版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.下列各組圖形中,兩個圖形不一定是相似形的是()A.兩個等邊三角形 B.有一個角是的兩個等腰三角形C.兩個矩形 D.兩個正方形2.如圖,在⊙O中,AB為直徑,CD為弦,∠CAB=50°,則∠ADC=()A.25° B.30° C.40° D.50°3.如圖,AB是半圓O的直徑,且AB=4cm,動點P從點O出發(fā),沿OA→→BO的路徑以每秒1cm的速度運動一周.設運動時間為t,s=OP2,則下列圖象能大致刻畫s與t的關系的是()A. B.C. D.4.如圖,已知和是以點為位似中心的位似圖形,且和的周長之比為,點的坐標為,則點的坐標為().A. B. C. D.5.如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的一個交點坐標是(3,0),對稱軸為直線x=1,下列結論:①abc>0;②2a+b=0;③4a﹣2b+c>0;④當y>0時,﹣1<x<3;⑤b<c.其中正確的個數(shù)是()A.2 B.3 C.4 D.56.下列幾何體的左視圖為長方形的是()A. B. C. D.7.我國民間,流傳著許多含有吉祥意義的文字圖案,表示對幸福生活的向往,良辰佳節(jié)的祝賀.比如下列圖案分別表示“福”、“祿”、“壽”、“喜”,其中是中心對稱圖形的是()A.①③ B.①④ C.②③ D.②④8.已知圓心角為120°的扇形的弧長為6π,該扇形的面積為()A. B. C. D.9.如圖,當刻度尺的一邊與⊙O相切時,另一邊與⊙O的兩個交點處的讀數(shù)如圖所示(單位:cm),圓的半徑是5,那么刻度尺的寬度為()A.cm B.4cm C.3cm D.2cm10.下列判斷正確的是()A.對角線互相垂直的平行四邊形是菱形 B.兩組鄰邊相等的四邊形是平行四邊形C.對角線相等的四邊形是矩形 D.有一個角是直角的平行四邊形是正方形二、填空題(每小題3分,共24分)11.如圖,直線y=ax+b過點A(0,2)和點B(﹣3,0),則方程ax+b=0的解是_____.12.如圖,有一斜坡,坡頂離地面的高度為,斜坡的傾斜角是,若,則此斜坡的為____m.13.關于x的方程的兩個根是﹣2和1,則nm的值為_____.14.如圖,直線分別交軸,軸于點A和點B,點C是反比例函數(shù)的圖象上位于直線下方的一點,CD∥軸交AB于點D,CE∥軸交AB于點E,,則的值為______15.在平面直角坐標系中,已知點A(-6,3),B(9,0),以原點O為位似中心,相似比為,把△ABO縮小,則點A對應點A′的坐標是__________.16.一個不透明的口袋中裝有個紅球和個黃球,這些球除了顏色外,無其他差別,從中隨機摸出一個球,恰好是紅球的概率為__________.17.如圖所示的兩個四邊形相似,則的度數(shù)是.18.已知方程的兩實數(shù)根的平方和為,則k的值為____.三、解答題(共66分)19.(10分)已知:在△EFG中,∠EFG=90°,EF=FG,且點E,F(xiàn)分別在矩形ABCD的邊AB,AD上.(1)如圖1,當點G在CD上時,求證:△AEF≌△DFG;(2)如圖2,若F是AD的中點,F(xiàn)G與CD相交于點N,連接EN,求證:EN=AE+DN;(3)如圖3,若AE=AD,EG,F(xiàn)G分別交CD于點M,N,求證:MG2=MN?MD.20.(6分)如圖,線段AB、CD分別表示甲乙兩建筑物的高,BA⊥AD,CD⊥DA,垂足分別為A、D.從D點測到B點的仰角α為60°,從C點測得B點的仰角β為30°,甲建筑物的高AB=30米(1)求甲、乙兩建筑物之間的距離AD.(2)求乙建筑物的高CD.21.(6分)拋物線與軸交于兩點(點在點的左側),且,,與軸交于點,點的坐標為(0,-2),連接,以為邊,點為對稱中心作菱形.點是軸上的一個動點,設點的坐標為,過點作軸的垂線交拋物線與點,交于點.(1)求拋物線的解析式;(2)軸上是否存在一點,使三角形為等腰三角形,若存在,請直接寫出點的坐標;若不存在,請說明理由;(3)當點在線段上運動時,試探究為何值時,四邊形是平行四邊形?請說明理由.22.(8分)如圖,拋物線y=-x2+bx+c與x軸交于點A(-1,0),與y軸交于點B(0,2),直線y=x-1與y軸交于點C,與x軸交于點D,點P是線段CD上方的拋物線上一動點,過點P作PF垂直x軸于點F,交直線CD于點E,(1)求拋物線的解析式;(2)設點P的橫坐標為m,當線段PE的長取最大值時,解答以下問題.①求此時m的值.②設Q是平面直角坐標系內一點,是否存在以P、Q、C、D為頂點的平行四邊形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.23.(8分)如圖,是的直徑,是的切線,切點為,交于點,點是的中點.(1)試判斷直線與的位置關系,并說明理由;(2)若的半徑為2,,,求圖中陰影部分的周長.24.(8分)如圖,一次函數(shù)和反比例函數(shù)的圖象相交于兩點,點的橫坐標為1.(1)求的值及,兩點的坐標(1)當時,求的取值范圍.25.(10分)小敏為了解本市的空氣質量情況,從環(huán)境監(jiān)測網隨機抽取了若干天的空氣質量情況作為樣本進行統(tǒng)計,繪制了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分信息未給出).請你根據圖中提供的信息,解答下列問題:(1)計算被抽取的天數(shù);(2)請補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示優(yōu)的扇形的圓心角度數(shù);(3)請估計該市這一年(365天)達到優(yōu)和良的總天數(shù).26.(10分)小彬做了探究物體投影規(guī)律的實驗,并提出了一些數(shù)學問題請你解答:(1)如圖1,白天在陽光下,小彬將木桿水平放置,此時木桿在水平地面上的影子為線段.①若木桿的長為,則其影子的長為;②在同一時刻同一地點,將另一根木桿直立于地面,請畫出表示此時木桿在地面上影子的線段;(2)如圖2,夜晚在路燈下,小彬將木桿水平放置,此時木桿在水平地面上的影子為線段.①請在圖中畫出表示路燈燈泡位置的點;②若木桿的長為,經測量木桿距離地面,其影子的長為,則路燈距離地面的高度為.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據相似圖形的定義,以及等邊三角形,等腰三角形,矩形,正方形的性質對各選項分析判斷后利用排除法求解.【詳解】解:A、兩個等邊三角形,對應邊的比相等,角都是60°,相等,所以一定相似,故A正確;B、有一個角是100°的兩個等腰三角形,100°的角只能是頂角,夾頂角的兩邊成比例,所以一定相似,故B正確;C、兩個矩形,四個角都是直角,但四條邊不一定對應成比例,不一定相似,故C錯誤;D、兩個正方形,對應邊的比相等,角都是90°,相等,所以一定相似,故D正確.故選:C.【點睛】本題考查了相似圖形的判斷,嚴格按照定義,對應邊成比例,對應角相等進行判斷即可,另外,熟悉等腰三角形,等邊三角形,正方形的性質對解題也很關鍵.2、C【分析】先推出∠ABC=40°,根據同弧所對的圓周角相等,可得∠ABC=∠ADC=40°,即可得出答案.【詳解】解:∵AB為直徑,∴∠ACB=90°,∵∠CAB=50°,∴∠ABC=40°,∵,∴∠ABC=∠ADC=40°,故選:C.【點睛】本題考查了直徑所對的圓周角是90°,同弧所對的圓周角相等,推出∠ABC=90°是解題關鍵.3、C【解析】在半徑AO上運動時,s=OP1=t1;在弧BA上運動時,s=OP1=4;在BO上運動時,s=OP1=(4π+4-t)1,s也是t是二次函數(shù);即可得出答案.【詳解】解:利用圖象可得出:當點P在半徑AO上運動時,s=OP1=t1;在弧AB上運動時,s=OP1=4;在OB上運動時,s=OP1=(1π+4-t)1.結合圖像可知C選項正確故選:C.【點睛】此題考查了動點問題的函數(shù)圖象,能夠結合圖形正確得出s與時間t之間的函數(shù)關系是解決問題的關鍵.4、A【分析】設位似比例為k,先根據周長之比求出k的值,再根據點B的坐標即可得出答案.【詳解】設位似圖形的位似比例為k則和的周長之比為,即解得又點B的坐標為點的橫坐標的絕對值為,縱坐標的絕對值為點位于第四象限點的坐標為故選:A.【點睛】本題考查了位似圖形的坐標變換,依據題意,求出位似比例式解題關鍵.5、B【分析】根據二次函數(shù)y=ax2+bx+c的圖象與性質依次進行判斷即可求解.【詳解】解:∵拋物線開口向下,∴a<0;∵拋物線的對稱軸為直線x=﹣=1,∴b=﹣2a>0,所以②正確;∵拋物線與y軸的交點在x軸上方,∴c>0,∴abc<0,所以①錯誤;∵拋物線與x軸的一個交點坐標是(3,0),對稱軸為直線x=1,∴拋物線與x軸的另一個交點坐標是(﹣1,0),∴x=﹣2時,y<0,∴4a﹣2b+c<0,所以③錯誤;∵拋物線與x軸的2個交點坐標為(﹣1,0),(3,0),∴﹣1<x<3時,y>0,所以④正確;∵x=﹣1時,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴b﹣c=﹣2a+3a=a<0,即b<c,所以⑤正確.故選B.【點睛】此題主要考查二次函數(shù)的圖像與性質,解題的關鍵是熟知二次函數(shù)的圖像性質特點.6、C【解析】分析:找到每個幾何體從左邊看所得到的圖形即可得出結論.詳解:A.球的左視圖是圓;B.圓臺的左視圖是梯形;C.圓柱的左視圖是長方形;D.圓錐的左視圖是三角形.故選C.點睛:此題主要考查了簡單幾何體的三視圖,關鍵是掌握每個幾何體從左邊看所得到的圖形.7、D【分析】根據中心對稱圖形的定義,結合選項所給圖形進行判斷即可.【詳解】解:①不是中心對稱圖形,故本選項不合題意;②是中心對稱圖形,故本選項符合題意;③不是中心對稱圖形,故本選項不合題意;④是中心對稱圖形,故本選項符合題意;故選:D.【點睛】本題考查了中心對稱圖形的定義,熟悉掌握概念是解題的關鍵8、B【分析】設扇形的半徑為r.利用弧長公式構建方程求出r,再利用扇形的面積公式計算即可.【詳解】解:設扇形的半徑為r.由題意:=6π,∴r=9,∴S扇形==27π,故選B.【點睛】本題考查扇形的弧長公式,面積公式等知識,解題的關鍵是學會構建方程解決問題,屬于中考常考題型.9、D【解析】連接OA,過點O作OD⊥AB于點D,∵OD⊥AB,∴AD=12AB=12(9?1)=4cm,∵OA=5,則OD=5?DE,在Rt△OAD中,,即解得DE=2cm.故選D.10、A【分析】利用特殊四邊形的判定定理逐項判斷即可.【詳解】A、對角線互相垂直的平行四邊形是菱形,此項正確B、兩組對邊分別相等的四邊形是平行四邊形,此項錯誤C、對角線相等的平行四邊形是矩形,此項錯誤D、有一個角是直角的平行四邊形是矩形,此項錯誤故選:A.【點睛】本題考查了特殊四邊形(平行四邊形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解題關鍵.二、填空題(每小題3分,共24分)11、x=﹣1【分析】所求方程ax+b=0的解,即為函數(shù)y=ax+b圖像與x軸交點橫坐標,根據已知條件中點B即可確定.【詳解】解:方程ax+b=0的解,即為函數(shù)y=ax+b圖象與x軸交點的橫坐標,∵直線y=ax+b過B(﹣1,0),∴方程ax+b=0的解是x=﹣1,故答案為:x=﹣1.【點睛】本題主要考查了一次函數(shù)與一元一次方程的關系,掌握一次函數(shù)與一元一次方程之間的關系是解題的關鍵.12、1.【分析】由三角函數(shù)定義即可得出答案.【詳解】解:∵,,∴;故答案為:1.【點睛】本題考查了解直角三角形的應用;熟練掌握三角函數(shù)定義是解題的關鍵.13、﹣1【分析】由方程的兩根結合根與系數(shù)的關系可求出m、n的值,將其代入nm中即可求出結論.【詳解】解:∵關于x的方程的兩個根是﹣2和1,∴,∴m=2,n=﹣4,∴.故答案為:﹣1.【點睛】本題主要考查一元二次方程根與系數(shù)的關系,熟練掌握根與系數(shù)的關系是解題的關鍵.14、【分析】過作于,過作于,由CD∥軸,CE∥軸,得利用三角形相似的性質求解建立方程求解,結合的幾何意義可得答案.【詳解】.解:過作于,過作于,CD∥軸,CE∥軸,直線分別交軸,軸于點A和點B,點,把代入得:同理:把代入得:,同理:故答案為;.【點睛】本題考查的是反比例函數(shù)的系數(shù)的幾何意義,同時考查了一次函數(shù)的性質,勾股定理的應用,相似三角形的判定與性質,掌握以上知識是解題的關鍵.15、(—2,1)或(2,—1)【分析】根據位似圖形的性質,只要點A的橫、縱坐標分別乘以或﹣即可求出結果.【詳解】解:∵點A(-6,3),B(9,0),以原點O為位似中心,相似比為把△ABO縮小,∴點A對應點的坐標為(—2,1)或(2,—1).故答案為:(—2,1)或(2,—1).【點睛】本題考查了位似圖形的性質,屬于基本題型,注意分類、掌握求解的方法是關鍵.16、【分析】直接利用概率公式求解即可求得答案.【詳解】∵一個不透明的口袋中裝有3個紅球和9個黃球,這些球除了顏色外無其他差別,
∴從中隨機摸出一個小球,恰好是紅球的概率為:.故答案為:.【點睛】本題考查了概率公式的應用.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.17、.【解析】由兩個四邊形相似,根據相似多邊形的對應角相等,即可求得∠A的度數(shù),又由四邊形的內角和等于360°,即可求得∠α的度數(shù).【詳解】解:∵四邊形ABCD∽四邊形A′B′C′D′,
∴∠A=∠A′=138°,
∵∠A+∠B+∠C+∠D=360°,
∴∠α=360°-∠A-∠B-∠C=360°-60°-138°-75°==87°.
故答案為87°.【點睛】此題考查了相似多邊形的性質.此題比較簡單,解題的關鍵是掌握相似多邊形的對應角相等定理的應用.18、3【分析】根據一元二次方程根與系數(shù)的關系,得出和的值,然后將平方和變形為和的形式,代入便可求得k的值.【詳解】∵,設方程的兩個解為則,∵兩實根的平方和為,即=∴解得:k=3或k=-11∵當k=-11時,一元二次方程的△<0,不符,需要舍去故答案為:3【點睛】本題考查根與系數(shù)的關系,注意在最后求解出2個值后,有一個值不符需要舍去.三、解答題(共66分)19、(1)見解析;(2)見解析;(3)見解析.【分析】(1)先用同角的余角相等,判斷出∠AEF=∠DFG,即可得出結論;(2)先判斷出△AHF≌△DNF,得出AH=DN,F(xiàn)H=FN,進而判斷出EH=EN,即可得出結論;(3)先判斷出AF=PG,PF=AE,進而判斷出PG=PD,得出∠MDG=45°,進而得出∠FGE=∠GDM,判斷出△MGN∽△MDG,即可得出結論.【詳解】(1)∵四邊形ABCD是矩形,∴∠A=∠D=90°,∴∠AEF+∠AFE=90°,∵∠EFG=90°,∴∠AFE+∠DFG=90°,∴∠AEF=∠DFG,∵EF=FG,∴△AEF≌△DFG(AAS);(2)如圖2,,延長NF,EA相交于H,∴∠AFH=∠DFN,由(1)知,∠EAF=∠D=90°,∴∠HAF=∠D=90°,∵點F是AD的中點,∴AF=DF,∴△AHF≌△DNF(ASA),∴AH=DN,F(xiàn)H=FN,∵∠EFN=90°,∴EH=EN,∵EH=AE+AH=AE+DN,∴EN=AE+DN;(3)如圖3,過點G作GP⊥AD交AD的延長線于P,∴∠P=90°,同(1)的方法得,△AEF≌△PFG(AAS),∴AF=PG,PF=AE,∵AE=AD,∴PF=AD,∴AF=PD,∴PG=PD,∵∠P=90°,∴∠PDG=45°,∴∠MDG=45°,在Rt△EFG中,EF=FG,∴∠FGE=45°,∴∠FGE=∠GDM,∵∠GMN=∠DMG,∴△MGN∽△MDG,∴,MG2=MN?MD.【點睛】考核知識點:相似三角形判定和性質.作輔助線,構造全等三角形,利用相似三角形解決問題是關鍵.20、(1);(2)1.【分析】(1)在Rt△ABD中利用三角函數(shù)即可求解;(2)作CE⊥AB于點E,在Rt△BCE中利用三角函數(shù)求得BE的長,然后根據CD=AE=AB﹣BE求解.【詳解】(1)作CE⊥AB于點E,在Rt△ABD中,AD===(米);(2)在Rt△BCE中,CE=AD=米,BE=CE?tanβ=×=10(米),則CD=AE=AB﹣BE=30﹣10=1(米)答:乙建筑物的高度DC為1m.21、(1)y=x2-x-2;(2)P的坐標為(,0)或(4+2,0)或(4-2,0)或(-4,0);(3)m=1時.【分析】(1)根據題意,可設拋物線表達式為,再將點C坐標代入即可;(2)設點P的坐標為(m,0),表達出PB2、PC2、BC2,再進行分類討論即可;(3)根據“當MQ=DC時,四邊形CQMD為平行四邊形”,用m的代數(shù)式表達出MQ=DC求解即可.【詳解】解:(1)∵拋物線與x軸交于A(-1,0),B(4,0)兩點,
故可設拋物線的表達式為:,將C(0,-2)代入得:-4a=-2,解得:a=∴拋物線的解析式為:y=x2-x-2(2)設點P的坐標為(m,0),
則PB2=(m-4)2,PC2=m2+4,BC2=20,
①當PB=PC時,(m-4)2=m2+4,解得:m=②當PB=BC時,同理可得:m=4±2③當PC=BC時,同理可得:m=±4(舍去4),故點P的坐標為(,0)或(4+2,0)或(4-2,0)或(-4,0);(3)∵C(0,-2)
∴由菱形的對稱性可知,點D的坐標為(0,2),
設直線BD的解析式為y=kx+2,又B(4,0)
解得k=-1,
∴直線BD的解析式為y=-x+2;
則點M的坐標為(m,-m+2),點Q的坐標為(m,m2-m-2)當MQ=DC時,四邊形CQMD為平行四邊形∴-m+2-(m2-m-2)=2-(-2)解得m=0(舍去)m=1故當m=1時,四邊形CQMD為平行四邊形.【點睛】本題考查了二次函數(shù)與幾何的綜合應用,難度適中,解題的關鍵是靈活應用二次函數(shù)的性質與三角形、四邊形的判定及性質.22、(1)y=﹣x1+x+1;(1)①m=;②存在以P、Q、C、D為頂點的四邊形是平行四邊形,點Q的坐標為【分析】(1)由題意利用待定系數(shù)法,即可求出拋物線的解析式;(1)①由題意分別用含m的代數(shù)式表示出點P,E的縱坐標,再用含m的代數(shù)式表示出PE的長,運用函數(shù)的思想即可求出其最大值;②根據題意對以P、Q、C、D為頂點的四邊形是平行四邊形分三種情況進行討論與分析求解.【詳解】解:(1)將A(﹣1,0),B(0,1)代入y=﹣x1+bx+c,得:,解得:b=1,c=1∴拋物線的解析式為y=﹣x1+x+1.(1)①∵直線y=x-1與y軸交于點C,與x軸交于點D,∴點C的坐標為(0,-1),點D的坐標為(1,0),∴0<m<1.∵點P的橫坐標為m,∴點P的坐標為(m,﹣m1+m+1),點E的坐標為(m,m+3),∴PE=﹣m1+m+1﹣(m+3)=﹣m1+m+3=﹣(m﹣)1+.∵﹣1<0,0<<1,∴當m=時,PE最長.②由①可知,點P的坐標為(,).以P、Q、C、D為頂點的四邊形是平行四邊形分三種情況(如圖所示):①以PD為對角線,點Q的坐標為;②以PC為對角線,點Q的坐標為;③以CD為對角線,點Q的坐標為.綜上所述:在(1)的情況下,存在以P、Q、C、D為頂點的四邊形是平行四邊形,點Q的坐標為.【點睛】本題考查二次函數(shù)圖像的綜合問題,解題關鍵是熟練掌握待定系數(shù)法求解析式、函數(shù)的思想求最大值以及平行四邊形的性質及平移規(guī)律等知識.23、(1)直線與相切;理由見解析;(2).【分析】(1)連接OE、OD,根據切線的性質得到∠OAC=90°,根據三角形中位線定理得到OE∥BC,證明△AOE≌△DOE,根據全等三角形的性質、切線的判定定理證明;(2)根據切線長定理可得DE=AE=2.5,由圓周角定理可得∠AOD=100°,然后根據弧長公式計算弧AD的長,從而可求得結論.【詳解】解:(1)直線DE與⊙O相切,理由如下:連接OE、OD,如圖,∵AC是⊙O的切線,∴AB⊥AC,∴∠OAC=90°,∵點E是AC的中點,O點為AB的中點,∴OE∥BC,∴∠1=∠B,∠2=∠3,∵OB=OD,∴∠B=∠3,∴∠1=∠2,在△AOE和△DOE中∵OA=OD∠1=∠2OE=OE,∴△AOE≌△DOE(SAS)∴∠ODE=∠OAE=90°,∴DE⊥OD,∵OD為⊙O的半徑,∴DE為⊙O的切線;(2)∵DE、AE是⊙O的切線,∴DE=AE,∵點E是AC的中點,∴DE=AE=AC=2.5,∵∠AOD=2∠B=2×50°=100°,∴陰影部分的周長=.【點睛】本題考查的是切線的判定與性質、全等三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版?zhèn)€體廂貨車出租及車輛監(jiān)控系統(tǒng)合同3篇
- 2025版土地居間業(yè)務規(guī)范化合同書(2025版)6篇
- 2025版建筑塑料材料買賣合同范本解讀3篇
- 《手機送分析》課件
- 【中學課件】香港和澳門
- 二零二五版汽車銷售退換貨處理合同模板2篇
- 二零二五版智慧城市建設項目工程勘察設計勞務分包合同3篇
- 家用紡織品的消費趨勢與市場需求預測考核試卷
- 《波爾多液配制》課件
- 2025版事業(yè)單位聘用合同起草與審查要點3篇
- 2024-2025學年山東省濰坊市高一上冊1月期末考試數(shù)學檢測試題(附解析)
- 數(shù)學-湖南省新高考教學教研聯(lián)盟(長郡二十校聯(lián)盟)2024-2025學年2025屆高三上學期第一次預熱演練試題和答案
- 決勝中層:中層管理者的九項修煉-記錄
- 幼兒園人民幣啟蒙教育方案
- 高考介詞練習(附答案)
- 單位就業(yè)人員登記表
- 衛(wèi)生監(jiān)督協(xié)管-醫(yī)療機構監(jiān)督
- 記錄片21世紀禁愛指南
- 腰椎間盤的診斷證明書
- 移動商務內容運營(吳洪貴)任務七 裂變傳播
- 單級倒立擺系統(tǒng)建模與控制器設計
評論
0/150
提交評論