2025屆安徽省滁州地區(qū)九年級數(shù)學第一學期期末檢測試題含解析_第1頁
2025屆安徽省滁州地區(qū)九年級數(shù)學第一學期期末檢測試題含解析_第2頁
2025屆安徽省滁州地區(qū)九年級數(shù)學第一學期期末檢測試題含解析_第3頁
2025屆安徽省滁州地區(qū)九年級數(shù)學第一學期期末檢測試題含解析_第4頁
2025屆安徽省滁州地區(qū)九年級數(shù)學第一學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆安徽省滁州地區(qū)九年級數(shù)學第一學期期末檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.方程2x(x﹣3)=5(x﹣3)的根是()A.x= B.x=3 C.x1=,x2=3 D.x1=﹣,x2=﹣32.如果反比例函數(shù)y=的圖象經(jīng)過點(﹣5,3),則k=()A.15 B.﹣15 C.16 D.﹣163.函數(shù)的頂點坐標是()A. B. C. D.4.已知關(guān)于x的分式方程=1的解是非負數(shù),則m的取值范圍是()A.m1 B.m1C.m-1且m≠0 D.m-15.如圖,在平面直角坐標系中,的頂點在第一象限,點在軸的正半軸上,,,將繞點逆時針旋轉(zhuǎn),點的對應(yīng)點的坐標是()A. B. C. D.6.已知x2-2x=8,則3x2-6x-18的值為(

)A.54

B.6

C.-10

D.-187.已知拋物線y=ax2+bx+c的圖象如圖所示,對稱軸為直線x=1.以下結(jié)論:①2a>-b;②4a+2b+c>0;③m(am+b)>a+b(m是大于1的實數(shù));④3a+c<0其中正確結(jié)論的個數(shù)為()A.1個 B.2個 C.3個 D.4個8.如圖,的半徑為,圓心到弦的距離為,則的長為()A. B. C. D.9.如圖,四邊形ABCD的對角線AC,BD相交于點O,且將這個四邊形分成①②③④四個三角形.若,則下列結(jié)論中一定正確的是()A.①和②相似 B.①和③相似 C.①和④相似 D.③和④相似10.已知反比例函數(shù)圖像上三個點的坐標分別是,能正確反映的大小關(guān)系的是()A. B. C. D.11.若關(guān)于的一元二次方程有實數(shù)根,則的值不可能是()A. B. C.0 D.201812.如圖,A、B、C三點在正方形網(wǎng)格線的交點處,若將△ABC繞著點A逆時針旋轉(zhuǎn)得到△AC′B′,則tanB′的值為()A. B. C. D.二、填空題(每題4分,共24分)13.如圖所示的五角星繞中心點旋轉(zhuǎn)一定的角度后能與自身完全重合,則其旋轉(zhuǎn)的角度至少為_______;14.已知一元二次方程有一個根為,則的值為________________.15.計算:×=______.16.在一個不透明的盒子中裝有a個除顏色外完全相同的球,其中只有6個白球.若每次將球充分攪勻后,任意摸出1個球記下顏色后再放回盒子,通過大量重復(fù)試驗后,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在20%左右,則a的值約為_____.17.若二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0).則S=a+b+c的值的變化范圍是_____.18.若關(guān)于x的函數(shù)與x軸僅有一個公共點,則實數(shù)k的值為.三、解答題(共78分)19.(8分)求值:+2sin30°-tan60°-tan45°20.(8分)如圖,AB是⊙O的直徑,CD是⊙O的弦,且CD⊥AB于點E.(1)求證:∠BCO=∠D;(2)若,AE=1,求劣弧BD的長.21.(8分)如圖,在平面直角坐標系中,拋物線與x軸交于A、D兩點,與y軸交于點B,四邊形OBCD是矩形,點A的坐標為(1,0),點B的坐標為(0,4),已知點E(m,0)是線段DO上的動點,過點E作PE⊥x軸交拋物線于點P,交BC于點G,交BD于點H.(1)求該拋物線的解析式;(2)當點P在直線BC上方時,請用含m的代數(shù)式表示PG的長度;(3)在(2)的條件下,是否存在這樣的點P,使得以P、B、G為頂點的三角形與△DEH相似?若存在,求出此時m的值;若不存在,請說明理由.22.(10分)已知拋物線y=ax2+bx+c經(jīng)過點A(﹣2,0),B(3,0),與y軸負半軸交于點C,且OC=OB.(1)求拋物線的解析式;(2)在y軸負半軸上存在一點D,使∠CBD=∠ADC,求點D的坐標;(3)點D關(guān)于直線BC的對稱點為D′,將拋物線y=ax2+bx+c向下平移h個單位,與線段DD′只有一個交點,直接寫出h的取值范圍.23.(10分)小堯用“描點法”畫二次函數(shù)的圖像,列表如下:x…-4-3-2-1012…y…50-3-4-30-5…(1)由于粗心,小堯算錯了其中的一個y值,請你指出這個算錯的y值所對應(yīng)的x=;(2)在圖中畫出這個二次函數(shù)的圖像;(3)當y≥5時,x的取值范圍是.24.(10分)某學校為了解學生“第二課堂“活動的選修情況,對報名參加A.跆拳道,B.聲樂,C.足球,D.古典舞這四項選修活動的學生(每人必選且只能選修一項)進行抽樣調(diào)查.并根據(jù)收集的數(shù)據(jù)繪制了圖①和圖②兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:(1)本次調(diào)查的學生共有人;在扇形統(tǒng)計圖中,B所對應(yīng)的扇形的圓心角的度數(shù)是;(2)將條形統(tǒng)計圖補充完整;(3)在被調(diào)查選修古典舞的學生中有4名團員,其中有1名男生和3名女生,學校想從這4人中任選2人進行古典舞表演.請用列表或畫樹狀圖的方法求被選中的2人恰好是1男1女的概率.25.(12分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,DE交AC于點E,且∠A=∠ADE.(1)求證:DE是⊙O的切線;(2)若AD=16,DE=10,求BC的長.26.如圖,已知拋物線與軸相交于、兩點,與軸相交于點,若已知點的坐標為.(1)求拋物線的解析式;(2)求線段所在直線的解析式;(3)在拋物線的對稱軸上是否存在點,使為等腰三角形?若存在,求出符合條件的點坐標;若不存在,請說明理由.

參考答案一、選擇題(每題4分,共48分)1、C【解析】利用因式分解法解一元二次方程即可.解:方程變形為:2x(x﹣3)﹣5(x﹣3)=0,∴(x﹣3)(2x﹣5)=0,∴x﹣3=0或2x﹣5=0,∴x1=3,x2=.故選C.2、D【分析】將點的坐標代入反比例函數(shù)解析式中可求k的值.【詳解】∵反比例函數(shù)的圖象經(jīng)過點(﹣5,3),∴k+1=﹣5×3=﹣15,∴k=﹣16故選:D.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,掌握圖象上的點的坐標滿足解析式是本題的關(guān)鍵.3、B【分析】根據(jù)題目中的函數(shù)解析式,可以直接寫出該函數(shù)的頂點坐標,本題得以解決.【詳解】解:∵函數(shù),∴該函數(shù)的頂點坐標是,故選:B.【點睛】本題主要考查二次函數(shù)的圖像,關(guān)鍵是根據(jù)二次函數(shù)的頂點式直接得到頂點坐標即可.4、C【解析】分式方程去分母得:m=x-1,解得x=m+1,由方程的解為非負數(shù),得到m+1≥0,且m+1≠1,解得:m-1且m≠0,故選C.5、D【分析】過點作x軸的垂線,垂足為M,通過條件求出,MO的長即可得到的坐標.【詳解】解:過點作x軸的垂線,垂足為M,∵,,∴,,∴,在直角△中,,,∴,,∴OM=2+1=3,∴的坐標為.故選:D.【點睛】本題考查坐標與圖形變化-旋轉(zhuǎn),解直角三角形等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造直角三角形解決問題.6、B【解析】所求式子前兩項提取3變形后,將已知等式變形后代入計算即可求出值.【詳解】∵x2?2x=8,∴3x2?1x?18=3(x2?2x)?18=24?18=1.故選:B.【點睛】此題考查了代數(shù)式求值,利用了整體代入的思想,是一道基本題型.7、A【分析】根據(jù)圖象得出函數(shù)及對稱軸信息,分別利用函數(shù)圖象與坐標軸交點得出對應(yīng)函數(shù)關(guān)系的大小關(guān)系.【詳解】解:由圖象可得:,則2a+b=0,故①2a>-b錯誤;由圖象可得:拋物線與x軸正半軸交點大于2,故4a+2b+c<0,故②4a+2b+c>0錯誤;∵x=1時,二次函數(shù)取到最小值,∴m(am+b)=am2+bm>a+b,故③m(am+b)>a+b(m是大于1的實數(shù))正確;∵b=-2a,∴當x=-1時,y=a-b+c=3a+c>0,故④3a+c<0錯誤.綜上所述,只有③正確故選:A【點睛】此題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系,正確利用圖象得出正確信息是解題關(guān)鍵.8、D【分析】過點O作OC⊥AB于C,連接OA,根據(jù)勾股定理求出AC長,根據(jù)垂徑定理得出AB=2CA,代入求出即可.【詳解】過點O作OC⊥AB于C,連接OA,則OC=6,OA=10,由勾股定理得:,∵OC⊥AB,OC過圓心O,∴AB=2AC=16,故選D.【點睛】本題主要考查了勾股定理和垂徑定理等知識點的應(yīng)用,正確作出輔助線是關(guān)鍵.9、B【解析】由題圖可知,,由,可得即可得出【詳解】由題圖可知,,結(jié)合,可得.故選B.【點睛】當題中所給條件中有兩個三角形的兩邊成比例時,通??紤]利用“兩邊成比例且夾角相等”的判定方法判定兩個三角形相似一定要記準相等的角是兩邊的“夾角”,否則,結(jié)論不成立(類似判定三角形全等的方法“SAS").10、B【分析】根據(jù)反比例函數(shù)關(guān)系式,把-2、1、2代入分別求出,然后比較大小即可.【詳解】將A、B、C三點橫坐標帶入函數(shù)解析式可得,∵,∴.故選:B.【點睛】本題考查反比例函數(shù)圖象上點的坐標,正確利用函數(shù)表達式求點的坐標是解題關(guān)鍵.11、A【分析】由題意直接根據(jù)一元二次方程根的判別式,進行分析計算即可求出答案.【詳解】解:由題意可知:△==4+4m≥0,∴m≥-1,的值不可能是-2.故選:A.【點睛】本題考查一元二次方程,解題的關(guān)鍵是熟練運用一元二次方程的根的判別式進行分析求解.12、D【解析】過C點作CD⊥AB,垂足為D,根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B,把求tanB′的問題,轉(zhuǎn)化為在Rt△BCD中求tanB.【詳解】過C點作CD⊥AB,垂足為D.根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故選D.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)后對應(yīng)角相等;三角函數(shù)的定義及三角函數(shù)值的求法.二、填空題(每題4分,共24分)13、72°【詳解】五角星繞中心點旋轉(zhuǎn)一定的角度后能與自身完全重合,則其旋轉(zhuǎn)的角度至少為=72°.故答案為72°.14、-1【分析】根據(jù)一元二次方程的根的定義,即可求解.【詳解】∵一元二次方程有一個根為,∴,解得:k=-1,故答案是:-1.【點睛】本題主要考查一元二次方程方程根的定義,掌握一元二次方程根的定義,是解題的關(guān)鍵.15、1.【解析】×==1,故答案為1.16、1.【分析】在同樣條件下,大量反復(fù)試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從摸到白球的頻率穩(wěn)定在20%左右得到比例關(guān)系,列出方程求解即可.【詳解】由題意可得,×100%=20%,解得,a=1.故答案為1.【點睛】本題利用了用大量試驗得到的頻率可以估計事件的概率.關(guān)鍵是根據(jù)紅球的頻率得到相應(yīng)的等量關(guān)系.17、1<S<2【分析】將已知兩點坐標代入二次函數(shù)解析式,得出c的值及a、b的關(guān)系式,代入S=a+b+c中消元,再根據(jù)對稱軸的位置判斷S的取值范圍即可.【詳解】解:將點(1,1)和(﹣1,1)分別代入拋物線解析式,得c=1,a=b﹣1,∴S=a+b+c=2b,由題設(shè)知,對稱軸x=且,∴2b>1.又由b=a+1及a<1可知2b=2a+2<2.∴1<S<2.故答案為:1<S<2.【點睛】本題考查了二次函數(shù)圖象上點的坐標特點,運用了消元法的思想,對稱軸的性質(zhì),需要靈活運用這些性質(zhì)解題.18、0或-1.【解析】由于沒有交待是二次函數(shù),故應(yīng)分兩種情況:當k=0時,函數(shù)是一次函數(shù),與x軸僅有一個公共點.當k≠0時,函數(shù)是二次函數(shù),若函數(shù)與x軸僅有一個公共點,則有兩個相等的實數(shù)根,即.綜上所述,若關(guān)于x的函數(shù)與x軸僅有一個公共點,則實數(shù)k的值為0或-1.三、解答題(共78分)19、【解析】先得出式子中的特殊角的三角函數(shù)值,再按實數(shù)溶合運算順序進行計算即可.解:原式=20、(1)見解析;(2).【分析】(1)由等腰三角形的性質(zhì)與圓周角定理,易得∠BCO=∠B=∠D;

(2)由垂徑定理可求得CE與DE的長,然后證得△BCE∽△DAE,再由相似三角形的對應(yīng)邊成比例,求得BE的長,繼而求得直徑與半徑,再求出圓心角∠BOD即可解決問題;【詳解】(1)證明:∵OB=OC,∴∠BCO=∠B,∵∠B=∠D,∴∠BCO=∠D;(2)解:連接OD.∵AB是⊙O的直徑,CD⊥AB,∴,∵∠B=∠D,∠BEC=∠DEC,∴△BCE∽△DAE,∴AE:CE=DE:BE,∴,解得:BE=3,∴AB=AE+BE=4,∴⊙O的半徑為2,∵,∴∠EOD=60°,∴∠BOD=120°,∴的長.【點睛】此題考查圓周角定理、垂徑定理、相似三角形的判定與性質(zhì)以及等腰三角形的性質(zhì).注意在同圓或等圓中,同弧或等弧所對的圓周角相等.證得△BCE∽△DAE是解題關(guān)鍵.21、(1);(2)PG=;(3)存在點P,使得以P、B、G為頂點的三角形與△DEH相似,此時m的值為﹣1或.【解析】試題分析:(1)將A(1,1),B(1,4)代入,運用待定系數(shù)法即可求出拋物線的解析式.(2)由E(m,1),B(1,4),得出P(m,),G(m,4),則由可用含m的代數(shù)式表示PG的長度.(3)先由拋物線的解析式求出D(﹣3,1),則當點P在直線BC上方時,﹣3<m<1.分兩種情況進行討論:①△BGP∽△DEH;②△PGB∽△DEH.都可以根據(jù)相似三角形對應(yīng)邊成比例列出比例關(guān)系式,進而求出m的值.試題解析:解:(1)∵拋物線與x軸交于點A(1,1),與y軸交于點B(1,4),∴,解得.∴拋物線的解析式為.(2)∵E(m,1),B(1,4),PE⊥x軸交拋物線于點P,交BC于點G,∴P(m,),G(m,4).∴PG=.(3)在(2)的條件下,存在點P,使得以P、B、G為頂點的三角形與△DEH相似.∵,∴當y=1時,,解得x=1或﹣3.∴D(﹣3,1).當點P在直線BC上方時,﹣3<m<1.設(shè)直線BD的解析式為y=kx+4,將D(﹣3,1)代入,得﹣3k+4=1,解得k=.∴直線BD的解析式為y=x+4.∴H(m,m+4).分兩種情況:①如果△BGP∽△DEH,那么,即.由﹣3<m<1,解得m=﹣1.②如果△PGB∽△DEH,那么,即.由﹣3<m<1,解得m=.綜上所述,在(2)的條件下,存在點P,使得以P、B、G為頂點的三角形與△DEH相似,此時m的值為﹣1或.考點:1.二次函數(shù)綜合題;2.單動點問題;3.待定系數(shù)法的應(yīng)用;4.曲線上點的坐標與方程的關(guān)系;5.由實際問題列代數(shù)式;6.相似三角形的判定和性質(zhì);7.分類思想的應(yīng)用.22、(1)y=x2﹣x﹣3;(2)D(0,﹣6);(3)3≤h≤1【分析】(1)OC=OB,則點C(0,﹣3),拋物線的表達式為:y=a(x+2)(x﹣3)=a(x2﹣x﹣6),﹣6a=﹣3,解得:a=,即可求解;(2)CH=HD=m,tan∠ADC==tan∠DBC=,解得:m=3或﹣4(舍去﹣4),即可求解;(3)過點C作x軸的平行線交DH的延長線于點D′,則D′(﹣3,﹣3);當平移后的拋物線過點C時,拋物線與線段DD′有一個公共點,此時,h=3;當平移后的拋物線過點D′時,拋物線與線段DD′有一個公共點,即可求解.【詳解】解:(1)OC=OB,則點C(0,﹣3),拋物線的表達式為:y=a(x+2)(x﹣3)=a(x2﹣x﹣6),﹣6a=﹣3,解得:a=,故拋物線的表達式為:y=x2﹣x﹣3;(2)設(shè)CD=m,過點D作DH⊥BC交BC的延長線于點H,則CH=HD=m,tan∠ADC==tan∠DBC=,解得:m=3或﹣4(舍去﹣4),故點D(0,﹣6);(3)過點C作x軸的平行線交DH的延長線于點D′,則D′(﹣3,﹣3);平移后拋物線的表達式為:y=x2﹣x﹣3﹣h,當平移后的拋物線過點C時,拋物線與線段DD′有一個公共點,此時,h=3;當平移后的拋物線過點D′時,拋物線與線段DD′有一個公共點,即﹣3=×9+﹣h,解得:h=1,故3≤h≤1.【點睛】此題主要考查二次函數(shù)綜合,解題的關(guān)鍵是熟知待定系數(shù)法求解析式、三角函數(shù)的定義及二次函數(shù)平移的特點.23、(1)2;(2)詳見解析;(3)或【分析】(1)由表格給出的信息可以看出,該函數(shù)的對稱軸為直線x=-1,則x=-4與x=2時應(yīng)取值相同.(2)將表格中的x,y值看作點的坐標,分別在坐標系中描出這幾個點,用平滑曲線連接即可作出這個二次函數(shù)的圖象;(3)根據(jù)拋物線的對稱軸,開口方向,利用二次函數(shù)的對稱性判斷出x=-4或2時,y=5,然后寫出y≥5時,x的取值范圍即可.【詳解】解:(1)從表格可以看出,當x=-2或x=0時,y=-3,

可以判斷(-2,-3),(0,-3)是拋物線上的兩個對稱點,

(-1,-4)就是頂點,設(shè)拋物線頂點式y(tǒng)=a(x+1)2-4,

把(0,-3)代入解析式,-3=a-4,解得a=1,

所以,拋物線解析式為y=(x+1)2-4,

當x=-4時,y=(-4+1)2-4=5,

當x=2時,y=(2+1)2-4=5≠-5,

所以這個錯算的y值所對應(yīng)的x=2;(2)描點、連線,如圖:(3)∵函數(shù)開口向上,當y=5時,x=-4或2,∴當y≥5時,由圖像可得:x≤-4或x≥2.【點睛】本題考查用待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)的性質(zhì)、畫函數(shù)圖像、二次函數(shù)與不等式,解題的關(guān)鍵是正確分析表中的數(shù)據(jù).24、(1)200、144;(2)補全圖形見解析;(3)被選中的2人恰好是1男1女的概率.【分析】(1)由A活動的人數(shù)及其所占百分比可得總?cè)藬?shù),用360°乘以B活動人數(shù)所占比例即可得;

(2)用總?cè)藬?shù)減去其它活動人數(shù)求出C的人數(shù),從而補全圖形;

(3)列表得出所有等可能的情況數(shù),找出剛好抽到一男一女的情況數(shù),即可求出所求的概率.【詳解】(1)本次調(diào)查的學生共有30÷15%=200(人),扇形統(tǒng)計圖中,B所對應(yīng)的扇形的圓心角的度數(shù)是360°×=144°,故答案為200、144;(2)C活動人數(shù)為200﹣(30+80+20)=70(人),補全圖形如下:(3)畫樹狀圖為:或列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12種等可能情況,1男1女有6種情況,∴被選中的2人恰好是1男1女的概率.【點睛】本題考查了扇形統(tǒng)計圖,條形統(tǒng)計圖,樹狀圖等知識點,解題時注意:概率=所求情況數(shù)與總情況數(shù)之比.25、(1)證明見解析;(2)15.【解析】(1)先連接OD,根據(jù)圓周角定理求出∠ADB=90°,根據(jù)直角三角形斜邊上中線性質(zhì)求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根據(jù)切線的判定推出即可.

(2)首先證明AC=2DE=20,在Rt△ADC中,DC=12,設(shè)BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解決問題.【詳解】(1)證明:連結(jié)OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論