版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
黑龍江省哈爾濱松北區(qū)四校聯(lián)考2023-2024學(xué)年中考二模數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示,的頂點是正方形網(wǎng)格的格點,則的值為()A. B. C. D.2.如圖,是一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象,則關(guān)于x的不等式kx+b>的解集為A.x>1 B.﹣2<x<1C.﹣2<x<0或x>1 D.x<﹣23.如圖是由若干個小正方體塊搭成的幾何體的俯視圖,小正方塊中的數(shù)字表示在該位置的小正方體塊的個數(shù),那么這個幾何體的主視圖是()A. B. C. D.4.3月22日,美國宣布將對約600億美元進口自中國的商品加征關(guān)稅,中國商務(wù)部隨即公布擬對約30億美元自美進口商品加征關(guān)稅,并表示,中國不希望打貿(mào)易戰(zhàn),但絕不懼怕貿(mào)易戰(zhàn),有信心,有能力應(yīng)對任何挑戰(zhàn).將數(shù)據(jù)30億用科學(xué)記數(shù)法表示為()A.3×109 B.3×108 C.30×108 D.0.3×10105.已知反比例函數(shù)下列結(jié)論正確的是()A.圖像經(jīng)過點(-1,1) B.圖像在第一、三象限C.y隨著x的增大而減小 D.當x>1時,y<16.關(guān)于x的一元二次方程x2-2x-(m-1)=0有兩個不相等的實數(shù)根,則實數(shù)m的取值范圍是()A.且 B. C.且 D.7.如圖,經(jīng)過測量,C地在A地北偏東46°方向上,同時C地在B地北偏西63°方向上,則∠C的度數(shù)為()A.99° B.109° C.119° D.129°8.把拋物線y=﹣2x2向上平移1個單位,得到的拋物線是()A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2 D.y=﹣2(x﹣1)29.在0,-2,5,,-0.3中,負數(shù)的個數(shù)是().A.1 B.2 C.3 D.410.如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,則函數(shù)y=ax2+(b-1)x+c的圖象可能是()A. B. C. D.11.將5570000用科學(xué)記數(shù)法表示正確的是()A.5.57×105B.5.57×106C.5.57×107D.5.57×10812.如圖,⊙O的半徑OC與弦AB交于點D,連結(jié)OA,AC,CB,BO,則下列條件中,無法判斷四邊形OACB為菱形的是()A.∠DAC=∠DBC=30° B.OA∥BC,OB∥AC C.AB與OC互相垂直 D.AB與OC互相平分二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,身高是1.6m的某同學(xué)直立于旗桿影子的頂端處,測得同一時刻該同學(xué)和旗桿的影子長分別為1.2m和9m.則旗桿的高度為________m.14.計算_______.15.如圖,直線a、b相交于點O,若∠1=30°,則∠2=___16.一組正方形按如圖所示的方式放置,其中頂點B1在y軸上,頂點C1,E1,E2,C2,E3,E4,C3……在x軸上,已知正方形A1B1C1D1的頂點C1的坐標是(﹣,0),∠B1C1O=60°,B1C1∥B2C2∥B3C3……則正方形A2018B2018C2018D2018的頂點D2018縱坐標是_____.17.如圖所示,扇形OMN的圓心角為45°,正方形A1B1C1A2的邊長為2,頂點A1,A2在線段OM上,頂點B1在弧MN上,頂點C1在線段ON上,在邊A2C1上取點B2,以A2B2為邊長繼續(xù)作正方形A2B2C2A3,使得點C2在線段ON上,點A3在線段OM上,……,依次規(guī)律,繼續(xù)作正方形,則A2018M=__________.18.分解因式:2x2-8x+8=__________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)“大美濕地,水韻鹽城”.某校數(shù)學(xué)興趣小組就“最想去的鹽城市旅游景點”隨機調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個最想去的景點,下面是根據(jù)調(diào)查結(jié)果進行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:請根據(jù)圖中提供的信息,解答下列問題:(1)求被調(diào)查的學(xué)生總?cè)藬?shù);(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);(3)若該校共有800名學(xué)生,請估計“最想去景點B“的學(xué)生人數(shù).20.(6分)某商場購進一種每件價格為90元的新商品,在商場試銷時發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系.求出y與x之間的函數(shù)關(guān)系式;寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式,并求出售價定為多少時,每天獲得的利潤最大?最大利潤是多少?21.(6分)(1)計算:﹣2sin45°+(2﹣π)0﹣()﹣1;(2)先化簡,再求值?(a2﹣b2),其中a=,b=﹣2.22.(8分)近幾年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:本次一共調(diào)查了多少名購買者?請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為度.若該超市這一周內(nèi)有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?23.(8分)計算:×(2﹣)﹣÷+.24.(10分)如圖,拋物線y=ax2+ax﹣12a(a<0)與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C,點M是第二象限內(nèi)拋物線上一點,BM交y軸于N.(1)求點A、B的坐標;(2)若BN=MN,且S△MBC=,求a的值;(3)若∠BMC=2∠ABM,求的值.25.(10分)已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數(shù)學(xué)興趣小組的同學(xué)在斜坡底P處測得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米,在坡頂A處又測得該塔的塔頂B的仰角為76°.求:坡頂A到地面PO的距離;古塔BC的高度(結(jié)果精確到1米).26.(12分)2013年6月,某中學(xué)結(jié)合廣西中小學(xué)閱讀素養(yǎng)評估活動,以“我最喜愛的書籍”為主題,對學(xué)生最喜愛的一種書籍類型進行隨機抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計圖,請根據(jù)圖1和圖2提供的信息,解答下列問題:在這次抽樣調(diào)查中,一共調(diào)查了多少名學(xué)生?請把折線統(tǒng)計圖(圖1)補充完整;求出扇形統(tǒng)計圖(圖2)中,體育部分所對應(yīng)的圓心角的度數(shù);如果這所中學(xué)共有學(xué)生1800名,那么請你估計最喜愛科普類書籍的學(xué)生人數(shù).27.(12分)在△ABC中,AB=AC,∠BAC=α,點P是△ABC內(nèi)一點,且∠PAC+∠PCA=,連接PB,試探究PA、PB、PC滿足的等量關(guān)系.(1)當α=60°時,將△ABP繞點A逆時針旋轉(zhuǎn)60°得到△ACP′,連接PP′,如圖1所示.由△ABP≌△ACP′可以證得△APP′是等邊三角形,再由∠PAC+∠PCA=30°可得∠APC的大小為度,進而得到△CPP′是直角三角形,這樣可以得到PA、PB、PC滿足的等量關(guān)系為;(2)如圖2,當α=120°時,參考(1)中的方法,探究PA、PB、PC滿足的等量關(guān)系,并給出證明;(3)PA、PB、PC滿足的等量關(guān)系為.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
連接CD,求出CD⊥AB,根據(jù)勾股定理求出AC,在Rt△ADC中,根據(jù)銳角三角函數(shù)定義求出即可.【詳解】解:連接CD(如圖所示),設(shè)小正方形的邊長為,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,則.故選B.【點睛】本題考查了勾股定理,銳角三角形函數(shù)的定義,等腰三角形的性質(zhì),直角三角形的判定的應(yīng)用,關(guān)鍵是構(gòu)造直角三角形.2、C【解析】
根據(jù)反比例函數(shù)與一次函數(shù)在同一坐標系內(nèi)的圖象可直接解答.【詳解】觀察圖象,兩函數(shù)圖象的交點坐標為(1,2),(-2,-1),kx+b>的解就是一次函數(shù)y=kx+b圖象在反比例函數(shù)y=的圖象的上方的時候x的取值范圍,
由圖象可得:-2<x<0或x>1,
故選C.【點睛】本題考查的是反比例涵數(shù)與一次函數(shù)圖象在同一坐標系中二者的圖象之間的關(guān)系.一般這種類型的題不要計算反比計算表達式,解不等式,直接從從圖象上直接解答.3、B【解析】
根據(jù)俯視圖可確定主視圖的列數(shù)和每列小正方體的個數(shù).【詳解】由俯視圖可得,主視圖一共有兩列,左邊一列由兩個小正方體組成,右邊一列由3個小正方體組成.故答案選B.【點睛】由幾何體的俯視圖可確定該幾何體的主視圖和左視圖.4、A【解析】
科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù)確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同當原數(shù)絕對值時,n是正數(shù);當原數(shù)的絕對值時,n是負數(shù).【詳解】將數(shù)據(jù)30億用科學(xué)記數(shù)法表示為,故選A.【點睛】此題考查科學(xué)記數(shù)法的表示方法科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.5、B【解析】分析:直接利用反比例函數(shù)的性質(zhì)進而分析得出答案.詳解:A.反比例函數(shù)y=,圖象經(jīng)過點(﹣1,﹣1),故此選項錯誤;B.反比例函數(shù)y=,圖象在第一、三象限,故此選項正確;C.反比例函數(shù)y=,每個象限內(nèi),y隨著x的增大而減小,故此選項錯誤;D.反比例函數(shù)y=,當x>1時,0<y<1,故此選項錯誤.故選B.點睛:本題主要考查了反比例函數(shù)的性質(zhì),正確掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.6、A【解析】
根據(jù)一元二次方程的系數(shù)結(jié)合根的判別式△>1,即可得出關(guān)于m的一元一次不等式,解之即可得出實數(shù)m的取值范圍.【詳解】∵關(guān)于x的一元二次方程x2﹣2x﹣(m﹣1)=1有兩個不相等的實數(shù)根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.故選B.【點睛】本題考查了根的判別式,牢記“當△>1時,方程有兩個不相等的實數(shù)根”是解題的關(guān)鍵.7、B【解析】
方向角是從正北或正南方向到目標方向所形成的小于90°的角,根據(jù)平行線的性質(zhì)求得∠ACF與∠BCF的度數(shù),∠ACF與∠BCF的和即為∠C的度數(shù).【詳解】解:由題意作圖如下∠DAC=46°,∠CBE=63°,由平行線的性質(zhì)可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故選B.【點睛】本題考查了方位角和平行線的性質(zhì),熟練掌握方位角的概念和平行線的性質(zhì)是解題的關(guān)鍵.8、A【解析】
根據(jù)“上加下減”的原則進行解答即可.【詳解】解:由“上加下減”的原則可知,把拋物線y=﹣2x2向上平移1個單位,得到的拋物線是:y=﹣2x2+1.故選A.【點睛】本題考查的是二次函數(shù)的圖象與幾何變換,熟知“上加下減”的原則是解答此題的關(guān)鍵.9、B【解析】
根據(jù)負數(shù)的定義判斷即可【詳解】解:根據(jù)負數(shù)的定義可知,這一組數(shù)中,負數(shù)有兩個,即-2和-0.1.故選B.10、A【解析】
由一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,得出方程ax2+(b-1)x+c=0有兩個不相等的根,進而得出函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點,根據(jù)方程根與系數(shù)的關(guān)系得出函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,即可進行判斷.【詳解】點P在拋物線上,設(shè)點P(x,ax2+bx+c),又因點P在直線y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由圖象可知一次函數(shù)y=x與二次函數(shù)y=ax2+bx+c交于第一象限的P、Q兩點,∴方程ax2+(b-1)x+c=0有兩個正實數(shù)根.∴函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點,又∵->0,a>0∴-=-+>0∴函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,∴A符合條件,故選A.11、B【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值是易錯點,由于5570000有7位,所以可以確定n=7﹣1=1.【詳解】5570000=5.57×101所以B正確12、C【解析】(1)∵∠DAC=∠DBC=30°,∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△AOC和△OBC都是等邊三角形,∴OA=AC=OC=BC=OB,∴四邊形OACB是菱形;即A選項中的條件可以判定四邊形OACB是菱形;(2)∵OA∥BC,OB∥AC,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即B選項中的條件可以判定四邊形OACB是菱形;(3)由OC和AB互相垂直不能證明到四邊形OACB是菱形,即C選項中的條件不能判定四邊形OACB是菱形;(4)∵AB與OC互相平分,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即由D選項中的條件能夠判定四邊形OACB是菱形.故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】試題分析:利用相似三角形的相似比,列出方程,通過解方程求出旗桿的高度即可.解:∵同一時刻物高與影長成正比例.設(shè)旗桿的高是xm.∴1.6:1.2=x:9∴x=1.即旗桿的高是1米.故答案為1.考點:相似三角形的應(yīng)用.14、【解析】
根據(jù)同底數(shù)冪的乘法法則計算即可.【詳解】故答案是:【點睛】本題考查了同底數(shù)冪的乘法,熟練掌握同底數(shù)冪的乘法運算法則是解題的關(guān)鍵.15、30°【解析】因∠1和∠2是鄰補角,且∠1=30°,由鄰補角的定義可得∠2=180°﹣∠1=180°﹣30°=150°.解:∵∠1+∠2=180°,又∠1=30°,∴∠2=150°.16、×()2【解析】
利用正方形的性質(zhì)結(jié)合銳角三角函數(shù)關(guān)系得出正方形的邊長,進而得出變化規(guī)律即可得出答案.【詳解】解:∵∠B1C1O=60°,C1O=,∴B1C1=1,∠D1C1E1=30°,∵sin∠D1C1E1=,∴D1E1=,∵B1C1∥B2C2∥B3C3∥…∴60°=∠B1C1O=∠B2C2O=∠B3C3O=…∴B2C2=,B3C3=.故正方形AnBnCnDn的邊長=()n-1.∴B2018C2018=()2.∴D2018E2018=×()2,∴D的縱坐標為×()2,故答案為×()2.【點睛】此題主要考查了正方形的性質(zhì)以及銳角三角函數(shù)關(guān)系,得出正方形的邊長變化規(guī)律是解題關(guān)鍵17、.【解析】
探究規(guī)律,利用規(guī)律即可解決問題.【詳解】∵∠MON=45°,∴△C2B2C2為等腰直角三角形,∴C2B2=B2C2=A2B2.∵正方形A2B2C2A2的邊長為2,∴OA3=AA3=A2B2=A2C2=2.OA2=4,OM=OB2=,同理,可得出:OAn=An-2An=An-2An-2=,∴OA2028=A2028A2027=,∴A2028M=2-.故答案為2-.【點睛】本題考查規(guī)律型問題,解題的關(guān)鍵是學(xué)會探究規(guī)律的方法,學(xué)會利用規(guī)律解決問題,屬于中考??碱}型.18、2(x-2)2【解析】
先運用提公因式法,再運用完全平方公式.【詳解】:2x2-8x+8=.故答案為2(x-2)2.【點睛】本題考核知識點:因式分解.解題關(guān)鍵點:熟練掌握分解因式的基本方法.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)40;(2)72;(3)1.【解析】
(1)用最想去A景點的人數(shù)除以它所占的百分比即可得到被調(diào)查的學(xué)生總?cè)藬?shù);(2)先計算出最想去D景點的人數(shù),再補全條形統(tǒng)計圖,然后用360°乘以最想去D景點的人數(shù)所占的百分比即可得到扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);(3)用800乘以樣本中最想去A景點的人數(shù)所占的百分比即可.【詳解】(1)被調(diào)查的學(xué)生總?cè)藬?shù)為8÷20%=40(人);(2)最想去D景點的人數(shù)為40﹣8﹣14﹣4﹣6=8(人),補全條形統(tǒng)計圖為:扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù)為×360°=72°;(3)800×=1,所以估計“最想去景點B“的學(xué)生人數(shù)為1人.20、(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售價定為130元時,每天獲得的利潤最大,最大利潤是2元.【解析】
(1)先利用待定系數(shù)法求一次函數(shù)解析式;(2)用每件的利潤乘以銷售量得到每天的利潤W,即W=(x﹣90)(﹣x+170),然后根據(jù)二次函數(shù)的性質(zhì)解決問題.【詳解】(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,根據(jù)題意得:,解得:,∴y與x之間的函數(shù)關(guān)系式為y=﹣x+170;(2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣1.∵W=﹣x2+260x﹣1=﹣(x﹣130)2+2,而a=﹣1<0,∴當x=130時,W有最大值2.答:售價定為130元時,每天獲得的利潤最大,最大利潤是2元.【點睛】本題考查了二次函數(shù)的應(yīng)用:利用二次函數(shù)解決利潤問題,先利用利潤=每件的利潤乘以銷售量構(gòu)建二次函數(shù)關(guān)系式,然后根據(jù)二次函數(shù)的性質(zhì)求二次函數(shù)的最值,一定要注意自變量x的取值范圍.21、(1)-2(2)-【解析】試題分析:(1)將原式第一項被開方數(shù)8變?yōu)?×2,利用二次根式的性質(zhì)化簡第二項利用特殊角的三角函數(shù)值化簡,第三項利用零指數(shù)公式化簡,最后一項利用負指數(shù)公式化簡,把所得的結(jié)果合并即可得到最后結(jié)果;(2)先把和a2﹣b2分解因式約分化簡,然后將a和b的值代入化簡后的式子中計算,即可得到原式的值.解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1=2﹣2×+1﹣3=2﹣+1﹣3=﹣2;(2)?(a2﹣b2)=?(a+b)(a﹣b)=a+b,當a=,b=﹣2時,原式=+(﹣2)=﹣.22、(1)本次一共調(diào)查了200名購買者;(2)補全的條形統(tǒng)計圖見解析,A種支付方式所對應(yīng)的圓心角為108;(3)使用A和B兩種支付方式的購買者共有928名.【解析】分析:(1)根據(jù)B的數(shù)量和所占的百分比可以求得本次調(diào)查的購買者的人數(shù);(2)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得選擇A和D的人數(shù),從而可以將條形統(tǒng)計圖補充完整,求得在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角的度數(shù);(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以計算出使用A和B兩種支付方式的購買者共有多少名.詳解:(1)56÷28%=200,即本次一共調(diào)查了200名購買者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),補全的條形統(tǒng)計圖如圖所示,在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為:360°×=108°,(3)1600×=928(名),答:使用A和B兩種支付方式的購買者共有928名.點睛:本題考查扇形統(tǒng)計圖、條形統(tǒng)計圖、用樣本估計總體,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.23、5-【解析】分析:先化簡各二次根式,再根據(jù)混合運算順序依次計算可得.詳解:原式=3×(2-)-+=6--+=5-點睛:本題考查了二次根式的混合運算,熟練掌握混合運算的法則是解題的關(guān)鍵.24、(1)A(﹣4,0),B(3,0);(2);(3).【解析】
(1)設(shè)y=0,可求x的值,即求A,B的坐標;(2)作MD⊥x軸,由CO∥MD可得OD=3,把x=-3代入解析式可得M點坐標,可得ON的長度,根據(jù)S△BMC=,可求a的值;(3)過M點作ME∥AB,設(shè)NO=m,=k,可以用m,k表示CO,EO,MD,ME,可求M點坐標,代入可得k,m,a的關(guān)系式,由CO=2km+m=-12a,可得方程組,解得k,即可求結(jié)果.【詳解】(1)設(shè)y=0,則0=ax2+ax﹣12a(a<0),∴x1=﹣4,x2=3,∴A(﹣4,0),B(3,0)(2)如圖1,作MD⊥x軸,∵MD⊥x軸,OC⊥x軸,∴MD∥OC,∴=且NB=MN,∴OB=OD=3,∴D(﹣3,0),∴當x=﹣3時,y=﹣6a,∴M(﹣3,﹣6a),∴MD=﹣6a,∵ON∥MD∴,∴ON=﹣3a,根據(jù)題意得:C(0,﹣12a),∵S△MBC=,∴(﹣12a+3a)×6=,a=﹣,(3)如圖2:過M點作ME∥AB,∵ME∥AB,∴∠EMB=∠ABM且∠CMB=2∠ABM,∴∠CME=∠NME,且ME=ME,∠CEM=∠NEM=90°,∴△CME≌△MNE,∴CE=EN,設(shè)NO=m,=k(k>0),∵ME∥AB,∴==k,∴ME=3k,EN=km=CE,∴EO=km+m,CO=CE+EN+ON=2km+m=﹣12a,即,∴M(﹣3k,km+m),∴km+m=a(9k2﹣3k﹣12),(k+1)×=(k+1)(9k﹣12),∴=9k-12,∴k=,∴.【點睛】本題考查的知識點是函數(shù)解析式的求法,二次函數(shù)的圖象和性質(zhì),是二次函數(shù)與解析幾何知識的綜合應(yīng)用,難度較大.25、(1)坡頂?shù)降孛娴木嚯x為米;移動信號發(fā)射塔的高度約為米.【解析】
延長BC交OP于H.在Rt△APD中解直角三角形求出AD=10.PD=24.由題意BH=PH.設(shè)BC=x.則x+10=24+DH.推出AC=DH=x﹣14.在Rt△ABC中.根據(jù)tan76°=,構(gòu)建方程求出x即可.【詳解】延長BC交OP于H.∵斜坡AP的坡度為1:2.4,∴,設(shè)AD=5k,則PD=12k,由勾股定理,得AP=13k,∴13k=26,解得k=2,∴AD=10,∵BC⊥AC,AC∥PO,∴BH⊥PO,∴四邊形ADHC是矩形,CH=AD=10,AC=DH,∵∠BPD=45°,∴PH=BH,設(shè)BC=x,則x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=,即≈4.1.解得:x≈18.7,經(jīng)檢驗x≈18.7是原方程的解.答:古塔BC的高度約為18.7米.【點睛】本題主要考查了解直角三角形,用到的知識點是勾股定理,銳角三角函數(shù),坡角與坡角等,解決本題的關(guān)鍵是作出輔助線,構(gòu)造直角三角形.26、(1)一共調(diào)查了300名學(xué)生.(2)(3)體育部分所對應(yīng)的圓心角的度數(shù)為48°.(4)1800名學(xué)生中估計最喜愛科普類書籍的學(xué)生人數(shù)為1.【解析】
(1)用文學(xué)的人數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年健康食品代理委托協(xié)議
- 2025年地暖安裝協(xié)議
- 2025年出售合同解約協(xié)議書
- 2025年保密協(xié)議約定規(guī)范規(guī)則
- 2025年增資協(xié)議訂立簽字合同
- 2025年兒童房家具定制協(xié)議
- 2025年數(shù)據(jù)中心裝修升級與物業(yè)安全保障合同3篇
- 二零二五版鋼材貿(mào)易融資及風險管理合同3篇
- 2025年度新能源儲能技術(shù)研發(fā)承包合同范本4篇
- gf版全新土木工程建設(shè)項目施工合同版B版
- 注射泵管理規(guī)范及工作原理
- 國潮風中國風2025蛇年大吉蛇年模板
- 故障診斷技術(shù)的國內(nèi)外發(fā)展現(xiàn)狀
- 2024年發(fā)電廠交接班管理制度(二篇)
- 農(nóng)機維修市場前景分析
- HG+20231-2014化學(xué)工業(yè)建設(shè)項目試車規(guī)范
- 匯款賬戶變更協(xié)議
- 電力系統(tǒng)動態(tài)仿真與建模
- 蝦皮shopee新手賣家考試題庫及答案
- 四川省宜賓市2023-2024學(xué)年八年級上學(xué)期期末義務(wù)教育階段教學(xué)質(zhì)量監(jiān)測英語試題
- 價值醫(yī)療的概念 實踐及其實現(xiàn)路徑
評論
0/150
提交評論