2023屆湖北省咸寧咸安區(qū)六校聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第1頁
2023屆湖北省咸寧咸安區(qū)六校聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第2頁
2023屆湖北省咸寧咸安區(qū)六校聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第3頁
2023屆湖北省咸寧咸安區(qū)六校聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第4頁
2023屆湖北省咸寧咸安區(qū)六校聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.已知,是一元二次方程的兩個實數(shù)根,下列結(jié)論錯誤的是()A. B. C. D.2.已知是單位向量,且,那么下列說法錯誤的是()A.∥ B.||=2 C.||=﹣2|| D.=﹣3.如圖,邊長都為4的正方形ABCD和正三角形EFG如圖放置,AB與EF在一條直線上,點A與點F重合.現(xiàn)將△EFG沿AB方向以每秒1個單位的速度勻速運動,當(dāng)點F與B重合時停止.在這個運動過程中,正方形ABCD和△EFG重疊部分的面積S與運動時間t的函數(shù)圖象大致是()A. B. C. D.4.已知△ABC與△DEF相似且對應(yīng)周長的比為4:9,則△ABC與△DEF的面積比為A.2:3 B.16:81C.9:4 D.4:95.正五邊形內(nèi)接于圓,連接分別與交于點,,連接若,下列結(jié)論:①②③四邊形是菱形④;其中正確的個數(shù)為()A.個 B.個 C.個 D.個6.由于受豬瘟的影響,今年9月份豬肉的價格兩次大幅上漲,瘦肉價格由原來每千克元,連續(xù)兩次上漲后,售價上升到每千克元,則下列方程中正確的是()A. B.C. D.7.如圖所示,拋物線的頂點為,與軸的交點在點和之間,以下結(jié)論:①;②;③;④.其中正確的是()A.①② B.③④ C.②③ D.①③8.已知:如圖,矩形ABCD中,AB=2cm,AD=3cm.點P和點Q同時從點A出發(fā),點P以3cm/s的速度沿A→D方向運動到點D為止,點Q以2cm/s的速度沿A→B→C→D方向運動到點D為止,則△APQ的面積S(cm2)與運動時間t(s)之間函數(shù)關(guān)系的大致圖象是()A. B.C. D.9.下列命題中,①直徑是圓中最長的弦;②長度相等的兩條弧是等弧;③半徑相等的兩個圓是等圓;④半徑不是弧,半圓包括它所對的直徑,其中正確的個數(shù)是()A. B. C. D.10.如圖,AB是⊙O的直徑,點C,D在直徑AB一側(cè)的圓上(異于A,B兩點),點E在直徑AB另一側(cè)的圓上,若∠E=42°,∠A=60°,則∠B=()A.62° B.70° C.72° D.74°11.如圖①,在矩形中,,對角線相交于點,動點由點出發(fā),沿向點運動.設(shè)點的運動路程為,的面積為,與的函數(shù)關(guān)系圖象如圖②所示,則邊的長為().A.3 B.4 C.5 D.612.有人預(yù)測2020年東京奧運會上中國女排奪冠的概率是80%,對這個說法正確的理解應(yīng)該是().A.中國女排一定會奪冠 B.中國女排一定不會奪冠C.中國女排奪冠的可能性比較大 D.中國女排奪冠的可能性比較小二、填空題(每題4分,共24分)13.若m+n=3,則2m2+4mn+2n2-6的值為________.14.形狀與拋物線相同,對稱軸是直線,且過點的拋物線的解析式是________.15.分解因式:2x2﹣8=_____________16.如圖把沿邊平移到的位置,它們的重疊部分(即圖中陰影部分)的面積是面積的三分之一,若,則點平移的距離是__________17.拋物線y=3(x+2)2+5的頂點坐標(biāo)是_____.18.已知⊙O的半徑為,圓心O到直線L的距離為,則直線L與⊙O的位置關(guān)系是___________.三、解答題(共78分)19.(8分)如圖,四邊形ABCD是矩形,E為CD邊上一點,且AE、BE分別平分∠DAB、∠ABC.(1)求證:△ADE≌△BCE;(2)已知AD=3,求矩形的另一邊AB的值.20.(8分)在一個不透明的盒子里裝有三個標(biāo)記為1,2,3的小球(材質(zhì)、形狀、大小等完全相同),甲先從中隨機取出一個小球,記下數(shù)字為后放回,同樣的乙也從中隨機取出一個小球,記下數(shù)字為,這樣確定了點的坐標(biāo).(1)請用列表或畫樹狀圖的方法寫出點所有可能的坐標(biāo);(2)求點在函數(shù)的圖象上的概率.21.(8分)解方程:(1)x2+4x﹣5=0(2)x(2x+3)=4x+622.(10分)小晗家客廳裝有一種三位單極開關(guān),分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小晗按下任意一個開關(guān)均可打開對應(yīng)的一盞電燈,既可三盞、兩盞齊開,也可分別單盞開.因剛搬進新房不久,不熟悉情況.(1)若小晗任意按下一個開關(guān),正好樓梯燈亮的概率是多少?(2)若任意按下一個開關(guān)后,再按下另兩個開關(guān)中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖或列表法加以說明.23.(10分)小王去年開了一家微店,今年1月份開始盈利,2月份盈利2400元,4月份盈利達到3456元,且從2月份到4月份,每月盈利的平均增長率相同,試求每月盈利的平均增長率.24.(10分)如圖,直線y=﹣x+1與x軸,y軸分別交于A,B兩點,拋物線y=ax2+bx+c過點B,并且頂點D的坐標(biāo)為(﹣2,﹣1).(1)求該拋物線的解析式;(2)若拋物線與直線AB的另一個交點為F,點C是線段BF的中點,過點C作BF的垂線交拋物線于點P,Q,求線段PQ的長度;(3)在(2)的條件下,點M是直線AB上一點,點N是線段PQ的中點,若PQ=2MN,直接寫出點M的坐標(biāo).25.(12分)如圖,四邊形ABCD的三個頂點A、B、D在⊙O上,BC經(jīng)過圓心O,且交⊙O于點E,∠A=120°,∠C=30°.(1)求證:CD是⊙O的切線.(2)若CD=6,求BC的長.(3)若⊙O的半徑為4,則四邊形ABCD的最大面積為.26.學(xué)了一元二次方程的根與系數(shù)的關(guān)系后,小亮興奮地說:“若設(shè)一元二次方程的兩個根為,由根與系數(shù)的關(guān)系有,,由此就能快速求出,,···的值了.比如設(shè)是方程的兩個根,則,,得.小亮的說法對嗎?簡要說明理由;寫一個你最喜歡的元二次方程,并求出兩根的平方和;已知是關(guān)于的方程的一個根,求方程的另一個根與的值.

參考答案一、選擇題(每題4分,共48分)1、C【分析】由題意根據(jù)解一元二次方程的概念和根與系數(shù)的關(guān)系對選項逐次判斷即可.【詳解】解:∵△=22-4×1×0=4>0,∴,選項A不符合題意;∵是一元二次方程的實數(shù)根,∴,選項B不符合題意;∵,是一元二次方程的兩個實數(shù)根,∴,,選項D不符合題意,選項C符合題意.故選:C.【點睛】本題考查解一元二次方程和根與系數(shù)的關(guān)系,能熟記根與系數(shù)的關(guān)系的內(nèi)容是解此題的關(guān)鍵.2、C【詳解】解:∵是單位向量,且,,∴,,,,故C選項錯誤,故選C.3、C【解析】根據(jù)題意和函數(shù)圖象可以寫出各段對應(yīng)的函數(shù)解析式,從而可以判斷哪個選項中的圖象符合題意,本題得以解決.【詳解】解:當(dāng)時,,即S與t是二次函數(shù)關(guān)系,有最小值,開口向上,當(dāng)時,,即S與t是二次函數(shù)關(guān)系,開口向下,由上可得,選項C符合題意,故選:C.【點睛】考查動點問題的函數(shù)過圖象,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.4、B【解析】直接根據(jù)相似三角形周長的比等于相似比,面積比等于相似比的平方解答.【詳解】解:∵△ABC與△DEF相似且對應(yīng)周長的比為4:9,∴△ABC與△DEF的相似比為4:9,∴△ABC與△DEF的面積比為16:81.故選B【點睛】本題考查的是相似三角形的性質(zhì),即相似三角形周長的比等于相似比,面積的比等于相似比的平方.5、B【分析】①先根據(jù)正五方形ABCDE的性質(zhì)求得∠ABC,由等邊對等角可求得:∠BAC=∠ACB=36°,再利用角相等求BC=CF=CD,求得∠CDF=∠CFD,即可求得答案;②證明△ABF∽△ACB,得,代入可得BF的長;③先證明CF∥DE且,證明四邊形CDEF是平行四邊形,再由證得答案;④根據(jù)平行四邊形的面積公式可得:,即可求得答案.【詳解】①∵五方形ABCDE是正五邊形,,

∴,

∴,

∴,

同理得:,

∵,,

∴,

∵,∴,∴,則,

∴,

∵,

∴,

∴,

∴;

所以①正確;②∵∠ABE=∠ACB=36°,∠BAF=∠CAB,

∴△ABF∽△ACB,

∴,∵,∴,∵,∴,∴,解得:(負(fù)值已舍);所以②正確;③∵,,

∴,

∴CF∥DE,

∵,

∴四邊形CDEF是平行四邊形,∵,∴四邊形CDEF是菱形,所以③正確;④如圖,過D作DM⊥EG于M,

同①的方法可得,,

∴,,∴,所以④錯誤;綜上,①②③正確,共3個,故選:B【點睛】本題考查了相似三角形的判定和性質(zhì),勾股定理,圓內(nèi)接正五邊形的性質(zhì)、平行四邊形和菱形的判定和性質(zhì),有難度,熟練掌握圓內(nèi)接正五邊形的性質(zhì)是解題的關(guān)鍵.6、A【分析】增長率問題,一般用增長后的量=增長前的量×(1+增長率),先表示出第一次提價后商品的售價,再根據(jù)題意表示第二次提價后的售價,然后根據(jù)已知條件得到關(guān)于a%的方程.【詳解】解:當(dāng)豬肉第一次提價時,其售價為;當(dāng)豬肉第二次提價后,其售價為故選:.【點睛】本題考查了求平均變化率的方法.若設(shè)變化前的量為a,變化后的量為b,平均變化率為x,則經(jīng)過兩次變化后的數(shù)量關(guān)系為a(1±x)2=b.7、B【分析】根據(jù)二次函數(shù)的圖象可逐項判斷求解即可.【詳解】解:拋物線與x軸有兩個交點,

∴△>0,

∴b2?4ac>0,故①錯誤;

由于對稱軸為x=?1,

∴x=?3與x=1關(guān)于x=?1對稱,

∵x=?3,y<0,

∴x=1時,y=a+b+c<0,故②錯誤;

∵對稱軸為x=?=?1,

∴2a?b=0,故③正確;

∵頂點為B(?1,3),

∴y=a?b+c=3,

∴y=a?2a+c=3,

即c?a=3,故④正確,

故選B.【點睛】本題考查拋物線的圖象與性質(zhì),解題的關(guān)鍵是熟練運用拋物線的圖象與性質(zhì),本題屬于中等題型.8、C【分析】研究兩個動點到矩形各頂點時的時間,分段討論求出函數(shù)解析式即可求解.【詳解】解:分三種情況討論:(1)當(dāng)0≤t≤1時,點P在AD邊上,點Q在AB邊上,∴S=,∴此時拋物線經(jīng)過坐標(biāo)原點并且開口向上;(1)當(dāng)1<t≤1.5時,點P與點D重合,點Q在BC邊上,∴S==2,∴此時,函數(shù)值不變,函數(shù)圖象為平行于t軸的線段;(2)當(dāng)1.5<t≤2.5時,點P與點D重合,點Q在CD邊上,∴S=×2×(7﹣1t))=﹣t+.∴函數(shù)圖象是一條線段且S隨t的增大而減?。蔬x:C.【點睛】本題考查了二次函數(shù)與幾何問題,用分類討論的數(shù)學(xué)思想解題是關(guān)鍵,解答時注意研究動點到達臨界點時的時間以此作為分段的標(biāo)準(zhǔn),逐一分析求解.9、C【分析】根據(jù)弦、弧、等弧的定義即可求解.【詳解】解:①直徑是圓中最長的弦,真命題;

②在等圓或同圓中,長度相等的兩條弧是等弧,假命題;

③半徑相等的兩個圓是等圓,真命題;④半徑是圓心與圓上一點之間的線段,不是弧,半圓包括它所對的直徑,真命題.

故選:C.【點睛】本題考查了圓的認(rèn)識:掌握與圓有關(guān)的概念(弦、直徑、半徑、弧、半圓、優(yōu)弧、劣弧、等圓、等弧等).10、C【分析】連接AC.根據(jù)圓周角定理求出∠CAB即可解決問題.【詳解】解:連接AC.∵∠DAB=60°,∠DAC=∠E=42°,∴∠CAB=60°﹣42°=18°,∵AB是直徑,∴∠ACB=90°,∴∠B=90°﹣18°=72°,故選:C.【點睛】本題主要考察圓周角定理,解題關(guān)鍵是連接AC.利用圓周角定理求出∠CAB.11、B【分析】當(dāng)點在上運動時,面積逐漸增大,當(dāng)點到達點時,結(jié)合圖象可得面積最大為1,得到與的積為12;當(dāng)點在上運動時,面積逐漸減小,當(dāng)點到達點時,面積為0,此時結(jié)合圖象可知點運動路徑長為7,得到與的和為7,構(gòu)造關(guān)于的一元二方程可求解.【詳解】解:當(dāng)點在上運動時,面積逐漸增大,當(dāng)點到達點時,面積最大為1.∴,即.當(dāng)點在上運動時,面積逐漸減小,當(dāng)點到達點時,面積為0,此時結(jié)合圖象可知點運動路徑長為7,∴.則,代入,得,解得或1,因為,即,所以.故選B.【點睛】本題主要考查動點問題的函數(shù)圖象,解題的關(guān)鍵是分析三角形面積隨動點運動的變化過程,找到分界點極值,結(jié)合圖象得到相關(guān)線段的具體數(shù)值.12、C【分析】概率越接近1,事件發(fā)生的可能性越大,概率越接近0,則事件發(fā)生的可能性越小,根據(jù)概率的意義即可得出答案.【詳解】∵中國女排奪冠的概率是80%,∴中國女排奪冠的可能性比較大故選C.【點睛】本題考查隨機事件發(fā)生的可能性,解題的關(guān)鍵是掌握概率的意義.二、填空題(每題4分,共24分)13、1【解析】原式=2(m2+2mn+n2)-6,=2(m+n)2-6,=2×9-6,=1.14、或.【分析】先從已知入手:由與拋物線形狀相同則相同,且經(jīng)過點,即把代入得,再根據(jù)對稱軸為可求出,即可寫出二次函數(shù)的解析式.【詳解】解:設(shè)所求的二次函數(shù)的解析式為:,與拋物線形狀相同,,,又∵圖象過點,∴,∵對稱軸是直線,∴,∴當(dāng)時,,當(dāng)時,,所求的二次函數(shù)的解析式為:或.【點睛】本題考查了利用待定系數(shù)法求二次函數(shù)的解析式和二次函數(shù)的系數(shù)和圖象之間的關(guān)系.解答時注意拋物線形狀相同時要分兩種情況:①開口向下,②開口向上;即相等.15、2(x+2)(x﹣2)【分析】先提公因式,再運用平方差公式.【詳解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【點睛】考核知識點:因式分解.掌握基本方法是關(guān)鍵.16、【分析】根據(jù)題意可知△ABC與陰影部分為相似三角形,且面積比為三分之一,所以可以求出,進而可求答案.【詳解】∵把沿邊平移到∴∴∴∵,∴∴∴即點C平移的距離是故答案為.【點睛】本題考查的是相似三角形的性質(zhì)與判定,能夠知道相似三角形的面積比是相似比的平方是解題的關(guān)鍵.17、(﹣2,5)【分析】已知拋物線的頂點式,可直接寫出頂點坐標(biāo).【詳解】解:由y=3(x+2)2+5,根據(jù)頂點式的坐標(biāo)特點可知,頂點坐標(biāo)為(﹣2,5).故答案為:(﹣2,5).【點睛】本題考查二次函數(shù)的性質(zhì),熟知二次函數(shù)的頂點式是解題的關(guān)鍵,即在y=a(x-h)2+k中,頂點坐標(biāo)為(h,k),對稱軸為x=h.18、相交【分析】先根據(jù)題意判斷出直線與圓的位置關(guān)系即可得出結(jié)論.【詳解】∵⊙O的半徑為6cm,圓心O到直線l的距離為5cm,6cm>5cm,∴直線l與⊙O相交,故答案為:相交.【點睛】本題考查的是直線與圓的位置關(guān)系,熟知設(shè)⊙O的半徑為r,圓心O到直線l的距離為d,當(dāng)d<r時,直線與圓相交是解答此題的關(guān)鍵.三、解答題(共78分)19、(1)證明見解析;(2)AB=1.【分析】(1)根據(jù)矩形的性質(zhì),即可得到∠D=∠C,AD=BC,∠DAE=∠CBE=45°,進而得出△ADE≌△BCE;(2)依據(jù)△ADE是等腰直角三角形,即可得到DE的長,再根據(jù)全等三角形的性質(zhì)以及矩形的性質(zhì),即可得到AB的長.【詳解】解:(1)∵四邊形ABCD是矩形,∴∠D=∠C=∠BAD=∠ABC=90°,AD=BC,又∵AE、BE分別平分∠DAB、∠ABC,∴∴∠DAE=∠CBE=45°,∴△ADE≌△BCE(ASA);(2)∵∠DAE=45°,∠D=90°,∴∠DAE=∠AED=45°,∴AD=DE=3,又∵△ADE≌△BCE,∴DE=CE=3,∴AB=CD=1.【點睛】本題考查了全等三角形的判定和性質(zhì),矩形的性質(zhì),全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時,關(guān)鍵是選擇恰當(dāng)?shù)呐卸l件.20、(1)見解析;(2).【分析】(1)根據(jù)列表分與樹形圖法即可寫出結(jié)果;

(2)把所有P點坐標(biāo)代入函數(shù)解析式中即可求解.【詳解】(1)樹狀圖如下:

由樹狀圖得,點P所有可能的坐標(biāo)為:

(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3);(2)把代入函數(shù)解析式,得,把代入函數(shù)解析式,得,把代入函數(shù)解析式,得,9個點中有(1,2)、(2,1)、(3,2)共3個點在該函數(shù)的圖象上,所以.所以點在函數(shù)的圖象上的概率為.【點睛】本題考查了表格法與樹形圖法求概率、二次函數(shù)圖象上點的坐標(biāo)特征,解決本題的關(guān)鍵是正確列出表格或畫出樹形圖.21、(1)x1=-5,x2=1;(2)x1=-1.5,x2=2【分析】(1)根據(jù)因式分解法即可求解;(2)根據(jù)因式分解法即可求解.【詳解】解:(1)x2+4x-5=0因式分解得,(x+5)(x-1)=0則,x+5=0或者x-1=0∴x1=-5,x2=1(2)x(2x+3)=4x+6提公因式得,x(2x+3)=2(2x+3)移項得,x(2x+3)-2(2x+3)=0則,(2x+3)(x-2)=0∴2x+3=0或者x-2=0∴x1=-1.5,x2=2.【點睛】此題主要考查一元二次方程的求解,解題的關(guān)鍵是熟知因式分解法解方程.22、(1);(2).【解析】試題分析:(1)、3個等只有一個控制樓梯,則概率就是1÷3;(2)、根據(jù)題意畫出樹狀圖,然后根據(jù)概率的計算法則得出概率.試題解析:(1)、小晗任意按下一個開關(guān),正好樓梯燈亮的概率是:(2)、畫樹狀圖得:結(jié)果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6種等可能的結(jié)果,正好客廳燈和走廊燈同時亮的有2種情況,∴正好客廳燈和走廊燈同時亮的概率是=.考點:概率的計算.23、【分析】設(shè)該商店的每月盈利的平均增長率為x,根據(jù)“2月份盈利2400元,4月份盈利達到3456元,且從2月份到4月份,每月盈利的平均增長率相同”,列出關(guān)于x的一元二次方程,解之即可.【詳解】設(shè)該商店的每月盈利的平均增長率為x,根據(jù)題意得:2400(1+x)2=3456,解得:x1=0.2,x2=?2.2(舍去),答:每月盈利的平均增長率為20%.【點睛】本題考查了一元二次方程的應(yīng)用,正確找出等量關(guān)系,列出一元二次方程是解題的關(guān)鍵.24、(1)y=x2+2x+1;(2)5;(3)M(,﹣)或(﹣,)【分析】(1)先求出點B坐標(biāo),再將點D,B代入拋物線的頂點式即可;(2)如圖1,過點C作CH⊥y軸于點H,先求出點F的坐標(biāo),點C的坐標(biāo),再求出直線CM的解析式,最后可求出兩個交點及交點間的距離;(3)設(shè)M(m,﹣m+1),如圖2,取PQ的中點N,連接MN,證點P,M,Q同在以PQ為直徑的圓上,所以∠PMQ=90°,利用勾股定理即可求出點M的坐標(biāo).【詳解】解:(1)在y=﹣x+1中,當(dāng)x=0時,y=1,∴B(0,1),∵拋物線y=ax2+bx+c過點B,并且頂點D的坐標(biāo)為(﹣2,﹣1),∴可設(shè)拋物線解析式為y=a(x+2)2﹣1,將點B(0,1)代入,得,a=,∴拋物線的解析式為:y=(x+2)2﹣1=x2+2x+1;(2)聯(lián)立,解得,或,∴F(﹣5,),∵點C是BF的中點,∴xC==﹣,yC==,∴C(﹣,),如圖1,過點C作CH⊥y軸于點H,則∠HCB+∠CBH=90°,又∵∠MCH+∠HCB=90°,∴∠CBH=∠MCH,又∠CHB=∠MHC=90°,∴△CHB∽△MHC,∴=,即=,解得,HM=5,∴OM=OH+MH=+5=,∴M(0,),設(shè)直線CM的解析式為y=kx+,將C(﹣,)代入,得,k=2,∴yCM=2x+,聯(lián)立2x+=x2+2x+1,解得,x1=,x2=﹣,∴P(,5+),Q

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論