算法則.10、C【解析】

根據(jù)等腰三角形的性質可得BE=BC=2,再根據(jù)三角形中位線定理可求得BD、DE長,根據(jù)三角形周長公式即可求得答案.【詳解】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=BC=2,又∵D是AB中點,∴BD=AB=,∴DE是△ABC的中位線,∴DE=AC=,∴△BDE的周長為BD+DE+BE=++2=5,故選C.【點睛】本題考查了等腰三角形的性質、三角形中位線定理,熟練掌握三角形中位線定理是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、a(a+1)(a﹣1)【解析】解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案為:a(a+1)(a﹣1).12、13【解析】

根據(jù)正方形的性質得出AD=AB,∠BAD=90°,根據(jù)垂直得出∠DEA=∠AFB=90°,求出∠EDA=∠FAB,根據(jù)AAS推出△AED≌△BFA,根據(jù)全等三角形的性質得出AE=BF=5,AF=DE=8,即可求出答案;【詳解】∵ABCD是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,∴∠FBA=∠EAD(等量代換);∵BF⊥a于點F,DE⊥a于點E,∴在Rt△AFB和Rt△AED中,∵,∴△AFB≌△AED(AAS),∴AF=DE=8,BF=AE=5(全等三角形的對應邊相等),∴EF=AF+AE=DE+BF=8+5=13.故答案為13.點睛:本題考查了勾股定理,全等三角形的性質和判定,正方形的性質的應用,能求出△AED≌△BFA是解此題的關鍵.13、b(a﹣4)1【解析】

先提公因式,再用完全平方公式進行因式分解.【詳解】解:a1b-8ab+16b=b(a1-8a+16)=b(a-4)1.【點睛】本題考查了提公因式與公式法的綜合運用,熟練運用公式法分解因式是本題的關鍵.14、1【解析】試題分析:設該商品每件的進價為x元,則150×80%-10-x=x×10%,解得x=1.即該商品每件的進價為1元.故答案為1.點睛:此題主要考查了一元一次方程的應用,解決本題的關鍵是得到商品售價的等量關系.15、(1,0);(﹣5,﹣2).【解析】

本題主要考查位似變換中對應點的坐標的變化規(guī)律.因而本題應分兩種情況討論,一種是當E和C是對應頂點,G和A是對應頂點;另一種是A和E是對應頂點,C和G是對應頂點.【詳解】∵正方形ABCD和正方形OEFG中A和點F的坐標分別為(3,2),(-1,-1),

∴E(-1,0)、G(0,-1)、D(5,2)、B(3,0)、C(5,0),

(1)當E和C是對應頂點,G和A是對應頂點時,位似中心就是EC與AG的交點,

設AG所在直線的解析式為y=kx+b(k≠0),

∴,解得.

∴此函數(shù)的解析式為y=x-1,與EC的交點坐標是(1,0);

(2)當A和E是對應頂點,C和G是對應頂點時,位似中心就是AE與CG的交點,

設AE所在直線的解析式為y=kx+b(k≠0),

,解得,故此一次函數(shù)的解析式為…①,

同理,設CG所在直線的解析式為y=kx+b(k≠0),

,解得,

故此直線的解析式為…②

聯(lián)立①②得

解得,故AE與CG的交點坐標是(-5,-2).

故答案為:(1,0)、(-5,-2).16、x≥【解析】

根據(jù)題意列出不等式,依據(jù)解不等式得基本步驟求解可得.【詳解】解:根據(jù)題意,得:,6(3x﹣1)≥5(1﹣5x),18x﹣6≥5﹣25x,18x+25x≥5+6,43x≥11,x≥,故答案為x≥.【點睛】本題主要考查解不等式得基本技能,熟練掌握解一元一次不等式的基本步驟是解題的關鍵.17、505【解析】

根據(jù)已知得:百子回歸圖是由1,2,3…,100無重復排列而成,先計算總和;又因為一共有10行,且每行10個數(shù)之和均相等,所以每行10個數(shù)之和=總和÷10,代入求解即可.【詳解】1~100的總和為:=5050,

一共有10行,且每行10個數(shù)之和均相等,所以每行10個數(shù)之和為:n=5050÷10=505,故答案為505.【點睛】本題是數(shù)字變化類的規(guī)律題,是??碱}型;一般思路為:按所描述的規(guī)律從1開始計算,從計算的過程中慢慢發(fā)現(xiàn)規(guī)律,總結出與每一次計算都符合的規(guī)律,就是最后的答案三、解答題(共7小題,滿分69分)18、123n2n2+x-n【解析】分析:(1)、首先根據(jù)題意得出前6個“三角形數(shù)”分別是多少,從而得出a的值;前5個“正方形數(shù)”分別是多少,從而得出b的值;前4個“正方形數(shù)”分別是多少,從而得出c的值;(2)、根據(jù)前面得出的一般性得出答案.詳解:(1)∵前6個“三角形數(shù)”分別是:1=、3=、6=、10=、15=、21=,

∴第n個“三角形數(shù)”是,∴a=7×82=17×82=1.

∵前5個“正方形數(shù)”分別是:1=12,4=22,9=32,16=42,25=52,

∴第n個“正方形數(shù)”是n2,∴b=62=2.

∵前4個“正方形數(shù)”分別是:1=,5=,12=,22=,

∴第n個“五邊形數(shù)”是n(3n?1)2n(3n?1)2,∴c==3.

(2)第n個“正方形數(shù)”是n2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,…,

∴第n個“五邊形數(shù)”是n2+x-n.點睛:此題主要考查了圖形的變化類問題,要熟練掌握,解答此類問題的關鍵是首先應找出圖形哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認真觀察、仔細思考,善用聯(lián)想來解決這類問題.19、1【解析】

通過已知等式化簡得到未知量的關系,代入目標式子求值.【詳解】∵(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.∴(y﹣z)1﹣(y+z﹣1x)1+(x﹣y)1﹣(x+y﹣1z)1+(z﹣x)1﹣(z+x﹣1y)1=2,∴(y﹣z+y+z﹣1x)(y﹣z﹣y﹣z+1x)+(x﹣y+x+y﹣1z)(x﹣y﹣x﹣y+1z)+(z﹣x+z+x﹣1y)(z﹣x﹣z﹣x+1y)=2,∴1x1+1y1+1z1﹣1xy﹣1xz﹣1yz=2,∴(x﹣y)1+(x﹣z)1+(y﹣z)1=2.∵x,y,z均為實數(shù),∴x=y=z.∴20、(1)證明見解析;(2)m的值為1或﹣2.【解析】

(1)計算根的判別式的值可得(m+1)2≥1,由此即可證得結論;(2)根據(jù)題意得到x=±2是原方程的根,將其代入列出關于m新方程,通過解新方程求得m的值即可.【詳解】(1)證明:∵△=[﹣(m+3)]2﹣2(m+2)=(m+1)2≥1,∴無論實數(shù)m取何值,方程總有兩個實數(shù)根;(2)解:∵方程有一個根的平方等于2,∴x=±2是原方程的根,當x=2時,2﹣2(m+3)+m+2=1.解得m=1;當x=﹣2時,2+2(m+3)+m+2=1,解得m=﹣2.綜上所述,m的值為1或﹣2.【點睛】本題考查了根的判別式及一元二次方程的解的定義,在解答(2)時要分類討論,這是此題的易錯點.21、(1)m≥﹣;(2)m=2.【解析】

(1)利用判別式的意義得到(2m+3)2﹣4(m2+2)≥1,然后解不等式即可;(2)根據(jù)題意x1+x2=2m+3,x1x2=m2+2,由條件得x12+x22=31+x1x2,再利用完全平方公式得(x1+x2)2﹣3x1x2﹣31=1,所以2m+3)2﹣3(m2+2)﹣31=1,然后解關于m的方程,最后利用m的范圍確定滿足條件的m的值.【詳解】(1)根據(jù)題意得(2m+3)2﹣4(m2+2)≥1,解得m≥﹣;(2)根據(jù)題意x1+x2=2m+3,x1x2=m2+2,因為x1x2=m2+2>1,所以x12+x22=31+x1x2,即(x1+x2)2﹣3x1x2﹣31=1,所以(2m+3)2﹣3(m2+2)﹣31=1,整理得m2+12m﹣28=1,解得m1=﹣14,m2=2,而m≥﹣;所以m=2.【點睛】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的兩根時,.靈活應用整體代入的方法計算.22、30米【解析】

設AD=xm,在Rt△ACD中,根據(jù)正切的概念用x表示出CD,在Rt△ABD中,根據(jù)正切的概念列出方程求出x的值即可.【詳解】由題意得,∠ABD=30°,∠ACD=45°,BC=60m,設AD=xm,在Rt△ACD中,∵ta

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論