福建省莆田市擢英中學2025屆九上數學期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
福建省莆田市擢英中學2025屆九上數學期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
福建省莆田市擢英中學2025屆九上數學期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
福建省莆田市擢英中學2025屆九上數學期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
福建省莆田市擢英中學2025屆九上數學期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省莆田市擢英中學2025屆九上數學期末質量跟蹤監(jiān)視模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.若關于的一元二次方程的兩個實數根是和3,那么對二次函數的圖像和性質的描述錯誤的是()A.頂點坐標為(1,4) B.函數有最大值4 C.對稱軸為直線 D.開口向上2.如圖,小明利用測角儀和旗桿的拉繩測量學校旗桿的高度.如圖,旗桿PA的高度與拉繩PB的長度相等.小明將PB拉到PB′的位置,測得∠PB′C=α(B′C為水平線),測角儀B′D的高度為1m,則旗桿PA的高度為()A.m B.m C.m D.m3.邊長相等的正方形與正六邊形按如圖方式拼接在一起,則的度數為()A. B. C. D.4.,是的兩條切線,,為切點,直線交于,兩點,交于點,為的直徑,下列結論中不正確的是()A. B. C. D.5.一元二次方程的解是()A.x1=2,x2=-2 B.x=-2 C.x=2 D.x1=2,x2=06.下列事件中,是必然事件的是()A.拋擲一枚硬幣正面向上 B.從一副完整撲克牌中任抽一張,恰好抽到紅桃C.今天太陽從西邊升起 D.從4件紅衣服和2件黑衣服中任抽3件有紅衣服7.下列方程有兩個相等的實數根是()A.x﹣x+3=0 B.x﹣3x+2=0 C.x﹣2x+1=0 D.x﹣4=08.在﹣3、﹣2、﹣1、0、1、2這六個數中,任取兩個數,恰好和為﹣1的概率為()A. B. C. D.9.如圖,在平面直角坐標中,正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,點A,B,E在x軸上.若正方形ABCD的邊長為2,則點F坐標為()A.(8,6) B.(9,6) C. D.(10,6)10.如圖:矩形的對角線、相較于點,,,若,則四邊形的周長為()A. B. C. D.二、填空題(每小題3分,共24分)11.拋物線y=﹣x2+2x﹣5與y軸的交點坐標為_____.12.若關于的一元二次方程的一個根是,則的值是_________.13.張華在網上經營一家禮品店,春節(jié)期間準備推出四套禮品進行促銷,其中禮品甲45元/套,禮品乙50元/套,禮品丙70元/套,禮品丁80元/套,如果顧客一次購買禮品的總價達到100元,顧客就少付x元,每筆訂單顧客網上支付成功后,張華會得到支付款的80%.①當x=5時,顧客一次購買禮品甲和禮品丁各1套,需要支付_________元;②在促銷活動中,為保證張華每筆訂單得到的金額均不低于促銷前總價的六折,則x的最大值為________.14.如圖,直線交軸于點B,交軸于點C,以BC為邊的正方形ABCD的頂點A(-1,a)在雙曲線上,D點在雙曲線上,則的值為_______.15.如圖,點是矩形中邊上一點,將沿折疊為,點落在邊上,若,,則________.16.如圖是甲、乙兩人同一地點出發(fā)后,路程隨時間變化的圖象.(1)甲的速度______乙的速度.(大于、等于、小于)(2)甲乙二人在______時相遇;(3)路程為150千米時,甲行駛了______小時,乙行駛了______小時.17.已知二次函數的圖象如圖所示,則下列四個代數式:①,②,③;④中,其值小于的有___________(填序號).18.如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條直角邊DE=40cm,EF=20cm,測得邊DF離地面的高度AC=1.5m,CD=8m,則樹高AB=▲.三、解答題(共66分)19.(10分)如圖,某城建部門計劃在新修的城市廣場的一塊長方形空地上修建一個面積為1200m2的停車場,將停車場四周余下的空地修建成同樣寬的通道,已知長方形空地的長為50m,寬為40m.(1)求通道的寬度;(2)某公司希望用80萬元的承包金額承攬修建廣場的工程,城建部門認為金額太高需要降價,通過兩次協(xié)商,最終以51.2萬元達成一致,若兩次降價的百分率相同,求每次降價的百分率.20.(6分)同學張豐用一張長18cm、寬12cm矩形紙片折出一個菱形,他沿矩形的對角線AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四邊形AECF(如圖).(1)證明:四邊形AECF是菱形;(2)求菱形AECF的面積.21.(6分)在Rt△ABC中,∠ACB=90°,AC=1,記∠ABC=α,點D為射線BC上的動點,連接AD,將射線DA繞點D順時針旋轉α角后得到射線DE,過點A作AD的垂線,與射線DE交于點P,點B關于點D的對稱點為Q,連接PQ.(1)當△ABD為等邊三角形時,①依題意補全圖1;②PQ的長為;(2)如圖2,當α=45°,且BD=時,求證:PD=PQ;(3)設BC=t,當PD=PQ時,直接寫出BD的長.(用含t的代數式表示)22.(8分)已知關于x的一元二次方程mx2-2x+1=0.(1)若方程有兩個實數根,求m的取值范圍;(2)若方程的兩個實數根為x1,x2,且x1x2-x1-x2=,求m的值.23.(8分)已知:在平面直角坐標系中,的三個頂點的坐標分別為,,.(1)畫出關于原點成中心對稱的,并寫出點的坐標;(2)畫出將繞點按順時針旋轉所得的.24.(8分)已知關于x的一元二次方程mx2+2mx+m﹣4=0;(1)若該方程沒有實數根,求m的取值范圍.(2)怎樣平移函數y=mx2+2mx+m﹣4的圖象,可以得到函數y=mx2的圖象?25.(10分)如圖,已知△ABC中,AB=BC,以AB為直徑的⊙O交AC于點D,過D作DE⊥BC,垂足為E,連結OE,CD=,∠ACB=30°.(1)求證:DE是⊙O的切線;(2)分別求AB,OE的長.26.(10分)如圖,是的直徑,切于點,交于點,平分,連接.(1)求證:;(2)若,,求的半徑.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】由題意根據根與系數的關系得到a<0,根據二次函數的性質即可得到二次函數y=a(x-1)2+1的開口向下,對稱軸為直線x=1,頂點坐標為(1,1),當x=1時,函數有最大值1.【詳解】解:∵關于x的一元二次方程的兩個實數根是-1和3,∴-a=-1+3=2,∴a=-2<0,∴二次函數的開口向下,對稱軸為直線x=1,頂點坐標為(1,1),當x=1時,函數有最大值1,故A、B、C敘述正確,D錯誤,故選:D.【點睛】本題考查二次函數的性質,根據一元二次方程根與系數的關系以及根據二次函數的性質進行分析是解題的關鍵.2、A【解析】設PA=PB=PB′=x,在RT△PCB′中,根據sinα=,列出方程即可解決問題.【詳解】設PA=PB=PB′=x,在RT△PCB′中,sinα=,∴=sinα,∴x-1=xsinα,∴(1-sinα)x=1,∴x=.故選A.【點睛】本題考查解直角三角形、三角函數等知識,解題的關鍵是設未知數列方程,屬于中考常考題型.3、B【解析】利用多邊形的內角和定理求出正方形與正六邊形的內角和,進而求出每一個內角,根據等腰三角形性質,即可確定出所求角的度數.【詳解】正方形的內角和為360°,每一個內角為90°;

正六邊形的內角和為720°,每一個內角為120°,

則=360°-120°-90°=150°,因為AB=AC,所以==15°

故選B【點睛】此題考查了多邊形內角和外角,等腰三角形性質,熟練掌握多邊形的內角和定理是解本題的關鍵.4、B【解析】根據切線的性質和切線長定理得到PA=PB,∠APE=∠BPE,,易證△PAE≌△PBE,得到E為AB中點,根據垂徑定理得;通過互余的角的運算可得.【詳解】解:∵,是的兩條切線,∴,∠APE=∠BPE,故A選項正確,在△PAE和△PBE中,,∴△PAE≌△PBE(SAS),∴AE=BE,即E為AB的中點,∴,即,故C選項正確,∴∵為切點,∴,則,∴∠PAE=∠AOP,又∵,∴∠PAE=∠ABP,∴,故D選項正確,故選B.【點睛】本題主要考查了切線長定理、全等三角形的判定和性質、垂徑定理的推論及互余的角的運算,熟練掌握這些知識點的運用是解題的關鍵.5、A【分析】首先將原方程移項可得,據此進一步利用直接開平方法求解即可.【詳解】原方程移項可得:,解得:,,故選:A.【點睛】本題主要考查了直接開平方法解一元二次方程,熟練掌握相關方法是解題關鍵.6、D【分析】必然事件是指在一定條件下一定會發(fā)生的事件,根據事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】解:A、拋擲一枚硬幣正面向上,是隨機事件,故本選項錯誤;

B、從一副完整撲克牌中任抽一張,恰好抽到紅桃,是隨機事件.故本選項錯誤;

C、今天太陽從西邊升起,是不可能事件,故本選項錯誤;

D、從4件紅衣服和2件黑衣服中任抽3件有紅衣服,是必然事件,故本選項正確.

故選:D.【點睛】本題考查了事件發(fā)生的可能性,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.7、C【分析】先根據方程求出△的值,再根據根的判別式的意義判斷即可.【詳解】A、x2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程沒有實數根,故本選項不符合題意;B、x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有兩個不相等的實數根,故本選項不符合題意;C、x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有兩個相等的實數根,故本選項符合題意;D、x2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有兩個不相等的實數根,故本選項不符合題意;故選:C.【點睛】本題考查了根的判別式,能熟記根的判別式的意義是解此題的關鍵.8、D【分析】畫樹狀圖展示所有15種等可能的結果數,找出恰好和為-1的結果數,然后根據概率公式求解.【詳解】解:畫樹狀圖為:共有15種等可能的結果數,其中恰好和為-1的結果數為3,所以任取兩個數,恰好和為-1的概率=.故選:D.【點睛】本題考查的是概率的問題,能夠用樹狀圖解決簡單概率問題是解題的關鍵.9、B【分析】直接利用位似圖形的性質結合相似比得出EF的長,進而得出△OBC∽△OEF,進而得出EO的長,即可得出答案.【詳解】解:∵正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,∴,∵BC=2,∴EF=BE=6,∵BC∥EF,∴△OBC∽△OEF,∴,解得:OB=3,∴EO=9,∴F點坐標為:(9,6),故選:B.【點睛】此題主要考查了位似變換以及相似三角形的判定與性質,正確得出OB的長是解題關鍵.10、B【分析】根據矩形的性質可得OD=OC,由,得出四邊形OCED為平行四邊形,利用菱形的判定得到四邊形OCED為菱形,由AC的長求出OC的長,即可確定出其周長.【詳解】解:∵四邊形ABCD為矩形,∴OA=OC,OB=OD,且AC=BD.∵AC=2,∴OA=OB=OC=OD=1.∵CE∥BD,DE∥AC,∴四邊形OCED為平行四邊形.∵OD=OC,∴四邊形OCED為菱形.∴OD=DE=EC=OC=1.則四邊形OCED的周長為2×1=2.故選:B.【點睛】此題考查了矩形的性質,以及菱形的判定與性質,熟練掌握特殊四邊形的判定與性質是解本題的關鍵.二、填空題(每小題3分,共24分)11、(0,﹣5)【分析】要求拋物線與y軸的交點,即令x=0,解方程.【詳解】解:把x=0代入y=﹣x2+2x﹣5,求得y=﹣5,則拋物線y=﹣x2+2x﹣5與y軸的交點坐標為(0,﹣5).故答案為(0,﹣5).【點睛】本題考查了拋物線與軸的交點坐標,正確掌握令或令是解題的關鍵.12、1【分析】先利用一元二次方程根的定義得到a-b=﹣4,再把2019﹣a+b變形為2019﹣(a-b),然后利用整體代入的方法計算.【詳解】把代入一元二次方程,得:,即:,∴,故答案為:1.【點睛】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數的值是一元二次方程的解.13、125【分析】①當x=5時,顧客一次購買禮品甲和禮品丁各1套,需要支付45+80-5=1元.②設顧客每筆訂單的總價為M元,當0<M<100時,張軍每筆訂單得到的金額不低于促銷前總價的六折,當M≥100時,0.8(M-x)≥0.6M,對M≥100恒成立,由此能求出x的最大值.【詳解】解:(1)當x=5時,顧客一次購買禮品甲和禮品丁各1套,需要支付:45+80-5=1元.故答案為:1.(2)設顧客一次購買干果的總價為M元,當0<M<100時,張軍每筆訂單得到的金額不低于促銷前總價的六折,當M≥100時,0.8(M-x)≥0.6M,解得,0.8x≤0.2M.∵M≥100恒成立,∴0.8x≤200解得:x≤25.故答案為25.【點睛】本題考查代數值的求法,考查函數性質在生產、生活中的實際應用等基礎知識,考查運算求解能力和應用意識,是中檔題.14、6【分析】先確定出點A的坐標,進而求出AB,再確定出點C的坐標,利用平移即可得出結論.【詳解】∵A(?1,a)在反比例函數y=上,∴a=2,∴A(?1,2),∵點B在直線y=kx?1上,∴B(0,?1),∴AB=,∵四邊形ABCD是正方形,∴BC=AB=,設B(m,0),∴,∴m=?3(舍)或m=3,∴C(3,0),∴點B向右平移3個單位,再向上平移1個單位,∴點D是點A向右平移3個單位,再向上平移1個單位,∴點D(2,3),將點D的坐標代入反比例函數y=中,∴k=6故答案為:6.【點睛】本題主要考察反比例函數與一次函數的交點問題,解題突破口是確定出點A的坐標.15、5【分析】由矩形的性質可得AB=CD=8,AD=BC=10,∠A=∠D=90°,由折疊的性質可求BF=BC=10,EF=CE,由勾股定理可求AF的長,CE的長.【詳解】解:∵四邊形ABCD是矩形∴AB=CD=8,AD=BC=10,∠A=∠D=90°,∵將△BCE沿BE折疊為△BFE,在Rt△ABF中,AF==6∴DF=AD-AF=4在Rt△DEF中,DF2+DE2=EF2=CE2,∴16+(8-CE)2=CE2,∴CE=5故答案為:5【點睛】本題考查了矩形的性質,折疊的性質,勾股定理,靈活運用這些性質進行推理是本題的關鍵.16、(1)、小于;(2)、6;(3)、9、4【解析】試題分析:根據圖像可得:甲的速度小于乙的速度;兩人在6時相遇;甲行駛了9小時,乙行駛了4小時.考點:函數圖像的應用17、②④【分析】①根據函數圖象可得的正負性,即可判斷;②令,即可判斷;③令,方程有兩個不相等的實數根即可判斷;④根據對稱軸大于0小于1即可判斷.【詳解】①由函數圖象可得、∵對稱軸∴∴②令,則③令,由圖像可知方程有兩個不相等的實數根∴④∵對稱軸∴∴綜上所述,值小于的有②④.【點睛】本題考察二次函數圖象與系數的關系,充分利用圖象獲取解題的關鍵信息是關鍵.18、5.5【解析】試題分析:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,即=,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m考點:相似三角形三、解答題(共66分)19、(1)5m,(2)20%【分析】(1)設通道的寬度為x米.由題意(50﹣2x)(40﹣2x)=1200,解方程即可;(2)可先列出第一次降價后承包金額的代數式,再根據第一次的承包金額列出第二次降價的承包金額的代數式,然后令它等于51.2即可列出方程.【詳解】(1)設通道寬度為xm,依題意得(50﹣2x)(40﹣2x)=1200,即x2﹣50x+225=0解得x1=5,x2=40(舍去)答:通道的寬度為5m.(2)設每次降價的百分率為x,依題意得80(1﹣x)2=51.2解得x1=0.2=20%,x2=1.8(舍去)答:每次降價的百分率為20%.【點睛】本題考查了一元二次方程的應用,根據題意,正確列出關系式是解題的關鍵.20、(1)詳見解析;(2)1.【分析】(1)先證明四邊形AECF是平行四邊形,再證明AF=CE即可.(2)在RT△ABE中利用勾股定理求出BE、AE,再根據S菱形AECF=S矩形ABCD﹣S△ABE﹣S△DFC求出面積即可.【詳解】(1)證明:∵四邊形ABCD是菱形,∴AD∥BC,∴∠FAC=∠ACE,∵∠CAE=∠DAC,∠ACF=∠ACB,∴∠EAC=∠ACF,∴AE∥CF,∵AF∥EC,∴四邊形AECF是平行四邊形,∵∠FAC=∠FCA,∴AF=CF,∴四邊形AECF是菱形.(2)解:∵四邊形AECF是菱形,∴AE=EC=CF=AF,設菱形的邊長為a,在RT△ABE中,∵∠B=90°,AB=12,AE=a,BE=18﹣a,∴a2=122+(18﹣a)2,∴a=13,∴BE=DF=5,AF=EC=13,∴S菱形AECF=S矩形ABCD﹣S△ABE﹣S△DFC=216﹣30﹣30=1cm2.【點睛】本題考查菱形的判定和性質、勾股定理等知識,熟練掌握菱形的判定方法是解決問題的關鍵,學會轉化的思想,把問題轉化為方程解決屬于中考常考題型.21、(1)①詳見解析;②1;(1)詳見解析;(3)BD=.【分析】(1)①根據題意畫出圖形即可.②解直角三角形求出PA,再利用全等三角形的性質證明PQ=PA即可.(1)作PF⊥BQ于F,AH⊥PF于H.通過計算證明DF=FQ即可解決問題.(3)如圖3中,作PF⊥BQ于F,AH⊥PF于H.設BD=x,則CD=x﹣t,,利用相似三角形的性質構建方程求解即可解決問題.【詳解】(1)解:①補全圖形如圖所示:②∵△ABD是等邊三角形,AC⊥BD,AC=1∴∠ADC=60°,∠ACD=90°∴∵∠ADP=∠ADB=60°,∠PAD=90°∴PA=AD?tan60°=1∵∠ADP=∠PDQ=60°,DP=DP.DA=DB=DQ∴△PDA≌△PDQ(SAS)∴PQ=PA=1.(1)作PF⊥BQ于F,AH⊥PF于H,如圖:∵PA⊥AD,∴∠PAD=90°由題意可知∠ADP=45°∴∠APD=90°﹣45°=45°=∠ADP∴PA=PD∵∠ACB=90°∴∠ACD=90°∵AH⊥PF,PF⊥BQ∴∠AHF=∠HFC=∠ACF=90°∴四邊形ACFH是矩形∴∠CAH=90°,AH=CF∵∠ACH=∠DAP=90°∴∠CAD=∠PAH又∵∠ACD=∠AHP=90°∴△ACD≌△AHP(AAS)∴AH=AC=1∴CF=AH=1∵,BC=1,B,Q關于點D對稱∴,∴∴F為DQ中點∴PF垂直平分DQ∴PQ=PD.(3)如圖3中,作PF⊥BQ于F,AH⊥PF于H.設BD=x,則CD=x﹣t,∵PD=PQ,PF⊥DQ∴∵四邊形AHFC是矩形∴∵△ACB∽△PAD∴∴∴∵△PAH∽△DAC∴∴解得∴.故答案是:(1)①詳見解析;②1;(1)詳見解析;(3).【點睛】本題是三角形綜合題目,主要考查了三角形的旋轉、等邊三角形的性質、銳角三角函數、勾股定理、全等三角形的判定和性質、矩形的判定和性質,構造全等三角形、相似三角形、直角三角形是解題的關鍵.22、(1)m≤1且m≠0(2)m=-2【分析】(1)根據一元二次方程的定義和判別式得到m≠0且Δ=(-2)2-4m≥0,然后求解不等式即可;(2)先根據根與系數的關系得到x1+x2=,x1x2=,再將已知條件變形得x1x2-(x1+x2)=,然后整體代入求解即可.【詳解】(1)根據題意,得m≠0且Δ=(-2)2-4m≥0,解得m≤1且m≠0.(2)根據題意,得x1+x2=,x1x2=,∵x1x2-x1-x2=,即x1x2-(x1+x2)=,∴-=,解得m=-2.【點睛】本題考查一元二次方程ax2+bx+c=0(a≠0)根的判別式和根與系數的關系(韋達定理),根的判別式:(1)當△=b2﹣4ac>0時,方程有兩個不相等的實數根;(2)當△=b2﹣4ac=0時,方程有有兩個相等的實數根;(3)當△=b2﹣4ac<0時,方程沒有實數根.韋達定理:若一元二次方程ax2+bx+c=0(a≠0)有兩個實數根x1,x2,那么x1+x2=,x1x2=.23、(1)如圖所示,即為所求,見解析,點的坐標為;(2)如圖所示,即為所求.見解析.【解析】分別作出三頂點關于原點的對稱點,再順次連接即可得;

分別作出點、繞點按順時針旋轉所得的對應點,再順次連接即可得.【詳解】解:(1)如圖所示,即為所求,其中點的坐標為.(2)如圖所示,即為所求.【點睛】此題主要考查了圖形的旋轉變換,正確得出對應點位置是解題關鍵.24、(1)m<0;(1)向右平移1個單位長度,再向上平移4個單位

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論