版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,在△OAB中,頂點O(0,0),A(﹣3,4),B(3,4),將△OAB與正方形ABCD組成的圖形繞點O逆時針旋轉,每次旋轉90°,則第2019次旋轉結束時,點D的坐標為()A.(3,﹣10) B.(10,3) C.(﹣10,﹣3) D.(10,﹣3)2.如圖,將Rt△ABC繞直角頂點C順時針旋轉90°得到△DEC,連接AD,若∠BAC=26°,則∠ADE的度數(shù)為()A.13° B.19° C.26° D.29°3.如圖,是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是直線x=1對于下列說法:①abc<0;②2a+b=0;③3a+c>0;④當﹣1<x<3時,y>0;⑤a+b>m(am+b)(m≠1),其中正確有()A.1個 B.2個 C.3個 D.4個4.如圖是用圍棋棋子在6×6的正方形網格中擺出的圖案,棋子的位置用有序數(shù)對表示,如A點為(5,1),若再擺一黑一白兩枚棋子,使這9枚棋子組成的圖案既是軸對稱圖形又是中心對稱圖形,則下列擺放正確的是()A.黑(1,5),白(5,5) B.黑(3,2),白(3,3)C.黑(3,3),白(3,1) D.黑(3,1),白(3,3)5.如圖,點I是△ABC的內心,∠BIC=130°,則∠BAC=()A.60° B.65° C.70° D.80°6.如圖,,點O在直線上,若,,則的度數(shù)為()A.65° B.55° C.45° D.35°7.若是方程的解,則下列各式一定成立的是()A. B. C. D.8.如圖,?ABCD的對角線AC,BD相交于點O,且AC=10,BD=12,CD=m,那么m的取值范圍是()A.10<m<12 B.2<m<22 C.5<m<6 D.1<m<119.下列命題正確的是(
)A.圓是軸對稱圖形,任何一條直徑都是它的對稱軸B.平分弦的直徑垂直于弦,并且平分弦所對的弧C.相等的圓心角所對的弧相等,所對的弦相等D.同弧或等弧所對的圓周角相等10.若,則函數(shù)與在同一平面直角坐標系中的圖象大致是()A. B. C. D.二、填空題(每小題3分,共24分)11.已知線段a、b、c,其中c是a、b的比例中項,若a=2cm,b=8cm,則線段c=_____cm.12.定義符號max{a,b}的含義為:當a≥b時,max{a,b}=a;當a<b時,max{a,b}=b.如max{1,﹣3}=1,則max{x2+2x+3,﹣2x+8}的最小值是_____.13.設m,n分別為一元二次方程x2+2x﹣2018=0的兩個實數(shù)根,則m2+3m+n=______.14.如果△ABC∽△DEF,且△ABC的三邊長分別為4、5、6,△DEF的最短邊長為12,那么△DEF的周長等于_____.15.如圖,在平面直角坐標系中,菱形OBCD的邊OB在x軸正半軸上,反比例函數(shù)y=(x>0)的圖象經過該菱形對角線的交點A,且與邊BC交于點F.若點D的坐標為(3,4),則點F的坐標是_____.16.如圖,在?ABCD中,AB為⊙O的直徑,⊙O與DC相切于點E,與AD相交于點F,已知AB=12,∠C=60°,則的長為.17.點(2,5)在反比例函數(shù)的圖象上,那么k=_____.18.如圖所示是二次函數(shù)的圖象,下列結論:①二次三項式的最大值為;使成立的的取值范圍是;一元二次方程,當時,方程總有兩個不相等的實數(shù)根;該拋物線的對稱軸是直線;其中正確的結論有______________(把所有正確結論的序號都填在橫線上)三、解答題(共66分)19.(10分)在中,,是邊上的中線,點在射線上.猜想:如圖①,點在邊上,,與相交于點,過點作,交的延長線于點,則的值為.探究:如圖②,點在的延長線上,與的延長線交于點,,求的值.應用:在探究的條件下,若,,則.20.(6分)如圖,△ABC與△A′B′C′是以點O為位似中心的位似圖形,它們的頂點都在正方形網格的格點上.(1)畫出位似中心O;(2)△ABC與△A′B′C′的相似比為__________,面積比為__________.21.(6分)如圖,是線段上--動點,以為直徑作半圓,過點作交半圓于點,連接.已知,設兩點間的距離為,的面積為.(當點與點或點重合時,的值為)請根據(jù)學習函數(shù)的經驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行探究.(注:本題所有數(shù)值均保留一位小數(shù))通過畫圖、測量、計算,得到了與的幾組值,如下表:補全表格中的數(shù)值:;;.根據(jù)表中數(shù)值,繼續(xù)描出中剩余的三個點,畫出該函數(shù)的圖象并寫出這個函數(shù)的一條性質;結合函數(shù)圖象,直接寫出當?shù)拿娣e等于時,的長度約為____.22.(8分)在日常生活中我們經常會使用到訂書機,如圖MN是裝訂機的底座,AB是裝訂機的托板AB始終與底座平行,連接桿DE的D點固定,點E從A向B處滑動,壓柄BC繞著轉軸B旋轉.已知連接桿BC的長度為20cm,BD=cm,壓柄與托板的長度相等.(1)當托板與壓柄的夾角∠ABC=30°時,如圖①點E從A點滑動了2cm,求連接桿DE的長度.(2)當壓柄BC從(1)中的位置旋轉到與底座垂直,如圖②.求這個過程中,點E滑動的距離.(結果保留根號)23.(8分)先鋒中學數(shù)學課題組為了了解初中學生閱讀數(shù)學教科書的現(xiàn)狀,隨機抽取某校部分初中學生進行調查,調查結果分為“重視”、“一般”、“不重視”、“說不清楚”四種情況(依次用A、B、C、D表示),依據(jù)相關數(shù)據(jù)繪制成以下不完整的統(tǒng)計表和統(tǒng)計圖,請根據(jù)圖表中的信息解答下列問題:類別頻數(shù)頻率重視a0.25一般600.3不重視bc說不清楚100.05(1)求樣本容量及表格中a,b,c的值,并補全統(tǒng)計圖;(2)若該校共有2000名學生,請估計該?!安恢匾曢喿x數(shù)學教科書”的學生人數(shù).24.(8分)已知:正方形ABCD,等腰直角三角板的直角頂點落在正方形的頂點D處,使三角板繞點D旋轉.(1)當三角板旋轉到圖1的位置時,猜想CE與AF的數(shù)量關系,并加以證明;(2)在(1)的條件下,若DE:AE:CE=1::3,求∠AED的度數(shù);(3)若BC=4,點M是邊AB的中點,連結DM,DM與AC交于點O,當三角板的邊DF與邊DM重合時(如圖2),若OF=,求DF和DN的長.25.(10分)如圖,AC是⊙O的直徑,PA切⊙O于點A,PB切⊙O于點B,且∠APB=60°.(1)求∠BAC的度數(shù);(2)若PA=,求點O到弦AB的距離.26.(10分)在下列的網格中,橫、縱坐標均為整數(shù)的點叫做格點,例如正方形的頂點,都是格點.要求在下列問題中僅用無刻度的直尺作圖.
(1)畫出格點,連(或延長)交邊于,使,寫出點的坐標.(2)畫出格點,連(或延長)交邊于,使,則滿足條件的格點有個.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】先求出AB=1,再利用正方形的性質確定D(-3,10),由于2019=4×504+3,所以旋轉結束時,相當于△OAB與正方形ABCD組成的圖形繞點O順時針旋轉3次,由此求出點D坐標即可.【詳解】∵A(﹣3,4),B(3,4),∴AB=3+3=1.∵四邊形ABCD為正方形,∴AD=AB=1,∴D(﹣3,10).∵2019=4×504+3,∴每4次一個循環(huán),第2019次旋轉結束時,相當于△OAB與正方形ABCD組成的圖形繞點O順時針旋轉3次,每次旋轉,剛好旋轉到如圖O的位置.∴點D的坐標為(﹣10,﹣3).故選:C.【點睛】本題考查了坐標與圖形變化-旋轉:圖形或點旋轉之后要結合旋轉的角度和圖形的特殊性質來求出旋轉后的點的坐標.常見的是旋轉特殊角度如:30°,45°,10°,90°,180°.2、B【分析】根據(jù)旋轉的性質可得AC=CD,∠CDE=∠BAC,再判斷出△ACD是等腰直角三角形,然后根據(jù)等腰直角三角形的性質求出∠CDA=45°,根據(jù)∠ADE=∠CDA﹣∠CDE,即可求解.【詳解】∵Rt△ABC繞其直角頂點C按順時針方向旋轉90°后得到Rt△DEC,∴AC=CD,∠CDE=∠BAC=26°,∴△ACD是等腰直角三角形,∴∠CDA=45°,∴∠ADE=∠CDA﹣∠CDE=45°﹣26°=19°.故選:B.【點睛】本題主要考查旋轉的性質和等腰直角三角形的判定和性質定理,掌握等腰直角三角形的性質,是解題的關鍵,3、C【分析】由拋物線的開口方向判斷a與1的關系,由拋物線與y軸的交點判斷c與1的關系,然后根據(jù)對稱軸判定b與1的關系以及2a+b=1;當x=﹣1時,y=a﹣b+c;然后由圖象確定當x取何值時,y>1.【詳解】解:①∵對稱軸在y軸右側,且拋物線與y軸交點在y軸正半軸,∴a、b異號,c>1,∴abc<1,故①正確;②∵對稱軸x=﹣=1,∴2a+b=1;故②正確;③∵2a+b=1,∴b=﹣2a,∵當x=﹣1時,y=a﹣b+c<1,∴a﹣(﹣2a)+c=3a+c<1,故③錯誤;④如圖,當﹣1<x<3時,y不只是大于1.故④錯誤.⑤根據(jù)圖示知,當m=1時,有最大值;當m≠1時,有am2+bm+c<a+b+c,所以a+b>m(am+b)(m≠1).故⑤正確.故選:C.【點睛】考核知識點:二次函數(shù)性質.理解二次函數(shù)的基本性質是關鍵.4、D【分析】利用軸對稱圖形以及中心對稱圖形的性質即可解答.【詳解】如圖所示:黑(3,1),白(3,3).故選D.【點睛】此題主要考查了旋轉變換以及軸對稱變換,正確把握圖形的性質是解題關鍵.5、D【分析】根據(jù)三角形的內接圓得到∠ABC=2∠IBC,∠ACB=2∠ICB,根據(jù)三角形的內角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度數(shù)即可;【詳解】解:∵點I是△ABC的內心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故選D.【點睛】本題主要考查了三角形的內心,掌握三角形的內心的性質是解題的關鍵.6、B【解析】先根據(jù),求出的度數(shù),再由即可得出答案.【詳解】解:∵,,∴.∵,∴.故選:B.【點睛】本題考查的是平行線的性質、垂線的性質,熟練掌握垂線的性質和平行線的性質是解決問題的關鍵.7、A【分析】本題根據(jù)一元二次方程的根的定義求解,把x=1代入方程ax2+bx+c=1得,a+b+c=1.【詳解】∵x=1是方程ax2+bx+c=1的解,∴將x=1代入方程得a+b+c=1,故選:B.【點睛】本題考查的是一元二次方程的根即方程的解的定義.解該題的關鍵是要掌握一元二次方程ax2+bx+c=1中幾個特殊值的特殊形式:x=1時,a+b+c=1;x=?1時,a?b+c=1.8、D【分析】先根據(jù)平行四邊形的性質,可得出OD、OC的長,再根據(jù)三角形三邊長關系得出m的取值范圍.【詳解】∵四邊形ABCD是平行四邊形,AC=10,BD=12∴OC=5,OD=6∴在△OCD中,OD-OC<CD<OD+OC,即1<m<11故選:D.【點睛】本題考查平行四邊形的性質和三角形三邊長關系,解題關鍵是利用平行四邊形的性質,得出OC和OD的長.9、D【分析】根據(jù)圓的對稱性、圓周角定理、垂徑定理逐項判斷即可.【詳解】解:A.圓是軸對稱圖形,它有無數(shù)條對稱軸,其對稱軸是直徑所在的直線或過圓心的直線,此命題不正確;B.平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧,此命題不正確;C.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,此命題不正確;D.同弧或等弧所對的圓周角相等,此命題正確;故選:D.【點睛】本題考查的知識點是圓的對稱性、圓周角定理以及垂徑定理,需注意的是對稱軸是一條直線并非是線段,而圓的兩條直徑互相平分但不一定垂直.10、B【分析】根據(jù)及正比例函數(shù)與反比例函數(shù)圖象的特點,可以從和兩方面分類討論得出答案.【詳解】∵,∴分兩種情況:
(1)當時,正比例函數(shù)數(shù)的圖象過原點、第一、三象限,反比例函數(shù)圖象在第二、四象限,無此選項;
(2)當時,正比例函數(shù)的圖象過原點、第二、四象限,反比例函數(shù)圖象在第一、三象限,選項B符合.
故選:B.【點睛】本題主要考查了反比例函數(shù)的圖象性質和正比例函數(shù)的圖象性質,解題的關鍵是掌握它們的性質.二、填空題(每小題3分,共24分)11、4【分析】根據(jù)比例中項的定義,列出比例式即可求解.【詳解】∵線段c是a、b的比例中項,線段a=2cm,b=8cm,∴=,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴線段c=4cm.故答案為:4【點睛】本題考查了比例中項的概念:當兩個比例內項相同時,就叫比例中項.這里注意線段不能是負數(shù).12、1【分析】根據(jù)題意,利用分類討論的方法、二次函數(shù)的性質和一次函數(shù)的性質可以求得各段對應的最小值,從而可以解答本題.【詳解】∵(x2+2x+3)﹣(﹣2x+8)=x2+4x﹣5=(x+5)(x﹣1),∴當x=﹣5或x=1時,(x2+2x+3)﹣(﹣2x+8)=0,∴當x≥1時,max{x2+2x+3,﹣2x+8}=x2+2x+3=(x+1)2+2≥1,當x≤﹣5時,max{x2+2x+3,﹣2x+8}=x2+2x+3=(x+1)2+2≥18,當﹣5<x<1時,max{x2+2x+3,﹣2x+8}=﹣2x+8>1,由上可得:max{x2+2x+3,﹣2x+8}的最小值是1.故答案為:1.【點睛】本題考查了二次函數(shù)的性質、二次函數(shù)的圖象,解答本題的關鍵是明確題意,利用二次函數(shù)的性質和分類討論的方法解答.13、2016【解析】由題意可得,,,∵,為方程的個根,∴,,∴.14、1【分析】根據(jù)題意求出△ABC的周長,根據(jù)相似三角形的性質列式計算即可.【詳解】解:設△DEF的周長別為x,△ABC的三邊長分別為4、5、6,∴△ABC的周長=4+5+6=15,∵△ABC∽△DEF,∴,解得,x=1,故答案為1.【點睛】本題考查的是相似三角形的性質,掌握相似三角形的周長比等于相似比是解題的關鍵.15、(6,).【分析】過點D作DM⊥OB,垂足為M,先根據(jù)勾股定理求出菱形的邊長,即可得到點B、D的坐標,進而可根據(jù)菱形的性質求得點A的坐標,進一步即可求出反比例函數(shù)的解析式,再利用待定系數(shù)法求出直線BC的解析式,然后解由直線BC和反比例函數(shù)的解析式組成的方程組即可求出答案.【詳解】解:過點D作DM⊥OB,垂足為M,∵D(3,4),∴OM=3,DM=4,∴OD==5,∵四邊形OBCD是菱形,∴OB=BC=CD=OD=5,∴B(5,0),C(8,4),∵A是菱形OBCD的對角線交點,∴A(4,2),代入y=,得:k=8,∴反比例函數(shù)的關系式為:y=,設直線BC的關系式為y=kx+b,將B(5,0),C(8,4)代入得:,解得:k=,b=﹣,∴直線BC的關系式為y=x﹣,將反比例函數(shù)與直線BC聯(lián)立方程組得:,解得:,(舍去),∴F(6,),故答案為:(6,).【點睛】本題考查了菱形的性質、勾股定理、待定系數(shù)法求函數(shù)的解析式以及求兩個函數(shù)的交點等知識,屬于??碱}型,正確作出輔助線、熟練掌握上述知識是解題的關鍵.16、π.【詳解】解:如圖連接OE、OF.∵CD是⊙O的切線,∴OE⊥CD,∴∠OED=90°,∵四邊形ABCD是平行四邊形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,的長=.故答案為π.考點:切線的性質;平行四邊形的性質;弧長的計算.17、1【分析】直接把點(2,5)代入反比例函數(shù)求出k的值即可.【詳解】∵點(2,5)在反比例函數(shù)的圖象上,∴5=,解得k=1.故答案為:1.【點睛】此題考查求反比例函數(shù)的解析式,利用待定系數(shù)法求函數(shù)的解析式.18、①③④【分析】根據(jù)圖象求出二次函數(shù)的解析式,根據(jù)二次函數(shù)的性質結合圖象可以判斷各個小題中的結論是否正確.【詳解】由函數(shù)圖象可知:拋物線過(-3,0),(1,0),(0,3),∴設拋物線解析式為,把(0,3)代入得:3=,解得:a=-1,∴拋物線為,即,∴二次三項式ax2+bx+c的最大值為4,故①正確,由=3,解得:x=0或x=-2,由圖像可知:使y≤3成立的x的取值范圍是x≤﹣2或x≥0,故②錯誤.∵二次三項式ax2+bx+c的最大值為4,∴當k<4時,直線y=k與拋物線有兩個交點,∴當k<4時,方程一元二次方程總有兩個不相等的實數(shù)根,故③正確,該拋物線的對稱軸是直線x=﹣1,故④正確,當x=﹣2時,y=4a﹣2b+c>0,故⑤錯誤.故答案為:①③④.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系、二次函數(shù)的最值、拋物線與x軸的交點,解答本題的關鍵是明確題意,利用二次函數(shù)的性質和數(shù)形結合的思想解答.三、解答題(共66分)19、猜想:;探究:6.【分析】猜想:如圖①,證明,利用相似比得,則,再證明,然后利用相似比即可得到;探究:過點作作,交的延長線于點,如圖②,設,則,先證明,得到,即,再證明,從而利用相似比得;應用:先利用勾股定理得,則,再證明,利用相似比得到,然后利用比例的性質計算BP的長.【詳解】解:猜想:如圖①∵是邊上的中線,∴,∵,∴,∴,∵,∴,∵,∴,∴;探究:過點作作,交的延長線于點,如圖②,設,則,∴,∴,∴,即,∵,∴,∴;應用:,,在中,,∴,∵,∴,∴,∴.故答案為,6.【點睛】本題考查了相似三角形的綜合問題,掌握平行線的性質以及判定定理、相似三角形的性質以及判定定理、勾股定理是解題的關鍵.20、(1)作圖見解析;(2)2∶1;4∶1.【詳解】(1)根據(jù)位似的性質,延長AA′、BB′、CC′,則它們的交點即為位似中心O;(2)根據(jù)位似的性質得到AB:A′B′=OA:OA′=2:1,則△ABC與△A′B′C′的相似比為2:1,然后根據(jù)相似三角形的性質得到它們面積的比.解:(1)如圖,點O為位似中心;(2)因為AB:A′B′=OA:OA′=12:6=2:1,所以△ABC與△A′B′C′的相似比為2:1,面積比為4:1.故答案為2:1;4:1.點睛:本題主要考查位似知識.利用位似的性質找出位似中心是解題的關鍵.21、(1)3.1,9.3,7.3;(2)見解析;(3)或.【分析】D(1)如圖1,當x=1.5時,點C在C處,x=2.0時,點C在C1處,此時,D'C'=DC,則,同理可求b、c;(2)依據(jù)表格數(shù)據(jù)描點即可;(3)從圖象可以得出答案.【詳解】解:如圖當x=1.5時,點C在C處,x=2.0時,點C在C1處∴D'C'=DC∴同理可得:b=9.3,c=7.3∴(允許合理的誤差存在)如圖由函數(shù)圖像可知,當時,隨增大而增大,當時,隨增大而減小;當時,的最大值為.由函數(shù)圖像可知,或【點睛】本題考查的是二次函數(shù)綜合應用,確定未知點數(shù)據(jù)、再描點、準確畫出函數(shù)圖像是解答本題的關鍵.22、(1)DE=2cm;(2)這個過程中,點E滑動的距離(18-6)cm.【解析】(1)如圖1中,作DH⊥BE于H.求出DH,BH即可解決問題.(2)解直角三角形求出BE即可解決問題.【詳解】(1)如圖1中,作DH⊥BE于H.在Rt△BDH中,∵∠DHB=90°,BD=4cm,∠ABC=30°,∴DH=BD=2(cm),BH=DH=6(cm),∵AB=CB=20cm,AE=2cm,∴EH=20-2-6=12(cm),∴DE===2(cm).(2)在Rt△BDE中,∵DE=2,BD=4,∠DBE=90°,∴BE==6(cm),∴這個過程中,點E滑動的距離(18-6)cm.【點睛】本題考查解直角三角形的應用,解題的關鍵是熟練掌握基本知識.23、(1)樣本容量為200,a=50,b=80,c=0.4,圖見解析;(2)800人【分析】(1)由“一般”的頻數(shù)及其頻率可得樣本容量,再根據(jù)頻率=頻數(shù)÷樣本容量及頻數(shù)之和等于總人數(shù)求解可得;(2)用總人數(shù)乘以樣本中“不重視”對應的頻率即可得.【詳解】(1)樣本容量為60÷0.3=200,則a=200×0.25=50,b=200﹣50﹣60﹣10=80,c=80÷200=0.4,補全條形圖如下:(2)估計該校“不重視閱讀數(shù)學教科書”的學生人數(shù)為2000×0.4=800(人).【點睛】本題主要考查了頻數(shù)分布直方表以及條形統(tǒng)計圖和利用樣本估計總體等知識.24、(1)CE=AF,見解析;(2)∠AED=135°;(3),.【解析】(1)由正方形和等腰直角三角形的性質判斷出△ADF≌△CDE即可;
(2)設DE=k,表示出AE,CE,EF,判斷出△AEF為直角三角形,即可求出∠AED;
(3)由AB∥CD,得出,求出DM,DO,再判斷出△DFN∽△DCO,得到,求出DN、DF即可.【詳解】解:(1)CE=AF,在正方形ABCD和等腰直角三角形CEF中,F(xiàn)D=DE,CD=AD,∠ADC=∠EDF=90°,∴∠ADF=∠CDE,∴△ADF≌△CDE(SAS),∴CE=AF;(2)設DE=k,∵DE:AE:CE=1::3∴AE=k,CE=AF=3k,∴EF=k,∵AE2+EF2=7k2+2k2=9k2,AF2=9k2,即AE2+EF2=AF2∴△AEF為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 兒科醫(yī)生簡短述職報告
- 中秋節(jié)的演講稿(范文15篇)
- 口才班課件教學課件
- 高等數(shù)學教程 上冊 第4版 習題及答案 P225 第9章 微分方程
- 文書模板-天然氣公司股東協(xié)議書
- 政策濫用及其對商家的影響 -2023年全球參考基準
- 高校課程課件教學課件
- 綦江區(qū)七年級上學期語文期末考試試卷
- 第二中學九年級上學期語文開學考試試卷
- 部編版小學語文三年級上冊第20課《美麗小興安嶺》讀寫練習題
- 做情緒的主人拒絕精神內耗
- 藥學大學生職業(yè)規(guī)劃
- 心理放松訓練
- 客戶需求及層次
- 海綿城市完整
- 力敏傳感器教學課件
- 強奸罪起訴狀
- 2024年廣東佛山市三水區(qū)淼城建設投資有限公司招聘筆試參考題庫附帶答案詳解
- 《排球運動》PPT課件(部級優(yōu)課)
- 高速公路綠化設計案例課件
- 初中美術九年級上冊 第8課 最親近的家具
評論
0/150
提交評論