中考數(shù)學(xué)二輪培優(yōu) 模型 方法 技巧突破專題1-5 正方形基本型·母題溯源(解析版)_第1頁
中考數(shù)學(xué)二輪培優(yōu) 模型 方法 技巧突破專題1-5 正方形基本型·母題溯源(解析版)_第2頁
中考數(shù)學(xué)二輪培優(yōu) 模型 方法 技巧突破專題1-5 正方形基本型·母題溯源(解析版)_第3頁
中考數(shù)學(xué)二輪培優(yōu) 模型 方法 技巧突破專題1-5 正方形基本型·母題溯源(解析版)_第4頁
中考數(shù)學(xué)二輪培優(yōu) 模型 方法 技巧突破專題1-5 正方形基本型·母題溯源(解析版)_第5頁
已閱讀5頁,還剩47頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

【淘寶店鋪:向陽百分百】【淘寶店鋪:向陽百分百】【淘寶店鋪:向陽百分百】專題1-5正方形基本型(母題溯源)模型解讀 2【模型一】中點+折疊 2【模型二】雙中點(十字架模型拓展) 4【模型三】對角線模型 12【模型四】半角模型 12題型一中點+折疊模型 16題型二雙中點模型(十字架拓展) 202023·東營·中考真題 202203·綏化·中考真題 23題型三對角線模型 282023·攀枝花·中考真題 352023·四川宜賓·統(tǒng)考中考真題 37題型四半角模型(七個性質(zhì)) 382023·重慶·中考真題 382023·眉山·中考真題 392022達州·中考真題 41模型解讀【模型一】中點+折疊 性質(zhì)一:SKIPIF1<0;性質(zhì)二:F,G為中點;性質(zhì)三:SKIPIF1<0;性質(zhì)四:SKIPIF1<0;性質(zhì)五:SKIPIF1<0;性質(zhì)六:SKIPIF1<0性質(zhì)一證明:SKIPIF1<0性質(zhì)二證明:G是BC中點性質(zhì)三,四證明:HL全等 性質(zhì)五證明:勾股,或“12345”模型 【12345模型說明】易知SKIPIF1<0, SKIPIF1<0,故SKIPIF1<0,記SKIPIF1<0性質(zhì)六證明:12345模型【模型二】雙中點(十字架模型拓展)(1)知2推1:①M中點;②N是中點;③AM⊥DN(2)已知:M是中點,N是中點,連接CE并延長,交AD于F

①求SKIPIF1<0_________證明:EC平分∠NEM求SKIPIF1<0【解析】SKIPIF1<0證明:法一:角平分線逆定理 法二:旋轉(zhuǎn)相似(手拉手模型) 法三:四點共圓法一:角平分線定理法二:12345模型(正切和角公式)(3)已知:M,N是中點,O是中心,連接OE,①求DE:EG:GN;②證∠OEC=90°【解析】第一問【解析】第二問法一:由(2)可知∠NEC=45°,故構(gòu)造手拉手模型可得△黃≌△黃(SAS),從而可得∠NEO=45°,得證或者換個方向也可以,像這種方方正正的圖形也可以試試建系法二:四點共圓 法三:補成玄圖易知∠OEG=45° (4)已知:M,N是中點,連接BE,證BE=CD【解析】法一斜邊上的中線等于斜邊一般法二:過AD的中點P作AE垂線,交AM于Q,可得Q是AE中點,則BQ垂直平分AE,故AB=BE法三:對角互補得四點共圓,導(dǎo)角得等腰法四:勾股定理,由(2)可知DE:NE=2:3,設(shè)值求值即可(5)已知:M,N是中點,連接BE,AH⊥BE于H,交DN于K,證AK=CD【解析】法一:構(gòu)造玄圖導(dǎo)等腰法二:四點共圓法三:建系求坐標(略)【模型三】對角線模型 【模型四】半角模型 如圖,已知ABCD為正方形,∠FAE=45°,對角線BD交AE于M,交AF與N,AG⊥EF5個條件知1推4∠EAF=45°SKIPIF1<0SKIPIF1<0,AG=ABAE平分∠BEFAF平分∠DFE 【性質(zhì)【性質(zhì)一】5個條件知1推4(全等)【性質(zhì)二】SKIPIF1<0(勾股證)【性質(zhì)三】∠MGN=90°【性質(zhì)四】SKIPIF1<0;SKIPIF1<0;SKIPIF1<0(2組子母,1共享型相似)【性質(zhì)五】△ANE,△AMF,是2個隱藏的等腰直角三角形(反8字相似或四點共圓)【性質(zhì)六】△AMN∽△AFE,且相似比為SKIPIF1<0(用全等導(dǎo)角)【性質(zhì)七】SKIPIF1<0(旋轉(zhuǎn)相似)【性質(zhì)一】DF+BE=EF易證△ABE≌△AGE,易證△AGF≌△ADF【性質(zhì)二】SKIPIF1<0簡證,如圖 【性質(zhì)三】∠MGN=90°簡證,如圖:兩組全等【性質(zhì)四】SKIPIF1<0;SKIPIF1<0;SKIPIF1<0(2組子母,1共享型相似)簡證③,如圖SABCD=BN·DM(共享型相似)∠1=45°+∠2=∠BAN?△BAN∽△DMA?BN?DM=AB?AD【性質(zhì)五】△ANE,△AMF,是2個隱藏的等腰直角三角形簡證,以△ANE為例,△AMF方法相同法一:兩次相似△AMN∽△BME?SKIPIF1<0△BMA∽△EMN∠ABM=∠NEM=45°法二:ABEN四點共圓,對角互補∠ABE+∠ANE=180°或∠ABN=∠AEN【性質(zhì)六】△AMN∽△AFE,且相似比為SKIPIF1<0先證相似,易知∠1=∠2=∠3,故相似成立相似比為:SKIPIF1<0 【性質(zhì)七】SKIPIF1<0SKIPIF1<0 SKIPIF1<0題型一中點+折疊模型1.如圖,在邊長4的正方形SKIPIF1<0中,SKIPIF1<0是邊SKIPIF1<0的中點,將SKIPIF1<0沿直線SKIPIF1<0折疊后,點SKIPIF1<0落在點SKIPIF1<0處,再將其打開、展平,得折痕SKIPIF1<0.連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,延長SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0.則下列結(jié)論:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0,其中正確的有SKIPIF1<0SKIPIF1<0A.1個 B.2個 C.3個 D.4個【解答】解:SKIPIF1<0四邊形SKIPIF1<0是正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是邊SKIPIF1<0的中點,SKIPIF1<0,SKIPIF1<0將SKIPIF1<0沿直線SKIPIF1<0折疊得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0,故①正確;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故②正確;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故③錯誤;過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0(舍去),SKIPIF1<0,SKIPIF1<0,故④正確;2.如圖,正方形SKIPIF1<0中,SKIPIF1<0,點SKIPIF1<0在邊SKIPIF1<0上,SKIPIF1<0,將SKIPIF1<0沿SKIPIF1<0對折至SKIPIF1<0,延長SKIPIF1<0交邊SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,給出以下結(jié)論:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.其中所有正確結(jié)論的個數(shù)是SKIPIF1<0SKIPIF1<0A.1 B.2 C.3 D.4【解答】解:如圖,由折疊可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,故①正確;SKIPIF1<0正方形邊長是12,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由勾股定理得:SKIPIF1<0,即:SKIPIF1<0,解得:SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故②正確,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故③正確;SKIPIF1<0,SKIPIF1<0,故④正確.綜上可知正確的結(jié)論的是4個3.如圖,矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0中點,SKIPIF1<0為SKIPIF1<0上一點,將SKIPIF1<0沿SKIPIF1<0折疊后,點SKIPIF1<0恰好落到SKIPIF1<0上的點SKIPIF1<0處,則折痕SKIPIF1<0的長是SKIPIF1<0.【解答】解:如圖,連接SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0為矩形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0中點,SKIPIF1<0由翻折知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0題型二雙中點模型(十字架拓展)2023·東營·中考真題1.如圖,正方形SKIPIF1<0的邊長為4,點SKIPIF1<0,SKIPIF1<0分別在邊SKIPIF1<0,SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,連接SKIPIF1<0,分別交SKIPIF1<0,SKIPIF1<0于點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是線段SKIPIF1<0上的一個動點,過點SKIPIF1<0作SKIPIF1<0垂足為SKIPIF1<0,連接SKIPIF1<0,有下列四個結(jié)論:①SKIPIF1<0垂直平分SKIPIF1<0;②SKIPIF1<0的最小值為SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.其中正確的是(

A.①② B.②③④ C.①③④ D.①③【答案】D【詳解】解:SKIPIF1<0為正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0垂直平分SKIPIF1<0,故①正確.由①可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由①可知SKIPIF1<0,SKIPIF1<0.故③正確.SKIPIF1<0為正方形,且邊長為4,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0.由①可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.由圖可知,SKIPIF1<0和SKIPIF1<0等高,設(shè)高為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故④不正確.由①可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0關(guān)于線段SKIPIF1<0的對稱點為SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,SKIPIF1<0最小即為SKIPIF1<0,如圖所示,

由④可知SKIPIF1<0的高SKIPIF1<0即為圖中的SKIPIF1<0,SKIPIF1<0.故②不正確.綜上所述,正確的是①③2.如圖,正方形SKIPIF1<0中,點SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別為邊SKIPIF1<0、SKIPIF1<0、SKIPIF1<0上的中點,連接SKIPIF1<0、SKIPIF1<0交于點SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0,則結(jié)論①SKIPIF1<0;②SKIPIF1<0;③四邊形SKIPIF1<0是平行四邊形;④SKIPIF1<0中,正確的有SKIPIF1<0SKIPIF1<0個.A.1 B.2 C.3 D.4【答案】SKIPIF1<0【解答】解:SKIPIF1<0且SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0為平行四邊形,故③正確;SKIPIF1<0,SKIPIF1<0在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0.SKIPIF1<0點為SKIPIF1<0中點,SKIPIF1<0為SKIPIF1<0的中位線,即SKIPIF1<0為SKIPIF1<0的垂直平分線,SKIPIF1<0,SKIPIF1<0,故②錯誤;在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故①正確;SKIPIF1<0,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四點共圓,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故④錯誤.2203·綏化·中考真題3.如圖,在正方形SKIPIF1<0中,點SKIPIF1<0為邊SKIPIF1<0的中點,連接SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0.則下列結(jié)論中,正確的個數(shù)為(

)①SKIPIF1<0;②SKIPIF1<0;③當(dāng)SKIPIF1<0時,SKIPIF1<0A.0個 B.1個 C.2個 D.3個【答案】D【詳解】∵四邊形SKIPIF1<0是正方形,∴SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0即SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,故①正確;設(shè)正方形的邊長為SKIPIF1<0,∵點SKIPIF1<0為邊SKIPIF1<0的中點,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,故②正確;∵SKIPIF1<0,∴SKIPIF1<0,如圖所示,過點SKIPIF1<0分別作SKIPIF1<0的垂線,垂足分別為SKIPIF1<0,

又∵SKIPIF1<0,∴四邊形SKIPIF1<0是矩形,∵SKIPIF1<0是SKIPIF1<0的角平分線,∴SKIPIF1<0,∴四邊形SKIPIF1<0是正方形,∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0解得:SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,故④正確4.如圖,已知SKIPIF1<0,SKIPIF1<0分別為正方形SKIPIF1<0的邊SKIPIF1<0,SKIPIF1<0的中點,SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點,則下列結(jié)論:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0;⑤SKIPIF1<0.其中正確結(jié)論的是SKIPIF1<0SKIPIF1<0A.①③④ B.②④⑤ C.①③④⑤ D.①③⑤【解答】解:在正方形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0、SKIPIF1<0分別為邊SKIPIF1<0,SKIPIF1<0的中點,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故①正確;SKIPIF1<0是SKIPIF1<0的中線,SKIPIF1<0,SKIPIF1<0,故②錯誤;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故④正確;設(shè)正方形SKIPIF1<0的邊長為SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故⑤正確;如圖,過點SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)勾股定理,SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0SKIPIF1<0,根據(jù)正方形的性質(zhì),SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是直角三角形,SKIPIF1<0,故③正確;綜上所述,正確的結(jié)論有①③④⑤共4個5.如圖,在正方形SKIPIF1<0中,E、F分別在SKIPIF1<0、SKIPIF1<0邊上,且SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0相交于G點.則下列結(jié)論:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④當(dāng)E為SKIPIF1<0中點時,連接SKIPIF1<0,則SKIPIF1<0,正確的結(jié)論是.(填序號)

【答案】①②③④【分析】①由“SKIPIF1<0”可證SKIPIF1<0,可得SKIPIF1<0;②由全等三角形的性質(zhì)可得SKIPIF1<0,由面積和差關(guān)系可得SKIPIF1<0;③通過證明SKIPIF1<0,可得SKIPIF1<0,可得結(jié)論;④通過證明點D,點E,點G,點F四點共圓,可證SKIPIF1<0.【詳解】解:∵四邊形SKIPIF1<0是正方形,∴SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故①正確,∵SKIPIF1<0,∴S△BCE=S△CDF,∴SKIPIF1<0;故②正確,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;故③正確;如圖,連接SKIPIF1<0,

∵點E是SKIPIF1<0中點,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴點D,點E,點G,點F四點共圓,∴SKIPIF1<0,故④正確;綜上所述:正確的有①②③④題型三對角線模型1.如圖,在邊長為1的正方形中,動點,分別以相同的速度從,兩點同時出發(fā)向和運動(任何一個點到達即停止),連接、交于點,過點作交于點,交于點,連接,在運動過程中則下列結(jié)論:①;②;③;④;⑤線段的最小值為.其中正確的結(jié)論有A.2個 B.3個 C.4個 D.5個【解答】解:動點,的速度相同,,又,,在和中,,故①正確;,,故②正確;,,,故③正確;在和中,,,,,,,,故④正確;點在運動中保持,點的路徑是一段以為直徑的弧,如圖,設(shè)的中點為,連接交弧于點,此時的長度最小,在中,,,,即線段的最小值為,故⑤錯誤;綜上可知正確的有4個,故選:.2.如圖,正方形中,,點是對角線上的一點,連接,過點作,交于點,連接交于點,下列結(jié)論:①;②;③;④若,則,其中結(jié)論正確的個數(shù)是A.1 B.2 C.3 D.4【解答】解:如圖,連接,四邊形為正方形,,,在和中,,,,,,,,,,,,,,故①正確;,,,,,,故②正確;,,,,即,故③正確;如圖,過點作于點,,,,,,,,,,將繞點逆時針旋轉(zhuǎn)得到,連接,易證,是直角三角形,,,設(shè),則,,解得:,即,故④正確.故選:.3.如圖,正方形中,點,分別為邊,上的點,連接,,與對角線分別交于點,,連接.若,則下列判斷錯誤的是A. B. C.,分別為邊,的中點 D.【解答】解:如圖1,將繞點順時針旋轉(zhuǎn)得到,此時與重合,由旋轉(zhuǎn)可得:,,,,,,點,,在同一條直線上.,.,.即.在與中,,,,,故選項不合題意,如圖2,將繞點順時針旋轉(zhuǎn)得到,此時與重合,,,,,,,,,,,,又,,,,,,故選項不合題意;,點,點,點,點四點共圓,,,故選項不合題意,故選:.4.在正方形中,點為邊上一點且,點為對角線上一點且,連接交于點,過點作于點,連接、,若,則的面積是.【解答】解:如圖,過作于,連接,,,,,設(shè),,,則,為的中點,,四邊形是正方形,平分,,,,,故答案為:.5.如圖,正方形AFBH,點T是邊AF上一動點,M是HT的中點,MN⊥HT交AB于N,當(dāng)點T在AF上運動時,的值是否發(fā)生改變?若改變求出其變化范圍:若不改變請求出其值并給出你的證明【解析】易知NT=HN,證明∠TNH=90°即可2023·攀枝花·中考真題6.如圖,已知正方形SKIPIF1<0的邊長為3,點SKIPIF1<0是對角線SKIPIF1<0上的一點,SKIPIF1<0于點SKIPIF1<0,SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0,當(dāng)SKIPIF1<0時,則SKIPIF1<0(

A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先證四邊形SKIPIF1<0是矩形,可得SKIPIF1<0,SKIPIF1<0,由等腰直角三角形的性質(zhì)可得SKIPIF1<0,可求SKIPIF1<0,SKIPIF1<0的長,由勾股定理可求SKIPIF1<0的長,由“SKIPIF1<0”可證SKIPIF1<0,可得SKIPIF1<0.【詳解】解:如圖:

連接SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是矩形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是等腰直角三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<02023·四川宜賓·統(tǒng)考中考真題7.如圖,邊長為6的正方形中,M為對角線上的一點,連接并延長交于點P.若,則的長為()

A. B. C. D.【答案】C【詳解】解:四邊形是邊長為6的正方形,,在和中,,,,,,,又,,設(shè),則,,,解得,,,

題型四半角模型(七個性質(zhì))2023·重慶·中考真題1.如圖,在正方形SKIPIF1<0中,點SKIPIF1<0,SKIPIF1<0分別在SKIPIF1<0,SKIPIF1<0上,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0一定等于()

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】將SKIPIF1<0繞點SKIPIF1<0逆時針旋轉(zhuǎn)SKIPIF1<0至SKIPIF1<0,

∵四邊形SKIPIF1<0是正方形,∴SKIPIF1<0,SKIPIF1<0,由旋轉(zhuǎn)性質(zhì)可知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴點SKIPIF1<0三點共線,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<02023·眉山·中考真題2.如圖,在正方形SKIPIF1<0中,點E是SKIPIF1<0上一點,延長SKIPIF1<0至點F,使SKIPIF1<0,連結(jié)SKIPIF1<0,SKIPIF1<0交SKIPIF1<0于點K,過點A作SKIPIF1<0,垂足為點H,交SKIPIF1<0于點G,連結(jié)SKIPIF1<0.下列四個結(jié)論:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.其中正確結(jié)論的個數(shù)為(

A.1個 B.2個 C.3個 D.4個【答案】C【分析】根據(jù)正方形SKIPIF1<0的性質(zhì)可由SKIPIF1<0定理證SKIPIF1<0,即可判定SKIPIF1<0是等腰直角三角形,進而可得SKIPIF1<0,由直角三角形斜邊中線等于斜邊一半可得SKIPIF1<0;由此即可判斷①正確;再根據(jù)SKIPIF1<0,可判斷③正確,進而證明SKIPIF1<0,可得SKIPIF1<0,結(jié)合SKIPIF1<0,即可得出結(jié)論④正確,由SKIPIF1<0隨著SKIPIF1<0長度變化而變化,不固定,可判斷②SKIPIF1<0不一定成立.【詳解】解:∵正方形SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是等腰直角三角形,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故①正確;

又∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,即:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故③正確,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,故④正確,∵若SKIPIF1<0,則SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,而點E是SKIPIF1<0上一動點,SKIPIF1<0隨著SKIPIF1<0長度變化而變化,不固定,而SKIPIF1<0,則故SKIPIF1<0不一定成立,故②錯誤;綜上,正確的有①③④共3個3.如圖,在正方形SKIPIF1<0中,點SKIPIF1<0,SKIPIF1<0分別在SKIPIF1<0,SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0相交于點SKIPIF1<0.下列結(jié)論:①SKIPIF1<0垂直平分SKIPIF1<0;②SKIPIF1<0;③當(dāng)SKIPIF1<0時,SKIPIF1<0為等邊三角形;④當(dāng)SKIPIF1<0時,SKIPIF1<0.其中正確的結(jié)論是SKIPIF1<0SKIPIF1<0A.①③ B.②④ C.①③④ D.②③④【解答】解:SKIPIF1<0四邊形SKIPIF1<0是正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0垂直平分SKIPIF1<0,故①正確;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0垂直平分SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0平分SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,故②錯誤;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0是等邊三角形,故③正確;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是等邊三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故④錯誤.2022達州·中考真題4.如圖,在邊長為2的正方形SKIPIF1<0中,點E,F(xiàn)分別為SKIPIF1<0,SKIPIF1<0邊上的動點(不與端點重合),連接SKIPIF1<0,SKIPIF1<0,分別交對角線SKIPIF1<0于點P,Q.點E,F(xiàn)在運動過程中,始終保持SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.以下結(jié)論:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0為等腰直角三角形;⑤若過點B作SKIPIF1<0,垂足為H,連接SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0.其中所有正確結(jié)論的序號是.【答案】①②④⑤【分析】連接BD,延長DA到M,使AM=CF,連接BM,根據(jù)正方形的性質(zhì)及線段垂直平分線的性質(zhì)定理即可判斷①正確;通過證明SKIPIF1<0,SKIPIF1<0,可證明②正確;作SKIPIF1<0,交AC的延長線于K,在BK上截取BN=BP,連接CN,通過證明SKIPIF1<0,可判斷③錯誤;通過證明SKIPIF1<0,SKIPIF1<0,利用相似三角形的性質(zhì)即可證明④正確;當(dāng)點B、H、D三點共線時,DH的值最小,分別求解即可判斷⑤正確.【詳解】如圖1,連接BD,延長DA到M,使AM=CF,連接BM,SKIPIF1<0四邊形ABCD是正方形,SKIPIF1<0垂直平分BD,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故①正確;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故②正確;如圖2,作SKIPIF1<0,交AC的延長線于K,在BK上截取BN=BP,連接CN,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,故③錯誤;如圖1,SKIPIF1<0四邊形ABCD是正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0為等腰直角三角形,故④正確;如圖1,當(dāng)點B、H、D三點共線時,DH的值最小,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故⑤正確5.如圖,點SKIPIF1<0、SKIPIF1<0分別是正方形SKIPIF1<0的邊SKIPIF1<0、SKIPIF1<0上的兩個動點,在運動過程中保持SKIPIF1<0,SKIPIF1<0、SKIPIF1<0分別與對角線SKIPIF1<0交于點SKIPIF1<0、SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0相交于點SKIPIF1<0,以下結(jié)論:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0,一定成立的是.

【答案】①②③【分析】由旋轉(zhuǎn)的性質(zhì)可得SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,由SKIPIF1<0可證SKIPIF1<0SKIPIF1<0SKIPIF1<0,可得SKIPIF1<0SKIPIF1<0,可得SKIPIF1<0,故①正確;由SKIPIF1<0可證SKIPIF1<0SKIPIF1<0,可得SKIPIF1<0SKIPIF1<0SKIPIF1<0,由勾股定理可得SKIPIF1<0;故②正確;通過證明SKIPIF1<0,可得SKIPIF1<0,可證SKIPIF1<0,故③正確;通過證明點SKIPIF1<0,點SKIPIF1<0,點SKIPIF1<0,點SKIPIF1<0四點共圓,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可證SKIPIF1<0SKIPIF1<0SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,故④錯誤,即可求解.【詳解】解:將SKIPIF1<0繞點SKIPIF1<0逆時針旋轉(zhuǎn)SKIPIF1<0,得到SKIPIF1<0SKIPIF1<0,將SKIPIF1<0繞點SKIPIF1<0順時針旋轉(zhuǎn)SKIPIF1<0,得到SKIPIF1<0SKIPIF1<0,

SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0'SKIPIF1<0,SKIPIF1<0點SKIPIF1<0在直線SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0(SKIPIF1<0),SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0;故①正確;SKIPIF1<0將SKIPIF1<0繞點SKIPIF1<0順時針旋轉(zhuǎn)SKIPIF1<0,得到SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論