版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.若一元二次方程kx2﹣3x﹣=0有實數(shù)根,則實數(shù)k的取值范圍是()A.k=﹣1 B.k≥﹣1且k≠0 C.k>﹣1且k≠0 D.k≤﹣1且k≠02.如圖,4×2的正方形的網(wǎng)格中,在A,B,C,D四個點中任選三個點,能夠組成等腰三角形的概率為()A.1 B. C. D.3.如圖,矩形ABCD中,AB=4,AD=8,E為BC的中點,F(xiàn)為DE上一動點,P為AF中點,連接PC,則PC的最小值是()A.4 B.8 C.2 D.44.在四邊形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,點H為垂足,設AB=x,AD=y(tǒng),則y關于x的函數(shù)關系用圖象大致可以表示為()A. B. C. D.5.若關于的一元二次方程的一個根是1,則的值為()A.-2 B.1 C.2 D.06.如圖,二次函數(shù)()的圖象交軸于點和點,交軸的負半軸于點,且,下列結論:①;②;③;④.其中正確的個數(shù)有()A.1 B.2 C.3 D.47.下列函數(shù)中,的值隨著逐漸增大而減小的是()A. B. C. D.8.某校校園內(nèi)有一個大正方形花壇,如圖甲所示,它由四個邊長為3米的小正方形組成,且每個小正方形的種植方案相同.其中的一個小正方形ABCD如圖乙所示,DG=1米,AE=AF=x米,在五邊形EFBCG區(qū)域上種植花卉,則大正方形花壇種植花卉的面積y與x的函數(shù)圖象大致是()A. B. C. D.9.一元二次方程配方后化為()A. B. C. D.10.如圖所示,在平面直角坐標系中,已知點,,,以某點為位似中心,作出的位似圖形,則位似中心的坐標為()A. B. C. D.11.如圖,在中,,于點D,,,則AD的長是()A.1. B. C.2 D.412.關于x的一元二次方程(2x-1)2+n2+1=0的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.無法判定二、填空題(每題4分,共24分)13.已知關于x的方程x2+x+m=0的一個根是2,則m=_____,另一根為_____.14.Rt△ABC中,∠C=90°,AB=10,,則BC的長為____________.15.如圖,與⊙相切于點,,,則⊙的半徑為__________.16.如圖,在四邊形ABCD中,,E、F、G分別是AB、CD、AC的中點,若,,則等于______________.17.若是方程的兩個根,則的值為________18.在函數(shù)中,自變量的取值范圍是______.三、解答題(共78分)19.(8分)在下列網(wǎng)格圖中,每個小正方形的邊長均為1個單位.Rt△ABC中,∠C=90°,AC=3,BC=4,△ABC以A為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后得到△AB1C1;(1)作出△AB1C1;(不寫畫法)(2)求點C轉(zhuǎn)過的路徑長;(3)求邊AB掃過的面積.20.(8分)為弘揚中華民族傳統(tǒng)文化,某市舉辦了中小學生“國學經(jīng)典大賽”,比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式分“單人組”和“雙人組”.(1)小華參加“單人組”,他從中隨機抽取一個比賽項目,恰好抽中“論語”的概率是多少?(2)小明和小紅組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次.則恰好小明抽中“唐詩”且小紅抽中“宋詞”的概率是多少?小明和小紅都沒有抽到“三字經(jīng)”的概率是多少?請用畫樹狀圖或列表的方法進行說明.21.(8分)近年來,“在初中數(shù)學教學候總使用計算器是否直接影響學生計算能力的發(fā)展”這一問題受到了廣泛關注,為此,某校隨機調(diào)查了n名學生對此問題的看法(看法分為三種:沒有影響,影響不大,影響很大),并將調(diào)查結果繪制成如下不完整的統(tǒng)計表和扇形統(tǒng)計圖,根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:n名學生對使用計算器影響計算能力的發(fā)展看法人數(shù)統(tǒng)計表看法
沒有影響
影響不大
影響很大
學生人數(shù)(人)
40
60
m
(1)求n的值;(2)統(tǒng)計表中的m=;(3)估計該校1800名學生中認為“影響很大”的學生人數(shù).22.(10分)如圖,已知反比例函數(shù)(k1>0)與一次函數(shù)相交于A、B兩點,AC⊥x軸于點C.若△OAC的面積為1,且tan∠AOC=2.(1)求出反比例函數(shù)與一次函數(shù)的解析式;(2)請直接寫出B點的坐標,并指出當x為何值時,反比例函數(shù)y1的值大于一次函數(shù)y2的值.23.(10分)已知二次函數(shù)y=ax2+bx+c的圖象過點A(﹣3,0),B(1,0),C(2,﹣5).(1)求此二次函數(shù)的表達式;(2)畫出這個函數(shù)的圖象;(3)△ABC的面積為.24.(10分)下面是小東設計的“過直線外一點作這條直線的平行線”的尺規(guī)作圖過程.已知:如圖1,直線l及直線l外一點A.求作:直線AD,使得AD∥l.作法:如圖2,①在直線l上任取一點B,連接AB;②以點B為圓心,AB長為半徑畫弧,交直線l于點C;③分別以點A,C為圓心,AB長為半徑畫弧,兩弧交于點D(不與點B重合);④作直線AD.所以直線AD就是所求作的直線.根據(jù)小東設計的尺規(guī)作圖過程,完成下面的證明.(說明:括號里填推理的依據(jù))證明:連接CD.∵AD=CD=__________=__________,∴四邊形ABCD是().∴AD∥l().25.(12分)如圖,已知一次函數(shù)與反比例函數(shù)的圖象相交于點,與軸相交于點.(1)填空:的值為,的值為;(2)以為邊作菱形,使點在軸正半軸上,點在第一象限,求點的坐標;26.已知,是一元二次方程的兩個實數(shù)根,且,拋物線的圖象經(jīng)過點,,如圖所示.(1)求這個拋物線的解析式;(2)設(1)中的拋物線與軸的另一個交點為,拋物線的頂點為,試求出點,的坐標,并判斷的形狀;(3)點是直線上的一個動點(點不與點和點重合),過點作軸的垂線,交拋物線于點,點在直線上,距離點為個單位長度,設點的橫坐標為,的面積為,求出與之間的函數(shù)關系式.
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)一元二次方程根的判別式△=9+9k≥0即可求出答案.【詳解】解:由題意可知:△=9+9k≥0,∴k≥﹣1,∵k≠0,∴k≥﹣1且k≠0,故選:B.【點睛】本題考查了根據(jù)一元二次方程根的情況求方程中的參數(shù),解題的關鍵是熟知一元二次方程根的判別式的應用.2、B【分析】根據(jù)題意,先列舉所有的可能結果,然后選取能組成等腰三角形的結果,根據(jù)概率公式即可求出答案.【詳解】解:根據(jù)題意,在A,B,C,D四個點中任選三個點,有:△ABC、△ABD、△ACD、△BCD,共4個三角形;其中是等腰三角形的有:△ACD、△BCD,共2個;∴能夠組成等腰三角形的概率為:;故選:B.【點睛】本題考查了列舉法求概率,等腰三角形的性質(zhì),勾股定理與網(wǎng)格問題,解題的關鍵是熟練掌握列舉法求概率,以及正確得到等腰三角形的個數(shù).3、D【分析】根據(jù)中位線定理可得出點點P的運動軌跡是線段P1P2,再根據(jù)垂線段最短可得當CP⊥P1P2時,PC取得最小值;由矩形的性質(zhì)以及已知的數(shù)據(jù)即可知CP1⊥P1P2,故CP的最小值為CP1的長,由勾股定理求解即可.【詳解】解:如圖:當點F與點D重合時,點P在P1處,AP1=DP1,當點F與點E重合時,點P在P2處,EP2=AP2,∴P1P2∥DE且P1P2=DE當點F在ED上除點D、E的位置處時,有AP=FP由中位線定理可知:P1P∥DF且P1P=DF∴點P的運動軌跡是線段P1P2,∴當CP⊥P1P2時,PC取得最小值∵矩形ABCD中,AB=4,AD=8,E為BC的中點,∴△ABE、△CDE、△DCP1為等腰直角三角形,DP1=2∴∠BAE=∠DAE=∠DP1C=45°,∠AED=90°∴∠AP2P1=90°∴∠AP1P2=45°∴∠P2P1C=90°,即CP1⊥P1P2,∴CP的最小值為CP1的長在等腰直角CDP1中,DP1=CD=4,∴CP1=4∴PB的最小值是4.故選:D.【點睛】本題考查軌跡問題、矩形的性質(zhì)等知識,解題的關鍵是學會利用特殊位置解決問題,有難度.4、D【詳解】因為DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴,∴,∴y=,∵AB<AC,∴x<4,∴圖象是D.故選D.5、C【分析】根據(jù)方程的解的定義,把x=1代入方程,即可得到關于a的方程,再求解即可.【詳解】解:根據(jù)題意得:1-3+a=0
解得:a=1.
故選C.【點睛】本題主要考查了一元二次方程的解的定義,特別需要注意的條件是二次項系數(shù)不等于0.6、D【分析】先根據(jù)圖像,判斷出a、b、c的符號,即可判斷①;先求出點C的坐標,結合已知條件即可求出點A的坐標,根據(jù)根與系數(shù)的關系即可判斷②;將點A的坐標代入解析式中,即可判斷③;將點B的坐標和代入解析式中,即可判斷④.【詳解】解:由圖像可知:拋物線的開口向上∴a>0對稱軸在y軸右側∴a、b異號,即b<0∴a-b>0拋物線與y軸交于負半軸∴c<0∴,①正確;將x=0代入中,解得y=c∴點C的坐標為(0,c)∵∴點A的坐標為(c,0)∵拋物線交軸于點和點∴x=c和x=2是方程的兩個根根據(jù)根與系數(shù)的關系:2c=解得:,故②正確;將點A的坐標代入中,可得:將等式的兩邊同時除以c,得:,故③正確;將點B的坐標和代入中,可得:解得:,故④正確.故選:D.【點睛】此題考查的是根據(jù)二次函數(shù)的圖像,判斷系數(shù)或式子的值或符號,掌握二次函數(shù)的圖像及性質(zhì)與各項系數(shù)的關系是解決此題的關鍵.7、D【分析】分別利用一次函數(shù)、正比例函數(shù)、反比例函數(shù)、二次函數(shù)的增減性分析得出答案.【詳解】A選項函數(shù)的圖象是隨著增大而增大,故本選項錯誤;B選項函數(shù)的對稱軸為,當時隨增大而減小故本選項錯誤;C選項函數(shù),當或,隨著增大而增大故本選項錯誤;D選項函數(shù)的圖象是隨著增大而減小,故本選項正確;故選D.【點睛】本題考查了三種函數(shù)的性質(zhì),了解它們的性質(zhì)是解答本題的關鍵,難度不大.8、A【解析】試題分析:S△AEF=AE×AF=,S△DEG=DG×DE=×1×(3﹣x)=,S五邊形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG==,則y=4×()=,∵AE<AD,∴x<3,綜上可得:(0<x<3).故選A.考點:動點問題的函數(shù)圖象;動點型.9、A【分析】先把常數(shù)項移到方程的右邊,再在方程兩邊同時加上一次項系數(shù)一半的平方,即可.【詳解】移項得:,方程兩邊同加上9,得:,即:,故選A.【點睛】本題主要考查解一元二次方程的配方法,熟練掌握完全平方公式,是解題的關鍵.10、C【分析】直接利用位似圖形的性質(zhì)得出位似中心.【詳解】如圖所示,點P即為位似中點,其坐標為(2,2),故答案為:(2,2).【點睛】此題主要考查了位似變換,正確掌握位似中心的定義是解題關鍵.11、D【分析】由在Rt△ABC中,∠ACB=90°,CD⊥AB,根據(jù)同角的余角相等,可得∠ACD=∠B,又由∠CDB=∠ACB=90°,可證得△ACD∽△CBD,然后利用相似三角形的對應邊成比例,即可求得答案.【詳解】∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∴△ACD∽△CBD,∴,∵CD=2,BD=1,∴,∴AD=4.故選D.【點睛】此題考查相似三角形的判定與性質(zhì),解題關鍵在于證得△ACD∽△CBD.12、C【分析】先對原方程進行變形,然后進行判定即可.【詳解】解:由原方程可以化為:(2x-1)2=-n2-1∵(2x-1)2≥0,-n2-1≤-1∴原方程沒有實數(shù)根.故答案為C.【點睛】本題考查了一元二次方程的解,解題的關鍵在于對方程的變形,而不是運用根的判別式.二、填空題(每題4分,共24分)13、;.【解析】先把x=2代入方程,易求k,再把所求k的值代入方程,可得,再利用根與系數(shù)的關系,可求出方程的另一個解:解:把x=2代入方程,得.再把代入方程,得.設次方程的另一個根是a,則2a=-6,解得a=-3.考點:1.一元二次方程的解;2.根與系數(shù)的關系.14、1【分析】由cosB==可設BC=3x,則AB=5x,根據(jù)AB=10,求得x的值,進而得出BC的值即可.【詳解】解:如圖,
∵Rt△ABC中,cosB==,
∴設BC=3x,則AB=5x=10,∴x=2,BC=1,故答案為:1.【點睛】本題考查了解直角三角形,熟練掌握三角函數(shù)的定義及勾股定理是解題的關鍵.15、【解析】與⊙相切于點,得出△ABO為直角三角形,再由勾股定理計算即可.【詳解】解:連接OB,∵與⊙相切于點,∴OB⊥AB,△ABO為直角三角形,又∵,,由勾股定理得故答案為:【點睛】本題考查了切線的性質(zhì),通過切線可得垂直,進而可應用勾股定理計算,解題的關鍵是熟知切線的性質(zhì).16、36°【分析】根據(jù)三角形中位線定理得到FG∥AD,F(xiàn)G=AD,GE∥BC,GE=BC,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算即可.【詳解】解:∵F、G分別是CD、AC的中點,∴FG∥AD,F(xiàn)G=AD,∴∠FGC=∠DAC=15°,∵E、G分別是AB、AC的中點,∴GE∥BC,GE=BC,∴∠EGC=180°-∠ACB=93°,∴∠EGF=108°,∵AD=BC,∴GF=GE,∴∠FEG=×(180°-108°)=36°;故答案為:36°.【點睛】本題考查的是三角形中位線定理、等腰三角形的性質(zhì),三角形的中位線平行于第三邊,且等于第三邊的一半.17、1【分析】先由根與系數(shù)的關系得出,然后代入即可求解.【詳解】∵是方程的兩個根∴原式=故答案為:1.【點睛】本題主要考查一元二次方程根與系數(shù)的關系,掌握一元二次方程根與系數(shù)的關系是解題的關鍵.18、【分析】根據(jù)分式有意義,分母不等于0列式計算即可得解.【詳解】由題意得,x+1≠0,解得x≠?1.故答案為x≠?1.【點睛】本題考查了函數(shù)自變量的范圍,一般從三個方面考慮:(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(1)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)非負.三、解答題(共78分)19、(1)見解析;(2)π;(3)π【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可直接進行作圖;(2)由(1)圖及旋轉(zhuǎn)的性質(zhì)可得點C的運動路徑為圓弧,其所在的圓心為A,半徑為3,然后根據(jù)弧長計算公式可求解;(3)由題意可得邊AB掃過的面積為扇形的面積,其扇形的圓心角為90°,半徑為5,然后可求解.【詳解】解:(1)如圖所示:(2)∵由已知得,CA=3,∴點C旋轉(zhuǎn)到點C1所經(jīng)過的路線長為:=π×3=π;(3)由圖可得:AB===5,∴S=π×52=π.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì)、弧長計算及扇形的面積,熟練掌握旋轉(zhuǎn)的性質(zhì)、弧長計算及扇形的面積公式是解題的關鍵.20、(2);(2)見解析.【分析】(1)直接利用概率公式求解即可;(2)先畫樹狀圖展示所有12種等可能的結果數(shù),再找出恰好小明抽中“唐詩”且小紅抽中“宋詞”的結果數(shù)及小明和小紅都沒有抽到“三字經(jīng)”的結果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1)他從中隨機抽取一個比賽項目,恰好抽中“三字經(jīng)”的概率=.(2)畫樹狀圖為:共有12種等可能的結果數(shù);所以恰好小明抽中“唐詩”且小紅抽中“宋詞”的概率=小明和小紅都沒有抽到“三字經(jīng)”的概率==【點睛】本題考查了列表法與樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.21、(1)200;(2)1;(3)900.【解析】試題分析:(1)將“沒有影響”的人數(shù)÷其占總人數(shù)百分比=總人數(shù)n即可;(2)用總人數(shù)減去“沒有影響”和“影響不大”的人數(shù)可得“影響很低”的人數(shù)m;(3)將樣本中“影響很大”的人數(shù)所占比例乘以該??側藬?shù)即可得.試題解析:(1)n=40÷20%=200(人).答:n的值為200;(2)m=200-40-60=1;(3)1800×=900(人).答:該校1800名學生中認為“影響很大”的學生人數(shù)約為900人.故答案為(2)1.考點:1.扇形統(tǒng)計圖;2.用樣本估計總體.22、(1);;(2)B點的坐標為(-2,-1);當0<x<1和x<-2時,y1>y2.【分析】(1)根據(jù)tan∠AOC==2,△OAC的面積為1,確定點A的坐標,把點A的坐標分別代入兩個解析式即可求解;(2)根據(jù)兩個解析式求得交點B的坐標,觀察圖象,得到當x為何值時,反比例函數(shù)y1的值大于一次函數(shù)y2的值.【詳解】解:(1)在Rt△OAC中,設OC=m.∵tan∠AOC==2,∴AC=2×OC=2m.∵S△OAC=×OC×AC=×m×2m=1,∴m2=1.∴m=1(負值舍去).∴A點的坐標為(1,2).把A點的坐標代入中,得k1=2.∴反比例函數(shù)的表達式為.把A點的坐標代入中,得k2+1=2,∴k2=1.∴一次函數(shù)的表達式.(2)B點的坐標為(-2,-1).當0<x<1和x<-2時,y1>y2.【點睛】本題考查反比例及一次函數(shù)的的應用;待定系數(shù)法求解析式;圖象的交點等,掌握反比例及一次函數(shù)的性質(zhì)是本題的解題關鍵.23、(1)y=﹣x2﹣2x+3;(2)答案見解析;(3)1.【分析】(1)設交點式為y=a(x+3)(x﹣1),然后把C點坐標代入求出a即可得到拋物線解析式;(2)利用配方法得到y(tǒng)=﹣(x+1)2+4,則拋物線的頂點坐標為(﹣1,4),拋物線與y軸的交點坐標為(0,3),然后利用描點法畫二次函數(shù)圖象;(3)利用三角形面積公式計算.【詳解】解:(1)設拋物線解析式為y=a(x+3)(x﹣1),把C(2,﹣5)代入得a(2+3)(2﹣1)=﹣5,解得a=﹣1,∴拋物線解析式為y=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3;(2)y=﹣x2﹣2x+3=﹣(x+1)2+4,則拋物線的頂點坐標為(﹣1,4),當x=0時,y=﹣x2﹣2x+3=3,則拋物線與y軸的交點坐標為(0,3),如圖,(3)△ABC的面積=×(1+3)×5=1.故答案為1.【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、在直角坐標系中畫二次函數(shù)圖象、以及在直角坐標系求不規(guī)則三角形的面積,解題的關鍵是求出解析式,畫出圖象.24、BC=AB,菱形(四邊相等的四邊形是菱形),菱形的對邊平行.【解析】由菱形的判定及其性質(zhì)求解可得.【詳解】證明:連接CD.∵AD=CD=BC=AB,∴四邊形ABCD是菱形(四條邊都相等的四邊形是菱形).∴AD∥l(菱形的對邊平行)【點睛】此題考查菱形的判定,掌握判定定理是解題關鍵.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 15MW農(nóng)光互補發(fā)電項目-接入系統(tǒng)設計報告
- 2024年二級造價師考試題庫4
- 第05課 網(wǎng)絡協(xié)議分層設 教學設計 2024-2025學年人教版(2024)初中信息技術七年級全一冊
- 商貿(mào)公司進貨合同范例
- 鄭州餐飲連鎖加盟合同范例
- 寫字樓商鋪招租合同范例
- 電瓶定采購合同范例
- 以店面入股合同范例
- 園林購樹合同范例
- 土地合作建設合同范例
- 2019新人教版高中化學選擇性必修一全冊重點知識點歸納總結(復習必背)
- 壓鑄崗位的安全要求
- DB43-T 140-2023 造林技術規(guī)程
- 微機原理課設(電子時鐘)
- 落實“雙減”政策全面提高教育教學質(zhì)量 論文
- 合肥工業(yè)大學-物理化學習題-第六章、相平衡合并
- 急診急救藥品用法作用一覽表
- 急性失血性休克液體復蘇專家共識
- GB/T 3917.1-2009紡織品織物撕破性能第1部分:沖擊擺錘法撕破強力的測定
- GB/T 19418-2003鋼的弧焊接頭缺陷質(zhì)量分級指南
- 高中語文文言文斷句課件
評論
0/150
提交評論