版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第第頁(yè)第09講直線的方程【題型歸納目錄】題型一:點(diǎn)斜式直線方程題型二:斜截式直線方程題型三:兩點(diǎn)式直線方程題型四:截距式直線方程題型五:中點(diǎn)坐標(biāo)公式題型六:直線的一般式方程題型七:直線方程的綜合應(yīng)用題型八:判斷動(dòng)直線所過(guò)定點(diǎn)題型九:直線與坐標(biāo)軸形成三角形問(wèn)題題型十:直線方程的實(shí)際應(yīng)用【知識(shí)點(diǎn)梳理】知識(shí)點(diǎn)一:直線的點(diǎn)斜式方程方程SKIPIF1<0由直線上一定點(diǎn)及其斜率決定,我們把SKIPIF1<0叫做直線的點(diǎn)斜式方程,簡(jiǎn)稱點(diǎn)斜式.知識(shí)點(diǎn)詮釋:1、點(diǎn)斜式方程是由直線上一點(diǎn)和斜率確定的,點(diǎn)斜式的前提是直線的斜率存在.點(diǎn)斜式不能表示平行于y軸的直線,即斜率不存在的直線;2、當(dāng)直線的傾斜角為SKIPIF1<0時(shí),直線方程為SKIPIF1<0;3、當(dāng)直線傾斜角為SKIPIF1<0時(shí),直線沒(méi)有斜率,它的方程不能用點(diǎn)斜式表示.這時(shí)直線方程為:SKIPIF1<0.4、SKIPIF1<0表示直線去掉一個(gè)點(diǎn)SKIPIF1<0;SKIPIF1<0表示一條直線.知識(shí)點(diǎn)二:直線的斜截式方程如果直線SKIPIF1<0的斜率為SKIPIF1<0,且與SKIPIF1<0軸的交點(diǎn)為SKIPIF1<0,根據(jù)直線的點(diǎn)斜式方程可得SKIPIF1<0,即SKIPIF1<0.我們把直線SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)SKIPIF1<0的縱坐標(biāo)SKIPIF1<0叫做直線SKIPIF1<0在SKIPIF1<0軸上的截距,方程SKIPIF1<0由直線的斜率SKIPIF1<0與它在SKIPIF1<0軸上的截距SKIPIF1<0確定,所以方程SKIPIF1<0叫做直線的斜截式方程,簡(jiǎn)稱斜截式.知識(shí)點(diǎn)詮釋:1、b為直線SKIPIF1<0在y軸上截距,截距可以取一切實(shí)數(shù),即可以為正數(shù)、零、負(fù)數(shù);距離必須大于或等于零;2、斜截式方程可由過(guò)點(diǎn)SKIPIF1<0的點(diǎn)斜式方程得到;3、當(dāng)SKIPIF1<0時(shí),斜截式方程就是一次函數(shù)的表示形式.4、斜截式的前提是直線的斜率存在.斜截式不能表示平行于y軸的直線,即斜率不存在的直線.5、斜截式是點(diǎn)斜式的特殊情況,在方程SKIPIF1<0中,SKIPIF1<0是直線的斜率,SKIPIF1<0是直線在SKIPIF1<0軸上的截距.知識(shí)點(diǎn)三:直線的兩點(diǎn)式方程經(jīng)過(guò)兩點(diǎn)SKIPIF1<0(其中SKIPIF1<0)的直線方程為SKIPIF1<0,稱這個(gè)方程為直線的兩點(diǎn)式方程,簡(jiǎn)稱兩點(diǎn)式.知識(shí)點(diǎn)詮釋:1、這個(gè)方程由直線上兩點(diǎn)確定;2、當(dāng)直線沒(méi)有斜率(SKIPIF1<0)或斜率為SKIPIF1<0時(shí),不能用兩點(diǎn)式求出它的方程.3、直線方程的表示與SKIPIF1<0選擇的順序無(wú)關(guān).4、在應(yīng)用兩點(diǎn)式求直線方程時(shí),往往把分式形式SKIPIF1<0通過(guò)交叉相乘轉(zhuǎn)化為整式形式SKIPIF1<0,從而得到的方程中,包含了SKIPIF1<0或SKIPIF1<0的情況,但此轉(zhuǎn)化過(guò)程不是一個(gè)等價(jià)的轉(zhuǎn)化過(guò)程,不能因此忽略由SKIPIF1<0、SKIPIF1<0和SKIPIF1<0、SKIPIF1<0是否相等引起的討論.要避免討論,可直接假設(shè)兩點(diǎn)式的整式形式.知識(shí)點(diǎn)四:直線的截距式方程若直線SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)為SKIPIF1<0,與y軸的交點(diǎn)為SKIPIF1<0,其中SKIPIF1<0,則過(guò)AB兩點(diǎn)的直線方程為SKIPIF1<0,這個(gè)方程稱為直線的截距式方程.a(chǎn)叫做直線在x軸上的截距,b叫做直線在y軸上的截距.知識(shí)點(diǎn)詮釋:1、截距式的條件是SKIPIF1<0,即截距式方程不能表示過(guò)原點(diǎn)的直線以及不能表示與坐標(biāo)軸平行的直線.2、求直線在坐標(biāo)軸上的截距的方法:令x=0得直線在y軸上的截距;令y=0得直線在x軸上的截距.知識(shí)點(diǎn)五:直線方程幾種表達(dá)方式的選取在一般情況下,使用斜截式比較方便,這是因?yàn)樾苯厥街恍枰獌蓚€(gè)獨(dú)立變數(shù),而點(diǎn)斜式需要三個(gè)獨(dú)立變數(shù).在求直線方程時(shí),要根據(jù)給出的條件采用適當(dāng)?shù)男问剑话愕兀阎稽c(diǎn)的坐標(biāo),求過(guò)這點(diǎn)的直線,通常采用點(diǎn)斜式,再由其他條件確定斜率;已知直線的斜率,常用斜截式,再由其他條件確定在y軸上的截距;已知截距或兩點(diǎn)選擇截距式或兩點(diǎn)式.從結(jié)論上看,若求直線與坐標(biāo)軸所圍成的三角形的面積或周長(zhǎng),則選擇截距式求解較方便,但不論選用哪一種形式,都要注意各自的限制條件,以免遺漏.知識(shí)點(diǎn)六:直線方程的一般式關(guān)于x和y的一次方程都表示一條直線.我們把方程寫為SKIPIF1<0,這個(gè)方程(其中A、B不全為零)叫做直線方程的一般式.知識(shí)點(diǎn)詮釋:1、A、B不全為零才能表示一條直線,若A、B全為零則不能表示一條直線.當(dāng)SKIPIF1<0時(shí),方程可變形為SKIPIF1<0,它表示過(guò)點(diǎn)SKIPIF1<0,斜率為SKIPIF1<0的直線.當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),方程可變形為SKIPIF1<0,即SKIPIF1<0,它表示一條與SKIPIF1<0軸垂直的直線.由上可知,關(guān)于SKIPIF1<0、SKIPIF1<0的二元一次方程,它都表示一條直線.2、在平面直角坐標(biāo)系中,一個(gè)關(guān)于SKIPIF1<0、SKIPIF1<0的二元一次方程對(duì)應(yīng)著唯一的一條直線,反過(guò)來(lái),一條直線可以對(duì)應(yīng)著無(wú)數(shù)個(gè)關(guān)于SKIPIF1<0、SKIPIF1<0的一次方程.知識(shí)點(diǎn)七:直線方程的不同形式間的關(guān)系名稱方程的形式常數(shù)的幾何意義適用范圍點(diǎn)斜式SKIPIF1<0SKIPIF1<0是直線上一定點(diǎn),SKIPIF1<0是斜率不垂直于SKIPIF1<0軸斜截式SKIPIF1<0SKIPIF1<0是斜率,SKIPIF1<0是直線在y軸上的截距不垂直于SKIPIF1<0軸兩點(diǎn)式SKIPIF1<0SKIPIF1<0,SKIPIF1<0是直線上兩定點(diǎn)不垂直于SKIPIF1<0軸和SKIPIF1<0軸截距式SKIPIF1<0SKIPIF1<0是直線在x軸上的非零截距,SKIPIF1<0是直線在y軸上的非零截距不垂直于SKIPIF1<0軸和SKIPIF1<0軸,且不過(guò)原點(diǎn)一般式SKIPIF1<0SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為系數(shù)任何位置的直線直線方程的五種形式的比較如下表:知識(shí)點(diǎn)詮釋:在直線方程的各種形式中,點(diǎn)斜式與斜截式是兩種常用的直線方程形式,要注意在這兩種形式中都要求直線存在斜率,兩點(diǎn)式是點(diǎn)斜式的特例,其限制條件更多SKIPIF1<0,應(yīng)用時(shí)若采用SKIPIF1<0的形式,即可消除局限性.截距式是兩點(diǎn)式的特例,在使用截距式時(shí),首先要判斷是否滿足“直線在兩坐標(biāo)軸上的截距存在且不為零”這一條件.直線方程的一般式包含了平面上的所有直線形式.一般式?;癁樾苯厥脚c截距式.若一般式化為點(diǎn)斜式,兩點(diǎn)式,由于取點(diǎn)不同,得到的方程也不同.知識(shí)點(diǎn)八:直線方程的綜合應(yīng)用1、已知所求曲線是直線時(shí),用待定系數(shù)法求.2、據(jù)題目所給條件,選擇適當(dāng)?shù)闹本€方程的形式,求出直線方程.對(duì)于兩直線的平行與垂直,直線方程的形式不同,考慮的方向也不同.(1)從斜截式考慮已知直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;SKIPIF1<0于是與直線SKIPIF1<0平行的直線可以設(shè)為SKIPIF1<0;垂直的直線可以設(shè)為SKIPIF1<0.(2)從一般式考慮:SKIPIF1<0SKIPIF1<0SKIPIF1<0且SKIPIF1<0或SKIPIF1<0,記憶式(SKIPIF1<0)SKIPIF1<0與SKIPIF1<0重合,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0于是與直線SKIPIF1<0平行的直線可以設(shè)為SKIPIF1<0;垂直的直線可以設(shè)為SKIPIF1<0.【典例例題】題型一:點(diǎn)斜式直線方程例1.(2023·高二課時(shí)練習(xí))已知直線的方程是SKIPIF1<0,則()A.直線經(jīng)過(guò)點(diǎn)SKIPIF1<0,斜率為-1 B.直線經(jīng)過(guò)點(diǎn)SKIPIF1<0,斜率為-1C.直線經(jīng)過(guò)點(diǎn)SKIPIF1<0,斜率為-1 D.直線經(jīng)過(guò)點(diǎn)SKIPIF1<0,斜率為1【答案】C【解析】根據(jù)已知可得出直線的點(diǎn)斜式方程為SKIPIF1<0,所以,直線經(jīng)過(guò)點(diǎn)SKIPIF1<0,斜率為-1.故選:C.例2.過(guò)兩點(diǎn)SKIPIF1<0的直線方程為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】由兩點(diǎn)SKIPIF1<0,可得過(guò)兩點(diǎn)的直線的斜率為SKIPIF1<0,又由直線的點(diǎn)斜式方程,可得SKIPIF1<0,即SKIPIF1<0.故選:B.例3.過(guò)點(diǎn)SKIPIF1<0且傾斜角為150°的直線l的方程為(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】依題意,直線l的斜率SKIPIF1<0,故直線l的方程為SKIPIF1<0,即SKIPIF1<0,故選:B.例4.過(guò)點(diǎn)SKIPIF1<0且與直線SKIPIF1<0垂直的直線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】與直線SKIPIF1<0垂直的直線的斜率SKIPIF1<0,∴所求的直線方程為SKIPIF1<0,即為SKIPIF1<0,故選:SKIPIF1<0.例5.過(guò)點(diǎn)SKIPIF1<0,傾斜角為SKIPIF1<0的直線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】依題意,直線的斜率SKIPIF1<0,所以直線方程為:SKIPIF1<0,即SKIPIF1<0.故選:B題型二:斜截式直線方程例6.寫出下列直線的斜截式方程:(1)斜率是SKIPIF1<0,在SKIPIF1<0軸上的截距是SKIPIF1<0;(2)傾斜角為SKIPIF1<0,在SKIPIF1<0軸上的截距是SKIPIF1<0;(3)傾斜角為SKIPIF1<0,在SKIPIF1<0軸上的截距是SKIPIF1<0.【解析】(1)SKIPIF1<0(2)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.(3)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.例7.根據(jù)條件寫出下列直線的斜截式方程:(1)傾斜角為150°,在y軸上的截距是-2;(2)傾斜角為60°,與y軸的交點(diǎn)到坐標(biāo)原點(diǎn)的距離為3.【解析】(1)因?yàn)閮A斜角α=150°,所以斜率k=tan150°=-SKIPIF1<0,由斜截式可得直線方程為y=-SKIPIF1<0x-2.(3)因?yàn)橹本€的傾斜角為60°,所以斜率k=tan60°=SKIPIF1<0.因?yàn)橹本€與y軸的交點(diǎn)到坐標(biāo)原點(diǎn)的距離為3,所以直線在y軸上的截距b=3或b=-3,故所求直線的斜截式方程為y=SKIPIF1<0x+3或y=SKIPIF1<0x-3.例8.寫出下列直線的斜截式方程.(1)斜率是SKIPIF1<0,在y軸上的截距是SKIPIF1<0;(2)斜率是SKIPIF1<0,在y軸上的截距是4.【解析】(1)因?yàn)橹本€斜率是SKIPIF1<0,在y軸上的截距是SKIPIF1<0,所以直線的斜截式方程為SKIPIF1<0;(2)因?yàn)橹本€斜率是SKIPIF1<0,在y軸上的截距是4,所以直線的斜截式方程為SKIPIF1<0;題型三:兩點(diǎn)式直線方程例9.已知直線分別經(jīng)過(guò)下面兩點(diǎn),用兩點(diǎn)式方程求直線的方程:(1)A(3,1),B(2,-3);(2)A(2,1),B(0,-3);(3)A(0,5),B(4,0).【解析】(1)直線的兩點(diǎn)式方程為SKIPIF1<0.(2)直線的兩點(diǎn)式方程為SKIPIF1<0.(3)直線的兩點(diǎn)式方程為SKIPIF1<0.例10.在SKIPIF1<0中,已知點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.求SKIPIF1<0邊上中線所在直線的兩點(diǎn)式方程.【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以線段BC的中點(diǎn)D的坐標(biāo)為SKIPIF1<0.又BC邊上的中線經(jīng)過(guò)點(diǎn)SKIPIF1<0,所以BC邊上中線的兩點(diǎn)式方程為SKIPIF1<0.例11.求經(jīng)過(guò)下列兩點(diǎn)的直線的兩點(diǎn)式方程.(1)SKIPIF1<0,SKIPIF1<0;
(2)SKIPIF1<0,SKIPIF1<0.【解析】因?yàn)橹本€的兩點(diǎn)式方程為:SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以直線SKIPIF1<0的兩點(diǎn)式方程:SKIPIF1<0;因?yàn)镾KIPIF1<0,SKIPIF1<0,所以直線SKIPIF1<0的兩點(diǎn)式方程:SKIPIF1<0;題型四:截距式直線方程例12.已知△ABC中,A(1,﹣4),B(6,6),C(﹣2,0).求:(1)△ABC中平行于BC邊的中位線所在直線的一般式方程和截距式方程;(2)BC邊的中線所在直線的一般式方程,并化為截距式方程.【解析】(1)∵SKIPIF1<0,∴△ABC中平行于BC邊的中位線的斜率SKIPIF1<0,又線段AB的中點(diǎn)為SKIPIF1<0,∴△ABC中平行于BC邊的中位線所在直線的方程為SKIPIF1<0,化為一般式6x﹣8y﹣13=0,可得截距式:SKIPIF1<0.(2)BC邊的中點(diǎn)為D(2,3),SKIPIF1<0∴BC邊的中線所在直線的方程為y﹣3=7(x﹣2),化為一般式方程7x﹣y﹣11=0,化為截距式方程SKIPIF1<0.例13.根據(jù)下列條件求直線的截距式方程,并畫出圖形.(1)在x軸、y軸上的截距分別是2,3;(2)在x軸、y軸上的截距分別是SKIPIF1<0,6.【解析】(1)由截距式得:SKIPIF1<0.(2)由截距式得:SKIPIF1<0.題型五:中點(diǎn)坐標(biāo)公式例14.直線SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0且與SKIPIF1<0軸?SKIPIF1<0軸分別交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),若SKIPIF1<0恰為線段SKIPIF1<0的中點(diǎn),則直線SKIPIF1<0的方程為__________.【答案】SKIPIF1<0【解析】設(shè)點(diǎn)SKIPIF1<0?SKIPIF1<0,由中點(diǎn)坐標(biāo)公式得:SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,由直線SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0?SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0的方程為:SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0.例15.直線SKIPIF1<0被直線SKIPIF1<0和SKIPIF1<0所截得的線段中點(diǎn)恰為坐標(biāo)原點(diǎn),則直線l的方程為______.【答案】SKIPIF1<0【解析】設(shè)直線SKIPIF1<0與SKIPIF1<0和SKIPIF1<0,分別交于點(diǎn)SKIPIF1<0和SKIPIF1<0,因?yàn)樗氐玫木€段中點(diǎn)恰為坐標(biāo)原點(diǎn),可得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0和SKIPIF1<0,則SKIPIF1<0,可得直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0.例16.已知點(diǎn)SKIPIF1<0在SKIPIF1<0軸上,點(diǎn)SKIPIF1<0在SKIPIF1<0軸上,線段SKIPIF1<0的中點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,則線段SKIPIF1<0的長(zhǎng)度為___________.【答案】SKIPIF1<0【解析】在平面直角坐標(biāo)系中,SKIPIF1<0,則SKIPIF1<0為直角三角形,且SKIPIF1<0為斜邊,故SKIPIF1<0.故答案為:SKIPIF1<0例17.已知點(diǎn)SKIPIF1<0,SKIPIF1<0,線段PQ的中點(diǎn)為SKIPIF1<0,則直線PQ的方程為______.【答案】SKIPIF1<0【解析】因?yàn)辄c(diǎn)SKIPIF1<0,SKIPIF1<0,線段PQ的中點(diǎn)為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以直線PQ的方程為SKIPIF1<0,即SKIPIF1<0,故答案為:SKIPIF1<0.題型六:直線的一般式方程例18.若SKIPIF1<0,且SKIPIF1<0,則經(jīng)過(guò)SKIPIF1<0的直線SKIPIF1<0的一般方程為_________【答案】SKIPIF1<0【解析】若SKIPIF1<0,則點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,即SKIPIF1<0、SKIPIF1<0都在同一直線SKIPIF1<0上因?yàn)閮牲c(diǎn)確定一條直線,所以由SKIPIF1<0、SKIPIF1<0確定的直線即為SKIPIF1<0故答案為:SKIPIF1<0例19.傾斜角為SKIPIF1<0,且過(guò)點(diǎn)SKIPIF1<0的直線SKIPIF1<0的方程為__________.【答案】SKIPIF1<0/SKIPIF1<0【解析】因?yàn)橹本€SKIPIF1<0傾斜角為SKIPIF1<0,且過(guò)點(diǎn)SKIPIF1<0,所以直線SKIPIF1<0軸,故直線方程為SKIPIF1<0,故答案為:SKIPIF1<0例20.)直線l過(guò)點(diǎn)SKIPIF1<0,若l的斜率為3,則直線l的一般式方程為______.【答案】SKIPIF1<0【解析】由直線的點(diǎn)斜式可得,方程為SKIPIF1<0,化為一般式方程為SKIPIF1<0.故答案為:SKIPIF1<0例21.過(guò)點(diǎn)SKIPIF1<0的直線方程(一般式)為_____.【答案】SKIPIF1<0【解析】因?yàn)檫^(guò)點(diǎn)SKIPIF1<0的直線的斜率為SKIPIF1<0,所以直線方程為SKIPIF1<0,化為一般式為SKIPIF1<0,故答案為:SKIPIF1<0.例22.已知SKIPIF1<0的三個(gè)頂點(diǎn)坐標(biāo)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則BC邊上的中線AE所在直線的一般方程為______.【答案】SKIPIF1<0【解析】BC的中點(diǎn)坐標(biāo)為SKIPIF1<0,即SKIPIF1<0,故BC邊上的中線AE所在直線的方程為SKIPIF1<0,化為一般方程為SKIPIF1<0.故答案為:SKIPIF1<0例23.寫出過(guò)點(diǎn)SKIPIF1<0,且在兩坐標(biāo)軸上截距相等的一條直線方程__________.【答案】SKIPIF1<0或SKIPIF1<0寫出1條即可SKIPIF1<0【解析】當(dāng)直線過(guò)原點(diǎn)時(shí),方程設(shè)為SKIPIF1<0代入點(diǎn)A得:SKIPIF1<0;當(dāng)直線不過(guò)原點(diǎn)時(shí),設(shè)直線的方程為:SKIPIF1<0,把點(diǎn)SKIPIF1<0代入直線的方程可得SKIPIF1<0,則直線方程是SKIPIF1<0故答案為:SKIPIF1<0或SKIPIF1<0寫出1條即可SKIPIF1<0題型七:直線方程的綜合應(yīng)用例24.當(dāng)直線方程SKIPIF1<0的系數(shù)A,B,C滿足什么條件時(shí),該直線分別具有以下性質(zhì)?(1)過(guò)坐標(biāo)原點(diǎn);(2)與兩條坐標(biāo)軸都相交;(3)只與x軸相交;(4)是x軸所在直線;(5)設(shè)SKIPIF1<0為直線SKIPIF1<0上一點(diǎn),證明:這條直線的方程可以寫成SKIPIF1<0.【解析】(1)將SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0且SKIPIF1<0不同為SKIPIF1<0方程表示過(guò)坐標(biāo)原點(diǎn)的直線;(2)直線SKIPIF1<0與兩條坐標(biāo)軸都相交說(shuō)明橫縱截距都存在,當(dāng)SKIPIF1<0且SKIPIF1<0時(shí)直線過(guò)原點(diǎn)滿足條件,當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0時(shí)SKIPIF1<0,令SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0都不為0,綜上所述,SKIPIF1<0時(shí)直線與兩條坐標(biāo)軸都相交;(3)直線SKIPIF1<0只與x軸相交,就是與SKIPIF1<0軸平行、重合均可,因此直線方程可化成SKIPIF1<0形式,故SKIPIF1<0且SKIPIF1<0;(4)x軸的方程為SKIPIF1<0,因此方程SKIPIF1<0中SKIPIF1<0時(shí)方程表示的直線是x軸所在直線;(5)因?yàn)镾KIPIF1<0為直線SKIPIF1<0上一點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0,所以方程可化為SKIPIF1<0,即SKIPIF1<0,所以這條直線的方程可以寫成SKIPIF1<0.例25.已知SKIPIF1<0的三個(gè)頂點(diǎn)分別是A(4,0),B(6,6),C(0,2).(1)求BC邊上的高所在直線的方程;(2)求AB邊的垂直平分線所在直線的方程.【解析】(1)SKIPIF1<0邊所在的直線的斜率SKIPIF1<0,因?yàn)镾KIPIF1<0邊上的高與SKIPIF1<0垂直,所以SKIPIF1<0邊上的高所在直線的斜率為SKIPIF1<0.又SKIPIF1<0邊上的高經(jīng)過(guò)點(diǎn)SKIPIF1<0,所以SKIPIF1<0邊上的高所在的直線方程為SKIPIF1<0,即SKIPIF1<0;(2)SKIPIF1<0邊所在的直線的斜率SKIPIF1<0,所以SKIPIF1<0邊的垂直平分線的斜率為SKIPIF1<0,SKIPIF1<0邊中點(diǎn)E的坐標(biāo)是SKIPIF1<0,即SKIPIF1<0,所以AC邊的垂直平分線的方程是SKIPIF1<0即SKIPIF1<0.例26.已知SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.求:(1)SKIPIF1<0邊的中線所在直線的一般式方程,并化為截距式方程.(2)SKIPIF1<0中平行于SKIPIF1<0邊的中位線所在直線的一般式方程.【解析】(1)由題意知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0邊的中點(diǎn)為SKIPIF1<0,所以SKIPIF1<0邊上的中線所在直線的方程為SKIPIF1<0,即得其一般式方程為SKIPIF1<0,截距式方程為SKIPIF1<0.(2)平行于SKIPIF1<0邊的中位線就是SKIPIF1<0中點(diǎn)的連線.因?yàn)榫€段SKIPIF1<0中點(diǎn)坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0,所以這條直線的方程為SKIPIF1<0,整理得一般式方程為SKIPIF1<0.例27.在SKIPIF1<0中,已知點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求BC邊上中線的方程.(2)若某一直線過(guò)B點(diǎn),且x軸上截距是y軸上截距的2倍,求該直線的一般式方程.【解析】(1)BC中點(diǎn)SKIPIF1<0,即SKIPIF1<0,故BC邊上中線的方程為SKIPIF1<0,即SKIPIF1<0;(2)直線過(guò)B點(diǎn)且x軸上截距是y軸上截距的2倍,i.若直線過(guò)原點(diǎn),則直線方程為SKIPIF1<0,即SKIPIF1<0;ii.若直線不過(guò)原點(diǎn),設(shè)y軸上截距為m,則直線方程為SKIPIF1<0,代入B點(diǎn)解得SKIPIF1<0,故直線方程為SKIPIF1<0,即SKIPIF1<0;故該直線的一般式方程為SKIPIF1<0或SKIPIF1<0.例28.已知SKIPIF1<0的頂點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求過(guò)點(diǎn)SKIPIF1<0,且在兩坐標(biāo)軸上截距相等的直線的一般式方程;(2)求角SKIPIF1<0的角平分線所在直線的一般式方程.【解析】(1)由題意可知,當(dāng)所求直線經(jīng)過(guò)原點(diǎn)時(shí),所求直線方程為SKIPIF1<0,即SKIPIF1<0,當(dāng)所求直線不經(jīng)過(guò)坐標(biāo)原點(diǎn)時(shí),可設(shè)直線的方程為SKIPIF1<0,則因?yàn)樗笾本€經(jīng)過(guò)點(diǎn)SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以所求直線的方程為SKIPIF1<0,即SKIPIF1<0,綜上所述,所求直線方程為SKIPIF1<0或SKIPIF1<0.(2)由題意可知,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以角SKIPIF1<0的角平分線所在直線的傾斜角為SKIPIF1<0或SKIPIF1<0,當(dāng)角SKIPIF1<0的角平分線所在直線的傾斜角為SKIPIF1<0,其斜率為SKIPIF1<0,所以角SKIPIF1<0的角平分線所在直線方程為SKIPIF1<0,即SKIPIF1<0,當(dāng)角SKIPIF1<0的角平分線所在直線的傾斜角為SKIPIF1<0,其斜率為SKIPIF1<0,所以角SKIPIF1<0的角平分線所在直線方程為SKIPIF1<0,即SKIPIF1<0,綜上所述,所求直線方程為SKIPIF1<0或SKIPIF1<0.例29.在SKIPIF1<0中,已知頂點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求AB邊上中線的方程:(2)求過(guò)點(diǎn)B,且在x軸上的截距是在y軸上的截距的2倍的直線方程.【解析】(1)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0中點(diǎn)坐標(biāo)為SKIPIF1<0則SKIPIF1<0,故AB邊上中線的方程為SKIPIF1<0,即SKIPIF1<0(2)當(dāng)直線在SKIPIF1<0軸和SKIPIF1<0軸上的截距均為0時(shí),可設(shè)直線的方程為SKIPIF1<0,代入點(diǎn)SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以所求直線的方程為SKIPIF1<0,即SKIPIF1<0;當(dāng)直線在SKIPIF1<0軸和SKIPIF1<0軸上的截距均不為0時(shí),可設(shè)直線的方程為SKIPIF1<0,代入點(diǎn)SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以所求直線的方程為SKIPIF1<0,即SKIPIF1<0,綜上所述,該直線的一般式方程為SKIPIF1<0或SKIPIF1<0.題型八:判斷動(dòng)直線所過(guò)定點(diǎn)例30.已知實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,則直線SKIPIF1<0過(guò)定點(diǎn)_____.【答案】SKIPIF1<0【解析】由實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,可得SKIPIF1<0,代入直線方程SKIPIF1<0,可得SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,解得SKIPIF1<0,所以直線SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0.故答案為:SKIPIF1<0.例31.已知直線SKIPIF1<0,當(dāng)SKIPIF1<0變化時(shí),直線SKIPIF1<0總是經(jīng)過(guò)定點(diǎn),則定點(diǎn)坐標(biāo)為______.【答案】SKIPIF1<0【解析】因?yàn)橹本€SKIPIF1<0可化為SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以直線SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,故答案為:SKIPIF1<0.例32.無(wú)論SKIPIF1<0取何值,直線SKIPIF1<0恒過(guò)定點(diǎn)__________.【答案】SKIPIF1<0【解析】直線方程化為SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,定點(diǎn)為SKIPIF1<0,故答案為:SKIPIF1<0.例33.直線SKIPIF1<0恒過(guò)定點(diǎn)________.【答案】SKIPIF1<0【解析】依題意,直線SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以直線SKIPIF1<0恒過(guò)定點(diǎn)SKIPIF1<0.故答案為:SKIPIF1<0例34.無(wú)論SKIPIF1<0為何值,直線SKIPIF1<0必過(guò)定點(diǎn)坐標(biāo)為______【答案】SKIPIF1<0【解析】直線SKIPIF1<0可化為SKIPIF1<0,由SKIPIF1<0可得,SKIPIF1<0.所以,直線必過(guò)定點(diǎn)坐標(biāo)為SKIPIF1<0.故答案為:SKIPIF1<0.題型九:直線與坐標(biāo)軸形成三角形問(wèn)題例35.已知直線l過(guò)點(diǎn)SKIPIF1<0,且與x軸、y軸的正方向分別交于A,B兩點(diǎn),分別求滿足下列條件的直線方程:(1)SKIPIF1<0時(shí),求直線l的方程.(2)當(dāng)SKIPIF1<0的面積最小時(shí),求直線l的方程.【解析】(1)作SKIPIF1<0,則SKIPIF1<0.由三角形相似,SKIPIF1<0,可求得SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0方程為SKIPIF1<0,即SKIPIF1<0;(2)根據(jù)題意,設(shè)直線l的方程為SKIPIF1<0,由題意,知SKIPIF1<0,SKIPIF1<0,∵l過(guò)點(diǎn)SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0的面積SKIPIF1<0,化簡(jiǎn),得SKIPIF1<0.①∴SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去).∴S的最小值為4,將SKIPIF1<0代入①式,得SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0.∴直線l的方程為SKIPIF1<0.例36.)設(shè)直線l的方程為SKIPIF1<0(1)若l在兩坐標(biāo)軸上的截距相等,求直線的方程.(2)若l不經(jīng)過(guò)第二象限,求實(shí)數(shù)a的取值范圍.(3)若直線l交x軸正半軸于點(diǎn)A,交y軸負(fù)半軸于點(diǎn)B,SKIPIF1<0的面積為S,求S的最小值并求此時(shí)直線l的方程.【解析】(1)當(dāng)直線過(guò)原點(diǎn)時(shí)滿足條件,此時(shí)SKIPIF1<0,解得SKIPIF1<0,化為SKIPIF1<0.當(dāng)直線不過(guò)原點(diǎn)時(shí),則直線斜率為-1,故SKIPIF1<0,解得SKIPIF1<0,可得直線SKIPIF1<0的方程為:SKIPIF1<0.綜上所述,直線SKIPIF1<0的方程為SKIPIF1<0或SKIPIF1<0.(2)SKIPIF1<0,∵SKIPIF1<0不經(jīng)過(guò)第二象限,∴SKIPIF1<0,解得SKIPIF1<0.∴實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.(3)令SKIPIF1<0,解得SKIPIF1<0,解得SKIPIF1<0;令SKIPIF1<0,解得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.綜上有SKIPIF1<0.∴SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào).∴SKIPIF1<0(SKIPIF1<0為坐標(biāo)原點(diǎn))面積的最小值是6,此時(shí)直線方程SKIPIF1<0,即SKIPIF1<0例37.設(shè)SKIPIF1<0為實(shí)數(shù),若直線SKIPIF1<0的方程為SKIPIF1<0,根據(jù)下列條件分別確定SKIPIF1<0的值:(1)直線SKIPIF1<0的斜率為SKIPIF1<0;(2)直線SKIPIF1<0與兩坐標(biāo)軸在第二象限圍成的三角形面積為SKIPIF1<0.【解析】(1)由題意可知,直線SKIPIF1<0的斜率為SKIPIF1<0,解得SKIPIF1<0.(2)由題意可知SKIPIF1<0,在直線SKIPIF1<0的方程中,令SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0時(shí),可得SKIPIF1<0,所以,直線SKIPIF1<0分別交SKIPIF1<0、SKIPIF1<0軸于點(diǎn)SKIPIF1<0、SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0.由題意可得SKIPIF1<0,整理可得SKIPIF1<0,因?yàn)镾KIPIF1<0,解得SKIPIF1<0.例38.已知直線SKIPIF1<0的方程為:SKIPIF1<0.(1)求證:不論SKIPIF1<0為何值,直線必過(guò)定點(diǎn)SKIPIF1<0;(2)過(guò)點(diǎn)SKIPIF1<0引直線SKIPIF1<0,使它與兩坐標(biāo)軸的負(fù)半軸所圍成的三角形面積最小,求SKIPIF1<0的方程.【解析】(1)證明:原方程整理得:SKIPIF1<0.由SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0不論SKIPIF1<0為何值,直線必過(guò)定點(diǎn)SKIPIF1<0(2)設(shè)直線SKIPIF1<0的方程為SKIPIF1<0.令SKIPIF1<0令SKIPIF1<0.SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),三角形面積最?。畡tSKIPIF1<0的方程為SKIPIF1<0.例39.已知直線SKIPIF1<0.(1)若直線SKIPIF1<0不能過(guò)第三象限,求SKIPIF1<0的取值范圍;(2)若直線SKIPIF1<0交SKIPIF1<0軸負(fù)半軸于點(diǎn)SKIPIF1<0,交SKIPIF1<0軸正半軸于點(diǎn)SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點(diǎn),設(shè)SKIPIF1<0的面積為SKIPIF1<0,求SKIPIF1<0的最小值及此時(shí)直線SKIPIF1<0的方程.【解析】(1)由SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0的方程為SKIPIF1<0,此時(shí)直線SKIPIF1<0不過(guò)第三象限,合乎題意;當(dāng)SKIPIF1<0時(shí),在直線SKIPIF1<0的方程中,令SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,若直線SKIPIF1<0不過(guò)第三象限,則SKIPIF1<0,解得SKIPIF1<0.綜上所述,SKIPIF1<0.(2)由(1)可知SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0軸負(fù)半軸,SKIPIF1<0在SKIPIF1<0軸正半軸,所以,SKIPIF1<0,可得SKIPIF1<0.SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以,SKIPIF1<0的最小值為SKIPIF1<0,此時(shí)直線SKIPIF1<0的方程SKIPIF1<0.例40.已知直線l經(jīng)過(guò)點(diǎn)P(4,1),且與兩坐標(biāo)軸在第一象限圍成的三角形的面積為8,求直線l的點(diǎn)斜式方程.【解析】根據(jù)題意知直線l不垂直于x軸,其斜率存在且為負(fù)數(shù),故可設(shè)直線l的方程為SKIPIF1<0.在方程中,令SKIPIF1<0,得SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0.故直線l與兩坐標(biāo)軸交于點(diǎn)SKIPIF1<0與SKIPIF1<0.因?yàn)橹本€l與兩坐標(biāo)軸在第一象限圍成的三角形的面積為8,所以SKIPIF1<0,即:SKIPIF1<0,解得SKIPIF1<0,故直線l的點(diǎn)斜式方程為SKIPIF1<0例41.已知直線l過(guò)定點(diǎn)SKIPIF1<0,且交x軸負(fù)半軸于點(diǎn)A、交y軸正半軸于點(diǎn)B,點(diǎn)O為坐標(biāo)原點(diǎn).(1)若SKIPIF1<0的面積為4,求直線l的方程;(2)求SKIPIF1<0的最小值,并求此時(shí)直線l的方程;(3)求SKIPIF1<0的最小值,并求此時(shí)直線l的方程.【解析】(1)設(shè)直線l:SKIPIF1<0,由直線過(guò)SKIPIF1<0可得SKIPIF1<0,∴SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0.所以直線l的方程為SKIPIF1<0,即SKIPIF1<0.(2)設(shè)直線l:SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí)取等號(hào),此時(shí)直線方程SKIPIF1<0.(3)設(shè)直線l:SKIPIF1<0,∵SKIPIF1<0三點(diǎn)共線,且SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0|,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí)取等號(hào),此時(shí)直線方程SKIPIF1<0.題型十:直線方程的實(shí)際應(yīng)用例42.如圖所示,某縣相鄰兩鎮(zhèn)在同一平面直角坐標(biāo)系下的坐標(biāo)為SKIPIF1<0,一條河所在的直線方程為SKIPIF1<0,若在河邊l上建一座供水站P,使之到A,B兩鎮(zhèn)的管道最短,問(wèn)供水站P應(yīng)建在什么地方?
【解析】如圖,作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)SKIPIF1<0,連接SKIPIF1<0交l于點(diǎn)P,若點(diǎn)SKIPIF1<0(異于點(diǎn)P)在直線l上,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以供水站建在點(diǎn)P處時(shí),到A,B兩鎮(zhèn)所使用的管道最省,設(shè)SKIPIF1<0,則SKIPIF1<0的中點(diǎn)在l上,且SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,聯(lián)立方程SKIPIF1<0,解得SKIPIF1<0,所以點(diǎn)P的坐標(biāo)為SKIPIF1<0,所以供水站P應(yīng)建在點(diǎn)SKIPIF1<0處.【過(guò)關(guān)測(cè)試】一、單選題1.已知直線SKIPIF1<0和SKIPIF1<0互相垂直且都過(guò)點(diǎn)SKIPIF1<0,若SKIPIF1<0過(guò)原點(diǎn)SKIPIF1<0,則SKIPIF1<0與y軸交點(diǎn)的坐標(biāo)為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由題意得直線SKIPIF1<0的斜率SKIPIF1<0,由直線SKIPIF1<0和SKIPIF1<0互相垂直可得直線SKIPIF1<0的斜率為SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,故直線SKIPIF1<0與SKIPIF1<0軸交點(diǎn)為SKIPIF1<0.故選:B.2.經(jīng)過(guò)點(diǎn)SKIPIF1<0,且與直線SKIPIF1<0垂直的直線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】設(shè)與直線SKIPIF1<0垂直的直線方程為SKIPIF1<0,于是SKIPIF1<0,解得SKIPIF1<0,所以所求的直線方程為SKIPIF1<0.故選:A3.過(guò)點(diǎn)SKIPIF1<0且在兩坐標(biāo)軸上的截距相等的直線方程是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】D【解析】設(shè)直線在x,y軸上的截距分別為SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0,即直線過(guò)原點(diǎn),設(shè)直線為SKIPIF1<0,代入SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故直線方程為SKIPIF1<0;若SKIPIF1<0,設(shè)直線為SKIPIF1<0,代入SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故直線方程為SKIPIF1<0,即SKIPIF1<0;綜上所述:直線方程為SKIPIF1<0或SKIPIF1<0.故選:D.4.過(guò)點(diǎn)SKIPIF1<0,且與原點(diǎn)距離最遠(yuǎn)的直線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】當(dāng)直線與SKIPIF1<0垂直時(shí),此時(shí)原點(diǎn)到直線的距離最大,SKIPIF1<0,所以所求直線斜率為SKIPIF1<0,由點(diǎn)斜式可得直線方程為SKIPIF1<0,即SKIPIF
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)化道路貨物托運(yùn)協(xié)議2024版版B版
- 三方債務(wù)責(zé)任轉(zhuǎn)移具體協(xié)議示例版A版
- 2025年度不良資產(chǎn)投資并購(gòu)項(xiàng)目盡職調(diào)查與風(fēng)險(xiǎn)評(píng)估合同3篇
- 2025年度網(wǎng)約車租賃服務(wù)合同樣本3篇
- 《超市店長(zhǎng)培訓(xùn)》課件
- 手表產(chǎn)品知識(shí)培訓(xùn)課件
- 2024項(xiàng)目管理流程優(yōu)化與綠色物流體系建設(shè)合同范本3篇
- 2025年度汽車零部件研發(fā)與制造一體化合同3篇
- 中醫(yī)理論知識(shí)培訓(xùn)課件
- 2025年度跨境電商平臺(tái)入駐運(yùn)營(yíng)合同3篇
- 高一期末家長(zhǎng)會(huì)課件
- 文化藝術(shù)中心行業(yè)技術(shù)創(chuàng)新及應(yīng)用
- 2024年航空職業(yè)技能鑒定考試-航空乘務(wù)員危險(xiǎn)品歷年考試高頻考點(diǎn)試題附帶答案
- 精神病院設(shè)置可行性方案
- 2024版全文:中國(guó)2型糖尿病預(yù)防及治療指南
- 《工程地質(zhì)勘察 》課件
- 小兒腸梗阻護(hù)理查房
- 小學(xué)音樂(lè)《編花籃》
- 污水處理站管理制度及操作規(guī)程
- 廣東省(廣州市)職業(yè)技能鑒定申請(qǐng)表-模板
- 漳州市醫(yī)療保險(xiǎn)參保人員門診特殊病種申請(qǐng)表
評(píng)論
0/150
提交評(píng)論