2023屆江蘇省揚州市江都區(qū)江都實驗中學數(shù)學九年級第一學期期末質量檢測模擬試題含解析_第1頁
2023屆江蘇省揚州市江都區(qū)江都實驗中學數(shù)學九年級第一學期期末質量檢測模擬試題含解析_第2頁
2023屆江蘇省揚州市江都區(qū)江都實驗中學數(shù)學九年級第一學期期末質量檢測模擬試題含解析_第3頁
2023屆江蘇省揚州市江都區(qū)江都實驗中學數(shù)學九年級第一學期期末質量檢測模擬試題含解析_第4頁
2023屆江蘇省揚州市江都區(qū)江都實驗中學數(shù)學九年級第一學期期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.在一個不透明的袋子里裝有兩個黃球和一個白球,它們除顏色外都相同,隨機從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,再隨機摸出一個球.兩次都摸到黃球的概率是()A. B. C. D.2.已知點是線段的黃金分割點,且,,則長是()A. B. C. D.3.一個密閉不透明的盒子里有若干個白球,在不許將球倒出來數(shù)的情況下,為了估計白球數(shù),小剛向其中放入了8個黑球,攪勻后從中隨意摸出一個球記下顏色,再把它放回盒中,不斷重復這一過程,共摸球400次,其中80次摸到黑球,你估計盒中大約有白球(

)A.32個 B.36個 C.40個 D.42個4.如圖,一人站在兩等高的路燈之間走動,為人在路燈照射下的影子,為人在路燈照射下的影子.當人從點走向點時兩段影子之和的變化趨勢是()A.先變長后變短 B.先變短后變長C.不變 D.先變短后變長再變短5.已知拋物線與軸沒有交點,那么該拋物線的頂點所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.下列方程中,是一元二次方程的是()A.2x+y=1 B.x2+3xy=6 C.x+=4 D.x2=3x﹣27.張華同學的身高為米,某一時刻他在陽光下的影長為米,同時與他鄰近的一棵樹的影長為米,則這棵樹的高為()A.米 B.米 C.米 D.米8.已知函數(shù)是的圖像過點,則的值為()A.-2 B.3 C.-6 D.69.下列一元二次方程中,沒有實數(shù)根的是().A. B.C. D.10.如圖,在平面直角坐標系中,若反比例函數(shù)過點,則的值為()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,是一個立體圖形的三種視圖,則這個立體圖形的體積為______.12.如圖,已知△ABC,D,E分別在AB,AC邊上,且DE∥BC,AD=2,DB=3,△ADE面積是4,則四邊形DBCE的面積是_____.13.如圖,轉盤中個扇形的面積都相等.任意轉動轉盤次,當轉盤停止轉動時,指針落在陰影部分的概率為________.14.如圖,角α的兩邊與雙曲線y=(k<0,x<0)交于A、B兩點,在OB上取點C,作CD⊥y軸于點D,分別交雙曲線y=、射線OA于點E、F,若OA=2AF,OC=2CB,則的值為______.15.方程ax2+x+1=0有兩個不等的實數(shù)根,則a的取值范圍是________.16.如果將拋物線向上平移,使它經(jīng)過點,那么所得新拋物線的表達式是_______________.17.如圖,正方形內接于,正方形的邊長為,若在這個圓面上隨意拋一粒豆子,則豆子落在正方形內的概率是_____________.18.設,,,設,則S=________________(用含有n的代數(shù)式表示,其中n為正整數(shù)).三、解答題(共66分)19.(10分)問題呈現(xiàn):如圖1,在邊長為1小的正方形網(wǎng)格中,連接格點A、B和C、D,AB和CD相交于點P,求tan∠CPB的值方法歸納:求一個銳角的三角函數(shù)值,我們往往需要找出(或構造出)一個直角三角形,觀察發(fā)現(xiàn)問題中∠CPB不在直角三角形中,我們常常利用網(wǎng)格畫平行線等方法解決此類問題,比如連接格點B、E,可得BE∥CD,則∠ABE=∠CPB,連接AE,那么∠CPB就變換到Rt△ABE中.問題解決:(1)直接寫出圖1中tanCPB的值為______;(2)如圖2,在邊長為1的正方形網(wǎng)格中,AB與CD相交于點P,求cosCPB的值.20.(6分)如圖,已知AD?AC=AB?AE.求證:△ADE∽△ABC.21.(6分)解一元二次方程:x2﹣2x﹣3=1.22.(8分)如圖,中,頂點的坐標是,軸,交軸于點,頂點的縱坐標是,的面積是.反比例函數(shù)的圖象經(jīng)過點和,求反比例函數(shù)的表達式.23.(8分)如圖,在Rt△ABC中,∠C=90°,AC=8,BC=6,P為邊BC上一個動點(可以包括點C但不包括點B),以P為圓心PB為半徑作⊙P交AB于點D過點D作⊙P的切線交邊AC于點E,(1)求證:AE=DE;(2)若PB=2,求AE的長;(3)在P點的運動過程中,請直接寫出線段AE長度的取值范圍.24.(8分)為了了解全校名同學對學校設置的體操、籃球、足球、跑步、舞蹈等課外活動項目的喜愛情況,在全校范圍內隨機抽取了若干名同學,對他們喜愛的項目(每人選一項)進行了問卷調查,將數(shù)據(jù)進行了統(tǒng)計,并繪制成了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整),請回答下列問題.(1)在這次問卷調查中,共抽查了_________名同學;(2)補全條形統(tǒng)計圖;(3)估計該校名同學中喜愛足球活動的人數(shù);(4)在體操社團活動中,由于甲、乙、丙、丁四人平時的表現(xiàn)優(yōu)秀,現(xiàn)決定從這四人中任選兩名參加體操大賽.用樹狀圖或列表法求恰好選中甲、乙兩位同學的概率.25.(10分)如圖,在平面直角坐標系中,拋物線y=ax2+bx+c交x軸于A、B兩點,OA=1,OB=3,拋物線的頂點坐標為D(1,4).(1)求A、B兩點的坐標;(2)求拋物線的表達式;(3)過點D做直線DE//y軸,交x軸于點E,點P是拋物線上A、D兩點間的一個動點(點P不于A、D兩點重合),PA、PB與直線DE分別交于點G、F,當點P運動時,EF+EG的值是否變化,如不變,試求出該值;若變化,請說明理由。26.(10分)解方程組:.

參考答案一、選擇題(每小題3分,共30分)1、A【解析】首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結果與兩次都摸到黃球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【詳解】畫樹狀圖如下:由樹狀圖可知,共有9種等可能結果,其中兩次都摸到黃球的有4種結果,∴兩次都摸到黃球的概率為,故選A.【點睛】此題考查的是用列表法或樹狀圖法求概率的知識.注意畫樹狀圖與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.2、C【分析】利用黃金分割比的定義即可求解.【詳解】由黃金分割比的定義可知∴故選C【點睛】本題主要考查黃金分割比,掌握黃金分割比是解題的關鍵.3、A【分析】可根據(jù)“黑球數(shù)量÷黑白球總數(shù)=黑球所占比例”來列等量關系式,其中“黑白球總數(shù)=黑球個數(shù)+白球個數(shù)“,“黑球所占比例=隨機摸到的黑球次數(shù)÷總共摸球的次數(shù)”【詳解】設盒子里有白球x個,

根據(jù)得:解得:x=1.

經(jīng)檢驗得x=1是方程的解.

答:盒中大約有白球1個.

故選;A.【點睛】此題主要考查了利用頻率估計概率,解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系列出方程,再求解,注意分式方程要驗根.4、C【分析】連接DF,由題意易得四邊形CDFE為矩形.由DF∥GH,可得.又AB∥CD,得出,設=a,DF=b(a,b為常數(shù)),可得出,從而可以得出,結合可將DH用含a,b的式子表示出來,最后得出結果.【詳解】解:連接DF,已知CD=EF,CD⊥EG,EF⊥EG,∴四邊形CDFE為矩形.∴DF∥GH,∴又AB∥CD,∴.設=a,DF=b,∴,∴∴∴GH=,∵a,b的長是定值不變,∴當人從點走向點時兩段影子之和不變.故選:C.【點睛】本題考查了相似三角形的應用:利用桿或直尺測量物體的高度就是利用桿或直尺的高(長)作為三角形的邊,利用視點和盲區(qū)的知識構建相似三角形,用相似三角形對應邊的比相等的性質求物體的高度.5、D【分析】根據(jù)題目信息可知當y=0時,,此時,可以求出a的取值范圍,從而可以確定拋物線頂點坐標的符號,繼而可以確定頂點所在的象限.【詳解】解:∵拋物線與軸沒有交點,∴時無實數(shù)根;即,,解得,,又∵的頂點的橫坐標為:;縱坐標為:;故拋物線的頂點在第四象限.故答案為:D.【點睛】本題考查的知識點是拋物線與坐標軸的交點問題,解題的關鍵是根據(jù)拋物線與x軸無交點得出時無實數(shù)根,再利用根的判別式求解a的取值范圍.6、D【分析】利用一元二次方程的定義判斷即可.【詳解】解:A、原方程為二元一次方程,不符合題意;B、原式方程為二元二次方程,不符合題意;C、原式為分式方程,不符合題意;D、原式為一元二次方程,符合題意,故選:D.【點睛】此題主要考查一元二次方程的識別,解題的關鍵是熟知一元二次方程的定義.7、A【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體、影子、經(jīng)過物體頂部的太陽光線三者構成的兩個直角三角形相似.【詳解】解:據(jù)相同時刻的物高與影長成比例,

設這棵樹的高度為xm,

則可列比例為,,解得,x=3.1.

故選:A.【點睛】本題主要考查同一時刻物高和影長成正比,考查利用所學知識解決實際問題的能力.8、C【解析】直接根據(jù)反比例函數(shù)圖象上點的坐標特征求解.【詳解】∵反比例函數(shù)的圖象經(jīng)過點(-2,3),∴k=-2×3=-1.故選:C.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.9、D【分析】分別計算出每個方程的判別式即可判斷.【詳解】A、∵△=4-4×1×0=4>0,∴方程有兩個不相等的實數(shù)根,故本選項不符合題意;B、∵△=16-4×1×(-1)=20>0,∴方程有兩個不相等的實數(shù)根,故本選項不符合題意;C、∵△=25-4×3×2=1>0,∴方程有兩個不相等的實數(shù)根,故本選項不符合題意;D、∵△=16-4×2×3=-8<0,∴方程沒有實數(shù)根,故本選項正確;故選:D.【點睛】本題考查了根的判別式,一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.10、C【解析】把代入求解即可.【詳解】反比例函數(shù)過點,,故選:.【點睛】本題考查反比例函數(shù)圖象上的點的特征,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.二、填空題(每小題3分,共24分)11、【分析】根據(jù)該立體圖形的三視圖可判斷該立體圖形為圓柱,且底面直徑為8,高為8,根據(jù)圓柱的體積公式即可得答案.【詳解】∵該立體圖形的三視圖為兩個正方形和一個圓,∴該立體圖形為圓柱,且底面直徑為8,高為8,∴這個立體圖形的體積為×42×8=128,故答案為:128【點睛】本題考查由三視圖判斷幾何體;利用該幾何體的三視圖得到該幾何體底面半徑、高是解題的關鍵.12、1【分析】證明△ADE∽△ABC,根據(jù)相似三角形的面積比等于相似比的平方計算即可.【詳解】∵DE∥BC,∴△ADE∽△ABC,∴,即,解得,S△ABC=25,∴四邊形DBCE的面積=25﹣4=1,故答案為:1.【點睛】考查的是相似三角形的判定和性質,掌握相似三角形的面積比等于相似比的平方是解題的關鍵.13、【分析】根據(jù)古典概型的概率的求法,求指針落在陰影部分的概率.【詳解】一般地,如果在一次試驗中,有種可能的結果,并且它們發(fā)生的可能性都相等,事件包含其中的中結果,那么事件發(fā)生的概率為.圖中,因為6個扇形的面積都相等,陰影部分的有3個扇形,所以指針落在陰影部分的概率是.【點睛】本題考查古典概型的概率的求法.14、【解析】過C,B,A,F(xiàn)分別作CM⊥x軸,BN⊥x軸,AG⊥x軸,F(xiàn)H⊥x軸,設DO為2a,分別求出C,E,F(xiàn)的坐標,即可求出的值.【詳解】如圖:過C,B,A,F(xiàn)分別作CM⊥x軸,BN⊥x軸,AG⊥x軸,F(xiàn)H⊥x軸,設DO為2a,則E(,2a),∵BN∥CM,∴△OCM∽△OBN,∴=,∴BN=3a,∴B(,3a),∴直線OB的解析式y(tǒng)=x,∴C(,2a),∵FH∥AG,∴△OAG∽△OFH,∴,∵FH=OD=2a,∴AG=a,∴A(,a),∴直線OA的解析式y(tǒng)=x,∴F(,2a),∴==,故答案為:【點睛】本題考查反比例函數(shù)圖象上點的特征,相似三角形的判定,關鍵是能靈活運用相似三角形的判定方法.15、且a≠0【解析】∵方程有兩個不等的實數(shù)根,∴,解得且.16、【解析】試題解析:設平移后的拋物線解析式為y=x2+2x-1+b,把A(0,1)代入,得1=-1+b,解得b=4,則該函數(shù)解析式為y=x2+2x+1.考點:二次函數(shù)圖象與幾何變換.17、【分析】在這個圓面上隨意拋一粒豆子,落在圓內每一個地方是均等的,因此計算出正方形和圓的面積,利用幾何概率的計算方法解答即可.【詳解】解:因為正方形的邊長為2cm,則對角線的長為cm,所以⊙O的半徑為cm,直徑為2cm,⊙O的面積為2πcm2;正方形的面積為4cm2因為豆子落在圓內每一個地方是均等的,所以P(豆子落在正方形ABCD內)=.故答案為:.【點睛】此題主要考查幾何概率的意義:一般地,如果試驗的基本事件為n,隨機事件A所包含的基本事件數(shù)為m,我們就用來描述事件A出現(xiàn)的可能性大小,稱它為事件A的概率,記作P(A),即有

P(A)=.18、【分析】先根據(jù)題目中提供的三個式子,分別計算的值,用含n的式子表示其規(guī)律,再計算S的值即可.【詳解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案為:【點睛】本題為規(guī)律探究問題,難度較大,根據(jù)提供的式子發(fā)現(xiàn)規(guī)律,并表示規(guī)律是解題的關鍵,同時要注意對于式子的理解.三、解答題(共66分)19、(1)2;(2)【分析】(1)根據(jù)平行四邊形的判定及平行線的性質得到∠CPB=∠ABE,利用勾股定理求出AE,BE,AB,證明△ABE是直角三角形,∠AEB=90°,即可求出tanCPB=tanABE;(2)如圖2中,取格點D,連接CD,DM.通過平行四邊形及平行線的性質得到∠CPB=∠MCD,利用勾股定理的逆定理證明△CDM是直角三角形,且∠CDM=90°,即可得到cos∠CPB=cos∠MCD.【詳解】解:(1)連接格點B、E,∵BC∥DE,BC=DE,∴四邊形BCDE是平行四邊形,∴DC∥BE,∴∠CPB=∠ABE,∵AE=,BE=,AB=,∴△ABE是直角三角形,∠AEB=90°,∴tan∠CPB=tan∠ABE=,故答案為:2;(2)如圖2所示,取格點M,連接CM,DM,∵CB∥AM,CB=AM,∴四邊形ABCM是平行四邊形,∴CM∥AB,∴∠CPB=∠MCD,∵CM=,CD=,MD=,,∴△CDM是直角三角形,且∠CDM=90°,∴cos∠CPB=cos∠MCD=.【點睛】本題考查三角形綜合題、平行線的性質、勾股定理及勾股定理逆定理、直角三角形的判定和性質等知識,解題的關鍵是學會利用數(shù)形結合的思想解決問題,學會用轉化的思想思考問題.20、證明見解析.【分析】由AD?AC=AE?AB,可得,從而根據(jù)“兩邊對應成比例并且夾角相等的兩個三角形相似”可證明結論成立.【詳解】試題分析:證明:∵AD?AC=AE?AB,∴=在△ABC與△ADE中∵=,∠A=∠A,∴△ABC∽△ADE21、x1=﹣1,x2=2.【分析】先把方程左邊分解,原方程轉化為x+1=1或x﹣2=1,然后解一次方程即可.【詳解】解:∵x2﹣2x﹣2=1,∴(x+1)(x﹣2)=1,∴x+1=1或x﹣2=1,∴x1=﹣1,x2=2.【點睛】本題考查了一元二次方程的解法:配方法、公式法和因式分解法.三種方法均可解出方程的根,這里選用的是因式分解法.22、.【解析】根據(jù)題意得出AE=6,結合平行四邊形的面積得出AD=BC=4,繼而知點D坐標,從而得出反比例函數(shù)解析式;【詳解】解:頂點的坐標是,頂點的縱坐標是,,又的面積是,,則,反比例函數(shù)解析式為.【點睛】本題主要考查待定系數(shù)法求反比例函數(shù)解析式,解題的關鍵是掌握平行四邊形的面積公式及待定系數(shù)法求反比例函數(shù)的能力.23、(1)詳見解析;(3)AE=;(3)≤AE<.【解析】(1)首先得出∠ADE+∠PDB=90°,進而得出∠B+∠A=90°,利用PD=PB得∠EDA=∠A進而得出答案;(3)利用勾股定理得出ED3+PD3=EC3+CP3=PE3,求出AE即可;(3)分別根據(jù)當D(P)點在B點時以及當P與C重合時,求出AE的長,進而得出AE的取值范圍.【詳解】(1)證明:如圖1,連接PD.∵DE切⊙O于D.∴PD⊥DE.∴∠ADE+∠PDB=90°.∵∠C=90°.∴∠B+∠A=90°.∵PD=PB.∴∠PDB=∠B.∴∠A=∠ADE.∴AE=DE;(3)解:如圖1,連接PE,設DE=AE=x,則EC=8-x,∵PB=PD=3,BC=1.∴PC=3.∵∠PDE=∠C=90°,∴ED3+PD3=EC3+CP3=PE3.∴x3+33=(8-x)3+33.解得x=.∴AE=;(3)解:如圖3,當P點在B點時,此時點D也在B點,∵AE=ED,設AE=ED=x,則EC=8-x,∴EC3+BC3=BE3,∴(8-x)3+13=x3,解得:x=,如圖3,當P與C重合時,∵AE=ED,設AE=ED=x,則EC=8-x,∴EC3=DC3+DE3,∴(8-x)3=13+x3,解得:x=,∵P為邊BC上一個動點(可以包括點C但不包括點B),∴線段AE長度的取值范圍為:≤AE<.【點睛】本題主要考查圓的綜合應用、切線的性質與判定以及勾股定理等知識,利用數(shù)形結合以及分類討論的思想得出是解題關鍵.24、(1)50;(2)見解析;(3)1020名;(4)樹狀圖見解析,【分析】(1)根據(jù)兩種統(tǒng)計圖可知喜歡跑步的有5名同學,占10%,即可求得總人數(shù);

(2)由(1)

可求得喜歡足球的人數(shù),繼而補全條形統(tǒng)計圖;

(3)利用樣本估計總體的方法,求得答案;

(4)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論