




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆西藏自治區(qū)日喀則市南木林縣中考數學五模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如果,那么代數式的值是()A.6 B.2 C.-2 D.-62.正方形ABCD和正方形BPQR的面積分別為16、25,它們重疊的情形如圖所示,其中R點在AD上,CD與QR相交于S點,則四邊形RBCS的面積為()A.8 B. C. D.3.若,則括號內的數是A. B. C.2 D.84.如圖,在Rt△ABC中,∠ACB=90°,點D,E分別是AB,BC的中點,點F是BD的中點.若AB=10,則EF=()A.2.5 B.3 C.4 D.55.如圖,過點A(4,5)分別作x軸、y軸的平行線,交直線y=﹣x+6于B、C兩點,若函數y=(x>0)的圖象△ABC的邊有公共點,則k的取值范圍是()A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤206.如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,已知MN∥AB,MC=6,NC=,則四邊形MABN的面積是()A. B. C. D.7.若a=,則實數a在數軸上對應的點的大致位置是()A.點E B.點F C.點G D.點H8.數據”1,2,1,3,1”的眾數是()A.1B.1.5C.1.6D.39.已知點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數y=kx(k<0)的圖象上,若x1<x2<0<x3,則y1,y2,y3A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y210.在△ABC中,∠C=90°,tanA=125,△ABC的周長為60,那么△ABCA.60 B.30 C.240 D.12011.2017年北京市在經濟發(fā)展、社會進步、城市建設、民生改善等方面取得新成績、新面貌.綜合實力穩(wěn)步提升.全市地區(qū)生產總值達到280000億元,將280000用科學記數法表示為()A.280×103 B.28×104 C.2.8×105 D.0.28×10612.太原市出租車的收費標準是:白天起步價8元(即行駛距離不超過3km都需付8元車費),超過3km以后,每增加1km,加收1.6元(不足1km按1km計),某人從甲地到乙地經過的路程是xkm,出租車費為16元,那么x的最大值是()A.11 B.8 C.7 D.5二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若順次連接四邊形ABCD四邊中點所得的四邊形是矩形,則原四邊形的對角線AC、BD所滿足的條件是_____.14.如圖,△ABC中,D、E分別在AB、AC上,DE∥BC,AD:AB=1:3,則△ADE與△ABC的面積之比為______.15.假期里小菲和小琳結伴去超市買水果,三次購買的草莓價格和數量如下表:價格/(元/kg)
12
10
8
合計/kg
小菲購買的數量/kg
2
2
2
6
小琳購買的數量/kg
1
2
3
6
從平均價格看,誰買得比較劃算?()A.一樣劃算B.小菲劃算C.小琳劃算D.無法比較16.如圖△ABC中,AB=AC=8,∠BAC=30°,現將△ABC繞點A逆時針旋轉30°得到△ACD,延長AD、BC交于點E,則DE的長是_____.17.如圖,點E是正方形ABCD的邊CD上一點,以A為圓心,AB為半徑的弧與BE交于點F,則∠EFD=_____°.18.若實數a、b在數軸上的位置如圖所示,則代數式|b﹣a|+化簡為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)閱讀材料:已知點和直線,則點P到直線的距離d可用公式計算.例如:求點到直線的距離.
解:因為直線可變形為,其中,所以點到直線的距離為:.根據以上材料,求:點到直線的距離,并說明點P與直線的位置關系;已知直線與平行,求這兩條直線的距離.20.(6分)某超市預測某飲料會暢銷、先用1800元購進一批這種飲料,面市后果然供不應求,又用8100元購進這種飲料,第二批飲料的數量是第一批的3倍,但單價比第一批貴2元.第一批飲料進貨單價多少元?若兩次進飲料都按同一價格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價至少為多少元?21.(6分)從廣州去某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵的行駛路程的1.3倍.求普通列車的行駛路程;若高鐵的平均速度(千米/時)是普通列車平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.22.(8分)如圖,△ABC是等腰三角形,AB=AC,點D是AB上一點,過點D作DE⊥BC交BC于點E,交CA延長線于點F.證明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的長,23.(8分)先化簡,再求值:÷(a﹣),其中a=3tan30°+1,b=cos45°.24.(10分)一個不透明的袋子中,裝有標號分別為1、-1、2的三個小球,他們除標號不同外,其余都完全相同;攪勻后,從中任意取一個球,標號為正數的概率是;攪勻后,從中任取一個球,標號記為k,然后放回攪勻再取一個球,標號記為b,求直線y=kx+b經過一、二、三象限的概率.25.(10分)如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側)兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).(1)求點B,C的坐標;(2)判斷△CDB的形狀并說明理由;(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數關系式,并寫出自變量t的取值范圍.26.(12分)為了了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調查,根據調査結果繪制了如下尚不完整的統(tǒng)計圖:根據以上信息解答下列問題:這次接受調查的市民總人數是_______人;扇形統(tǒng)計圖中,“電視”所對應的圓心角的度數是_________;請補全條形統(tǒng)計圖;若該市約有80萬人,請你估計其中將“電腦和手機上網”作為“獲取新聞的最主要途徑”的總人數.27.(12分)在平面直角坐標系中,O為原點,點A(8,0)、點B(0,4),點C、D分別是邊OA、AB的中點.將△ACD繞點A順時針方向旋轉,得△AC′D′,記旋轉角為α.(I)如圖①,連接BD′,當BD′∥OA時,求點D′的坐標;(II)如圖②,當α=60°時,求點C′的坐標;(III)當點B,D′,C′共線時,求點C′的坐標(直接寫出結果即可).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】【分析】將所求代數式先利用單項式乘多項式法則、平方差公式進行展開,然后合并同類項,最后利用整體代入思想進行求值即可.【詳解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故選A.【點睛】本題考查了代數式求值,涉及到單項式乘多項式、平方差公式、合并同類項等,利用整體代入思想進行解題是關鍵.2、D【解析】
根據正方形的邊長,根據勾股定理求出AR,求出△ABR∽△DRS,求出DS,根據面積公式求出即可.【詳解】∵正方形ABCD的面積為16,正方形BPQR面積為25,∴正方形ABCD的邊長為4,正方形BPQR的邊長為5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四邊形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴陰影部分的面積S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故選:D.【點睛】本題考查了正方形的性質,相似三角形的性質和判定,能求出△ABR和△RDS的面積是解此題的關鍵.3、C【解析】
根據有理數的減法,減去一個數等于加上這個數的相反數,可得答案.【詳解】解:,
故選:C.【點睛】本題考查了有理數的減法,減去一個數等于加上這個數的相反數.4、A【解析】
先利用直角三角形的性質求出CD的長,再利用中位線定理求出EF的長.【詳解】∵∠ACB=90°,D為AB中點∴CD=1∵點E、F分別為BC、BD中點∴EF=1故答案為:A.【點睛】本題考查的知識點是直角三角形的性質和中位線定理,解題關鍵是尋找EF與題目已知長度的線段的數量關系.5、A【解析】若反比例函數與三角形交于A(4,5),則k=20;若反比例函數與三角形交于C(4,2),則k=8;若反比例函數與三角形交于B(1,5),則k=5.故.故選A.6、C【解析】連接CD,交MN于E,∵將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,∴MN⊥CD,且CE=DE.∴CD=2CE.∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故選C.7、C【解析】
根據被開方數越大算術平方根越大,可得答案.【詳解】解:∵<<,∴3<<4,∵a=,∴3<a<4,故選:C.【點睛】本題考查了實數與數軸,利用被開方數越大算術平方根越大得出3<<4是解題關鍵.8、A【解析】
眾數指一組數據中出現次數最多的數據,根據眾數的定義就可以求解.【詳解】在這一組數據中1是出現次數最多的,故眾數是1.故選:A.【點睛】本題為統(tǒng)計題,考查眾數的意義.眾數是一組數據中出現次數最多的數據,注意眾數可以不止一個.9、D【解析】試題分析:反比例函數y=-的圖象位于二、四象限,在每一象限內,y隨x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在該函數圖象上,且x1<x2<0<x3,,∴y3<y1<y2;故選D.考點:反比例函數的性質.10、D【解析】
由tanA的值,利用銳角三角函數定義設出BC與AC,進而利用勾股定理表示出AB,由周長為60求出x的值,確定出兩直角邊,即可求出三角形面積.【詳解】如圖所示,由tanA=125設BC=12x,AC=5x,根據勾股定理得:AB=13x,由題意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,則△ABC面積為120,故選D.【點睛】此題考查了解直角三角形,銳角三角函數定義,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.11、C【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】將280000用科學記數法表示為2.8×1.故選C.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.12、B【解析】
根據等量關系,即(經過的路程﹣3)×1.6+起步價2元≤1.列出不等式求解.【詳解】可設此人從甲地到乙地經過的路程為xkm,根據題意可知:(x﹣3)×1.6+2≤1,解得:x≤2.即此人從甲地到乙地經過的路程最多為2km.故選B.【點睛】考查了一元一次方程的應用.關鍵是掌握正確理解題意,找出題目中的數量關系.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、AC⊥BD【解析】
根據題意畫出相應的圖形,如圖所示,由四邊形EFGH為矩形,根據矩形的四個角為直角得到∠FEH=90°,又EF為三角形ABD的中位線,根據中位線定理得到EF與DB平行,根據兩直線平行,同旁內角互補得到∠EMO=90°,同理根據三角形中位線定理得到EH與AC平行,再根據兩直線平行,同旁內角互補得到∠AOD=90°,根據垂直定義得到AC與BD垂直.【詳解】∵四邊形EFGH是矩形,∴∠FEH=90°,又∵點E、F、分別是AD、AB、各邊的中點,∴EF是三角形ABD的中位線,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵點E、H分別是AD、CD各邊的中點,∴EH是三角形ACD的中位線,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案為:AC⊥BD.【點睛】此題考查了矩形的性質,三角形的中位線定理,以及平行線的性質.根據題意畫出圖形并熟練掌握矩形性質及三角形中位線定理是解題關鍵.14、1:1.【解析】試題分析:由DE∥BC,可得△ADE∽△ABC,根據相似三角形的面積之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.考點:相似三角形的性質.15、C【解析】試題分析:根據題意分別求出兩人的平均價格,然后進行比較.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,則小琳劃算.考點:平均數的計算.16、【解析】
過點作于,根據三角形的性質及三角形內角和定理可計算再由旋轉可得,,根據三角形外角和性質計算,根據含角的直角三角形的三邊關系得和的長度,進而得到的長度,然后利用得到與的長度,于是可得.【詳解】如圖,過點作于,∵,∴.∵將繞點逆時針旋轉,使點落在點處,此時點落在點處,∴∵∴在中,∵∴∴,在中,∵,∴,∴.故答案為.【點睛】本題考查三角形性質的綜合應用,要熟練掌握等腰三角形的性質,含角的直角三角形的三邊關系,旋轉圖形的性質.17、45【解析】
由四邊形ABCD為正方形及半徑相等得到AB=AF=AD,∠ABD=∠ADB=45°,利用等邊對等角得到兩對角相等,由四邊形ABFD的內角和為360度,得到四個角之和為270,利用等量代換得到∠ABF+∠ADF=135°,進而確定出∠1+∠2=45°,由∠EFD為三角形DEF的外角,利用外角性質即可求出∠EFD的度數.【詳解】∵正方形ABCD,AF,AB,AD為圓A半徑,∴AB=AF=AD,∠ABD=∠ADB=45°,∴∠ABF=∠AFB,∠AFD=∠ADF,∵四邊形ABFD內角和為360°,∠BAD=90°,∴∠ABF+∠AFB+∠AFD+∠ADF=270°,∴∠ABF+∠ADF=135°,∵∠ABD=∠ADB=45°,即∠ABD+∠ADB=90°,∴∠1+∠2=135°?90°=45°,∵∠EFD為△DEF的外角,∴∠EFD=∠1+∠2=45°.故答案為45【點睛】此題考查了切線的性質,四邊形的內角和,等腰三角形的性質,以及正方形的性質,熟練掌握性質是解本題的關鍵.18、2a﹣b.【解析】
直接利用數軸上a,b的位置進而得出b﹣a<0,a>0,再化簡得出答案.【詳解】解:由數軸可得:b﹣a<0,a>0,則|b﹣a|+=a﹣b+a=2a﹣b.故答案為2a﹣b.【點睛】此題主要考查了二次根式的性質與化簡,正確得出各項符號是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)點P在直線上,說明見解析;(2).【解析】
解:(1)求:(1)直線可變?yōu)?,說明點P在直線上;(2)在直線上取一點(0,1),直線可變?yōu)閯t,∴這兩條平行線的距離為.20、(1)4元/瓶.(2)銷售單價至少為1元/瓶.【解析】
(1)設第一批飲料進貨單價為x元/瓶,則第二批飲料進貨單價為(x+2)元/瓶,根據數量=總價÷單價結合第二批購進飲料的數量是第一批的3倍,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)由數量=總價÷單價可得出第一、二批購進飲料的數量,設銷售單價為y元/瓶,根據利潤=銷售單價×銷售數量﹣進貨總價結合獲利不少于2100元,即可得出關于y的一元一次不等式,解之取其最小值即可得出結論.【詳解】(1)設第一批飲料進貨單價為x元/瓶,則第二批飲料進貨單價為(x+2)元/瓶,依題意,得:=3×,解得:x=4,經檢驗,x=4是原方程的解,且符合題意.答:第一批飲料進貨單價是4元/瓶;(2)由(1)可知:第一批購進該種飲料450瓶,第二批購進該種飲料1350瓶.設銷售單價為y元/瓶,依題意,得:(450+1350)y﹣1800﹣8100≥2100,解得:y≥1.答:銷售單價至少為1元/瓶.【點睛】本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據各數量之間的關系,正確列出一元一次不等式.21、(1)520千米;(2)300千米/時.【解析】試題分析:(1)根據普通列車的行駛路程=高鐵的行駛路程×1.3得出答案;(2)首先設普通列車的平均速度為x千米/時,則高鐵平均速度為2.5x千米/時,根據題意列出分式方程求出未知數x的值.試題解析:(1)依題意可得,普通列車的行駛路程為400×1.3=520(千米)(2)設普通列車的平均速度為x千米/時,則高鐵平均速度為2.5x千米/時依題意有:=3解得:x=120經檢驗:x=120分式方程的解且符合題意高鐵平均速度:2.5×120=300千米/時答:高鐵平均速度為2.5×120=300千米/時.考點:分式方程的應用.22、(1)見解析;(2)EC=1.【解析】
(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性質可推出∠F=∠BDE,再根據對頂角相等進行等量代換即可推出∠F=∠FDA,于是得到結論;(2)根據解直角三角形和等邊三角形的性質即可得到結論.【詳解】(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=1,∴BE=BD=2,∵AB=AC,∴△ABC是等邊三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=1.【點睛】本題主要考查等腰三角形的判定與性質、余角的性質、對頂角的性質等知識點,關鍵根據相關的性質定理,通過等量代換推出∠F=∠FDA,即可推出結論.23、,【解析】原式括號中兩項通分并利用同分母分式的加法法則計算,同時利用除以一個數等于乘以這個數的倒數將除法運算化為乘法運算,約分得到最簡結果,利用-1的偶次冪為1及特殊角的三角函數值求出a的值,代入計算即可求出值.解:原式=,當,原式=.“點睛”此題考查了分式的化簡求值,分式的加減運算關鍵是通分,通分的關鍵是找最簡公分母;分式的乘除運算關鍵是約分,約分的關鍵是找公因式.24、(1);(2)【解析】【分析】(1)直接運用概率的定義求解;(2)根據題意確定k>0,b>0,再通過列表計算概率.【詳解】解:(1)因為1、-1、2三個數中由兩個正數,所以從中任意取一個球,標號為正數的概率是.(2)因為直線y=kx+b經過一、二、三象限,所以k>0,b>0,又因為取情況:kb1-1211,11,-11,2-1-1,1-1,-1-1.222,12,-12,2共9種情況,符合條件的有4種,所以直線y=kx+b經過一、二、三象限的概率是.【點睛】本題考核知識點:求規(guī)概率.解題關鍵:把所有的情況列出,求出要得到的情況的種數,再用公式求出.25、(Ⅰ)B(3,0);C(0,3);(Ⅱ)為直角三角形;(Ⅲ).【解析】
(1)首先用待定系數法求出拋物線的解析式,然后進一步確定點B,C的坐標.(2)分別求出△CDB三邊的長度,利用勾股定理的逆定理判定△CDB為直角三角形.(3)△COB沿x軸向右平移過程中,分兩個階段:①當0<t≤時,如答圖2所示,此時重疊部分為一個四邊形;②當<t<3時,如答圖3所示,此時重疊部分為一個三角形.【詳解】解:(Ⅰ)∵點在拋物線上,∴,得∴拋物線解析式為:,令,得,∴;令,得或,∴.(Ⅱ)為直角三角形.理由如下:由拋物線解析式,得頂點的坐標為.如答圖1所示,過點作軸于點M,則,,.過點作于點,則,.在中,由勾股定理得:;在中,由勾股定理得:;在中,由勾股定理得:.∵,∴為直角三角形.(Ⅲ)設直線的解析式為,∵,∴,解得,∴,直線是直線向右平移個單位得到,∴直線的解析式為:;設直線的解析式為,∵,∴,解得:,∴.連續(xù)并延長,射線交交于,則.在向右平移的過程中:(1)當時,如答圖2所示:設與交于點,可得,.設與的交點為,則:.解得,∴..(2)當時,如答圖3所示:設分別與交于點、點.∵,∴,.直線解析式為,令,得,∴..綜上所述,與的函數關系式為:.26、(1)1000;(2)54°;(3)見解析;(4)32萬人【解析】
根據“每項人數=總人數×該項所占百分比”,“所占角度=360度×該項所占百分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 IEC TS 62600-101:2024 EN Marine energy - Wave,tidal and other water current converters - Part 101: Wave energy resource assessment and characterization
- 2025-2030年中國隔振器市場供需現狀規(guī)劃分析報告
- 2025-2030年中國防脫發(fā)市場運行狀況及前景趨勢分析報告
- 2025-2030年中國鎳鋅電池市場競爭格局及發(fā)展趨勢分析報告
- 2025-2030年中國車庫門市場運營狀況及發(fā)展趨勢分析報告
- 2025-2030年中國貴金屬冶煉市場運營狀況規(guī)劃分析報告
- 2025-2030年中國蜂膠市場運行現狀及投資戰(zhàn)略研究報告
- 2025-2030年中國藥酒市場發(fā)展現狀與投資規(guī)劃研究報告
- 2025-2030年中國胡蘿卜素行業(yè)運營狀況及投資前景預測報告
- 2025-2030年中國耐火型電纜產業(yè)十三五規(guī)劃及發(fā)展趨勢預測報告
- 2024加油站操作員安全培訓考試題及答案
- GB/T 5267.5-2024緊固件表面處理第5部分:熱擴散滲鋅層
- 全國醫(yī)療服務項目技術規(guī)范
- GB 17353-2024摩托車和輕便摩托車防盜裝置
- 四環(huán)素類抗菌藥物兒科臨床應用專家共識(2024年版)解讀
- 重點語法清單2024-2025學年人教版英語八年級上冊
- 金屬包裝容器生產數據分析考核試卷
- 寵物學概論課程設計
- 2024年全國統(tǒng)一高考數學試卷(理科)甲卷含答案
- 排水管網溯源排查項目專項培訓
- 譯林牛津版八年級下冊英語全冊課件
評論
0/150
提交評論