陜西省西安交通大附中2025屆數(shù)學九上期末聯(lián)考試題含解析_第1頁
陜西省西安交通大附中2025屆數(shù)學九上期末聯(lián)考試題含解析_第2頁
陜西省西安交通大附中2025屆數(shù)學九上期末聯(lián)考試題含解析_第3頁
陜西省西安交通大附中2025屆數(shù)學九上期末聯(lián)考試題含解析_第4頁
陜西省西安交通大附中2025屆數(shù)學九上期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省西安交通大附中2025屆數(shù)學九上期末聯(lián)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,三個邊長均為的正方形重疊在一起,、是其中兩個正方形對角線的交點,則兩個陰影部分面積之和是()A. B. C. D.2.如圖,矩形ABCD中,BC=4,CD=2,O為AD的中點,以AD為直徑的弧DE與BC相切于點E,連接BD,則陰影部分的面積為()A.π B. C.π+2 D.+43.如圖,要測量小河兩岸相對的兩點P,A的距離,可以在小河邊取PA的垂線PB上的一點C,測得PC=100米,∠PCA=35°,則小河寬PA等于()A.100sin35°米 B.100sin55°米 C.100tan35°米 D.100tan55°米4.式子在實數(shù)范圍內有意義,則的取值范圍是()A. B. C. D.5.一個不透明的袋中有四張完全相同的卡片,把它們分別標上數(shù)字1、2、2、1.隨機抽取一張卡片,然后放回,再隨機抽取一張卡片,則兩次抽取的卡片上數(shù)字之和為偶數(shù)的概率是()A. B.C. D.6.方程x(x-1)=2(x-1)2的解為()A.1 B.2 C.1和2 D.1和-27.如圖,已知正五邊形內接于,連結,則的度數(shù)是()A. B. C. D.8.某企業(yè)五月份的利潤是25萬元,預計七月份的利潤將達到49萬元.設平均月增長率為x,根據(jù)題意可列方程是()A.25(1+x%)2=49 B.25(1+x)2=49C.25(1+x2)=49 D.25(1-x)2=499.如圖,AB為⊙O的直徑,點C,D在⊙O上.若∠AOD=30°,則∠BCD等于()A.75° B.95° C.100° D.105°10.下列圖標中,是中心對稱圖形的是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,中,點、分別是邊、的中點,、分別交對角線于點、,則______.12.計算:=______.13.已知點,在函數(shù)的圖象上,則的大小關系是________14.已知,是方程的兩實數(shù)根,則__.15.在中,,則∠C的度數(shù)為____.16.如圖,四邊形ABCD中,AB∥CD,∠B=90°,AB=1,CD=2,BC=3,點P為BC邊上一動點,若△PAB與△PCD是相似三角形,則BP的長為_____________17.廊橋是我國古老的文化遺產如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達式為,為保護廊橋的安全,在該拋物線上距水面AB高為8米的點E,F(xiàn)處要安裝兩盞警示燈,則這兩盞燈的水平距離EF是______米精確到1米18.已知函數(shù)的圖象如圖所示,若矩形的面積為,則__________.三、解答題(共66分)19.(10分)某種蔬菜的銷售單價y1與銷售月份x之間的關系如圖(1)所示,成本y2與銷售月份之間的關系如圖(2)所示(圖(1)的圖象是線段圖(2)的圖象是拋物線)(1)分別求出y1、y2的函數(shù)關系式(不寫自變量取值范圍);(2)通過計算說明:哪個月出售這種蔬菜,每千克的收益最大?20.(6分)在一個不透明的盒子中裝有張卡片,張卡片的正面分別標有數(shù)字,,,,,這些卡片除數(shù)字外,其余都相同.(1)從盒子中任意抽取一張卡片,恰好抽到標有偶數(shù)的卡片的概率是多少?(2)先從盒子中任意抽取一張卡片,再從余下的張卡片中任意抽取一張卡片,求抽取的張卡片上標有的數(shù)字之和大于的概率(畫樹狀圖或列表求解).21.(6分)如圖,在Rt△ABC中,∠C=90°,點D是AC邊上一點,DE⊥AB于點E.(1)求證:△ABC∽△ADE;(2)如果AC=8,BC=6,CD=3,求AE的長.22.(8分)為支持大學生勤工儉學,市政府向某大學生提供了萬元的無息貸款用于銷售某種自主研發(fā)的產品,并約定該學生用經營的利潤逐步償還無息貸款,已知該產品的生產成本為每件元.每天還要支付其他費用元.該產品每天的銷售量件與銷售單價元關系為.(1)設每天的利潤為元,當銷售單價定為多少元時,每天的利潤最大?最大利潤為多少元?注:每天的利潤每天的銷售利潤一每天的支出費用(2)若銷售單價不得低于其生產成本,且銷售每件產品的利潤率不能超過,則該學生最快用多少天可以還清無息貸款?23.(8分)甲、乙、丙、丁四個人做“擊鼓傳花”游戲,游戲規(guī)則是:第一次由甲將花隨機傳給乙、丙、丁三人中的某一人,以后的每一次傳花都是由接到花的人隨機傳給其他三人中的某一人.(1)求第一次甲將花傳給丁的概率;(2)求經過兩次傳花,花恰好回到甲手中的概率.24.(8分)“低碳生活,綠色出行”,自行車正逐漸成為人們喜愛的交通工具.某運動商城的自行車銷售量自年起逐月增加,據(jù)統(tǒng)計該商城月份銷售自行車輛,月份銷售了輛.(1)求這個運動商城這兩個月的月平均增長率是多少?(2)若該商城前個月的自行車銷量的月平均增長率相同,問該商城月份賣出多少輛自行車?25.(10分)計算或解方程:(1)(2)26.(10分)先化簡,再求值:,其中.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】連接AN,CN,通過將每部分陰影的面積都轉化為正方形ACFE的面積的,則答案可求.【詳解】如圖,連接AN,CN∵四邊形ACFE是正方形∴∵,∴∴∴所以四邊形BCDN的面積為正方形ACFE的面積的同理可得另一部分陰影的面積也是正方形ACFE的面積的∴兩部分陰影部分的面積之和為正方形ACFE的面積的即故選A【點睛】本題主要考查不規(guī)則圖形的面積,能夠利用全等三角形對面積進行轉化是解題的關鍵.2、A【分析】連接OE交BD于F,如圖,利用切線的性質得到OE⊥BC,再證明四邊形ODCE和四邊形ABEO都是正方形得到BE=2,∠DOE=∠BEO=90°,易得△ODF≌△EBF,所以S△ODF=S△EBF,然后根據(jù)扇形的面積公式,利用陰影部分的面積=S扇形EOD計算即可.【詳解】連接OE交BD于F,如圖,∵以AD為直徑的半圓O與BC相切于點E,∴OE⊥BC.∵四邊形ABCD為矩形,OA=OD=2,而CD=2,∴四邊形ODCE和四邊形ABEO都是正方形,∴BE=2,∠DOE=∠BEO=90°.∵∠BFE=∠DFO,OD=BE,∴△ODF≌△EBF(AAS),∴S△ODF=S△EBF,∴陰影部分的面積=S扇形EOD.故選:A.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.也考查了矩形的性質和扇形面積公式.3、C【分析】根據(jù)正切函數(shù)可求小河寬PA的長度.【詳解】∵PA⊥PB,PC=100米,∠PCA=35°,∴小河寬PA=PCtan∠PCA=100tan35°米.故選C.【點睛】考查了解直角三角形的應用,解直角三角形的一般過程是:①將實際問題抽象為數(shù)學問題(畫出平面圖形,構造出直角三角形轉化為解直角三角形問題).②根據(jù)題目已知特點選用適當銳角三角函數(shù)或邊角關系去解直角三角形,得到數(shù)學問題的答案,再轉化得到實際問題的答案.4、C【分析】根據(jù)二次根式有意義的條件進行求解即可.【詳解】由題意得:x-1≥0,解得:x≥1,故選C.【點睛】本題考查了二次根式有意義的條件,熟知二次根式的被開方數(shù)為非負數(shù)是解題的關鍵.5、D【解析】畫樹狀圖展示所有16種等可能的結果數(shù),找出兩次抽取的卡片上數(shù)字之和為偶數(shù)的結果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有16種等可能的結果數(shù),其中兩次抽取的卡片上數(shù)字之和為偶數(shù)的結果數(shù)為10,所以兩次抽取的卡片上數(shù)字之和為偶數(shù)的概率.故選D.【點睛】本題考查了列表法與樹狀圖法.利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.6、C【分析】利用因式分解法求解可得.【詳解】x(x-1)=2(x-1)2,x(x-1)-2(x-1)2=0,(x-1)(x-2x+2)=0,即(x-1)(-x+2)=0,∴x-1=0或-x+2=0,解得:x=1或x=2,故選:C.【點睛】本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據(jù)方程的特點靈活選用合適的方法.7、C【分析】根據(jù)多邊形內角和定理、正五邊形的性質求出∠ABC、CD=CB,根據(jù)等腰三角形的性質求出∠CBD,計算即可.【詳解】∵五邊形為正五邊形∴∵∴∴故選C.【點睛】本題考查的是正多邊形和圓、多邊形的內角和定理,掌握正多邊形和圓的關系、多邊形內角和等于(n-2)×180°是解題的關鍵.8、B【分析】主要考查增長率問題,一般用增長后的量=增長前的量×(1+增長率),如果設利潤的年平均增長率為x,然后根據(jù)已知條件可得出方程.【詳解】解:依題意得七月份的利潤為25(1+x)2,

∴25(1+x)2=1.

故選:B.【點睛】本題考查了一元二次方程的應用,找到關鍵描述語,就能找到等量關系,是解決問題的關鍵.同時要注意增長率問題的一般規(guī)律.9、D【解析】試題解析:連接故選D.點睛:圓內接四邊形的對角互補.10、C【解析】根據(jù)中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,故本選項錯誤;C、是中心對稱圖形,故本選項正確;D、不是中心對稱圖形,故本選項錯誤.故選:C.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.二、填空題(每小題3分,共24分)11、【分析】由四邊形ABCD是平行四邊形可得AD∥BC,AD=BC,△DEH∽△BCH,進而得,連接AC,交BD于點M,如圖,根據(jù)三角形的中位線定理可得EF∥AC,可推得,△EGH∽△CMH,于是得DG=MG,,設HG=a,依次用a的代數(shù)式表示出MH、DG、BH,進而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴△DEH∽△BCH,∵E是AD中點,AD=BC,∴,連接AC,交BD于點M,如圖,∵點、分別是邊、的中點,∴EF∥AC,∴,△EGH∽△CMH,∴DG=MG,,設HG=a,則MH=2a,MG=3a,∴DG=3a,∴DM=6a,∵四邊形ABCD是平行四邊形,∴BM=DM=6a,BH=8a,∴.故答案為:.【點睛】本題考查了平行四邊形的性質、平行線分線段成比例定理、相似三角形的判定和性質、三角形的中位線定理等知識,連接AC,充分利用平行四邊形的性質、構建三角形的中位線和相似三角形的模型是解題的關鍵.12、-1.【分析】由題意根據(jù)負整數(shù)指數(shù)冪和零指數(shù)冪的定義求解即可.【詳解】解:=1﹣2=﹣1.故答案為:﹣1.【點睛】本題考查負整數(shù)指數(shù)冪和零指數(shù)冪的定義,熟練掌握實數(shù)的運算法則以及負整數(shù)指數(shù)冪和零指數(shù)冪的運算方法是解題的關鍵.13、【分析】把橫坐標分別代入關系式求出縱坐標,再比較大小即可.【詳解】∵A(3,y1),B(5,y2)在函數(shù)的圖象上,∴,,∴y1>y2.【點睛】本題考查反比例函數(shù),掌握反比例函數(shù)圖象上點的坐標特征是解題的關鍵.14、1【分析】先根據(jù)一元二次方程根的定義得到,則可變形為,再根據(jù)根與系數(shù)的關系得到,,然后利用整體代入的方法計算代數(shù)式的值.【詳解】是方程的實數(shù)根,,,,,是方程的兩實數(shù)根,,,.故答案為1.【點睛】考查了根與系數(shù)的關系:若,是一元二次方程的兩根時,,.15、【分析】先根據(jù)平方、絕對值的非負性求得、,再利用銳角三角函數(shù)確定、的度數(shù),最后根據(jù)直角三角形內角和求得.【詳解】解:∵∴∴∴∴.故答案是:【點睛】本題考查了平方、絕對值的非負性,銳角三角函數(shù)以及三角形內角和,熟悉各知識點是解題的關鍵.16、1或2【分析】設BP=x,則CP=BC-BP=3-x,易證∠B=∠C=90°,根據(jù)相似三角形的對應頂點分類討論:①若△PAB∽△PDC時,列出比例式即可求出BP;②若△PAB∽△DPC時,原理同上.【詳解】解:設BP=x,則CP=BC-BP=3-x∵AB∥CD,∠B=90°,∴∠C=180°-∠B=90°①若△PAB∽△PDC時∴即解得:x=1即此時BP=1;②若△PAB∽△DPC時∴即解得:即此時BP=1或2;綜上所述:BP=1或2.故答案為:1或2.【點睛】此題考查的是相似三角形的判定及性質,掌握相似三角形的對應邊成比例列方程是解決此題的關鍵.17、【解析】由于兩盞E、F距離水面都是8m,因而兩盞景觀燈之間的水平距離就是直線y=8與拋物線兩交點的橫坐標差的絕對值.故有,即,,.所以兩盞警示燈之間的水平距離為:18、-6【分析】根據(jù)題意設AC=a,AB=b解析式為y=A點的橫坐標為-a,縱坐標為b,因為AB*AC=6,k=xy=-AB*AC=-6【詳解】解:由題意得設AC=a,AB=b解析式為y=∴AB*AC=ab=6A(-a,b)b=∴k=-ab=-6【點睛】此題主要考查了反比例函數(shù)與幾何圖形的結合,注意A點的橫坐標的符號.三、解答題(共66分)19、(1)y1=;y2=x2﹣4x+2;(2)5月出售每千克收益最大,最大為.【分析】(1)觀察圖象找出點的坐標,利用待定系數(shù)法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W與x的函數(shù)關系式,利用配方求出二次函數(shù)的最大值.【詳解】解:(1)設y1=kx+b,將(3,5)和(6,3)代入得,,解得.∴y1=﹣x+1.設y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=.∴y2=(x﹣6)2+1,即y2=x2﹣4x+2.(2)收益W=y(tǒng)1﹣y2,=﹣x+1﹣(x2﹣4x+2)=﹣(x﹣5)2+,∵a=﹣<0,∴當x=5時,W最大值=.故5月出售每千克收益最大,最大為元.【點睛】本題考查了一次函數(shù)和二次函數(shù)的應用,熟練掌握待定系數(shù)法求解析式是解題關鍵,掌握配方法是求二次函數(shù)最大值常用的方法20、(1);(2)0.6【分析】(1)裝有張卡片,其中有2張偶數(shù),直接用公式求概率即可.(2)根據(jù)抽取結果畫樹狀圖或列表都可以,再根據(jù)樹狀圖來求符合條件的概率.【詳解】解:(1)在一個不透明的盒子中裝有張卡片,張卡片的正面分別標有數(shù)字,,,,,5張卡片中偶數(shù)有2張,抽出偶數(shù)卡片的概率=(2)畫樹狀如圖概率為【點睛】本題考查了用概率的公式來求概率和樹狀統(tǒng)計圖或列表統(tǒng)計圖.21、(1)見解析;(2)2【分析】(1)由∠AED=∠C=90°以及∠A=∠A公共角,從而求證△ABC∽△ADE;(2)由△ABC∽△ADE,可知,代入條件求解即可.【詳解】(1)證明:∵DE⊥AB于點E,∴∠AED=∠C=90°.∵∠A=∠A,∴△ABC∽△ADE.(2)解:∵AC=8,BC=6,∴AB=1.∵△ABC∽△ADE,∴.∴AE=2.【點睛】本題考查相似三角形的綜合問題,解題的關鍵是熟練運用相似三角形的性質與判定,本題屬于中等難度題型.22、(1)當銷售單價定為25元時,日銷售利潤最大為200元;(2)該生最快用100天可以還清無息貸款.【分析】(1)計算利潤=銷量×每件的利潤-支付的費用,化為頂點式,可得結論;(2)先得出每日利潤的最大值,即可求解.【詳解】(1)∵<0,∴當x=25時,日利潤最大,為200元,∴當銷售單價定為25元時,日銷售利潤最大為200元;(2)由題意得:,解得:,,∵<0,∴拋物線開口向下,當時,隨的值增大而增大,

∴當x=15時,日利潤最大為100元,∵10000100=100,∴該生最快用100天可以還清無息貸款.【點睛】本題考查了二次函數(shù)的性質在實際生活中的應用.最大利潤的問題常利用函數(shù)的增減性來解答,我們首先要吃透題意,確定變量,建立函數(shù)模型,然后結合實際選擇最優(yōu)方案.其中要注意應該在自變量的取值范圍內求最大值(或最小值).23、(1);(2)【分析】(1)直接利用概率公式計算得出答案;(2)直接利用樹狀圖法得出所有符合題意情況,進而求出概率.【詳解】(1)P(第一次甲

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論