版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省撫州市宜黃縣2024年中考猜題數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在0,﹣2,3,四個(gè)數(shù)中,最小的數(shù)是()A.0 B.﹣2 C.3 D.2.如圖,點(diǎn)D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一條弦,則cos∠OBD=()A. B. C. D.3.下列選項(xiàng)中,可以用來(lái)證明命題“若a2>b2,則a>b“是假命題的反例是()A.a(chǎn)=﹣2,b=1 B.a(chǎn)=3,b=﹣2 C.a(chǎn)=0,b=1 D.a(chǎn)=2,b=14.若一次函數(shù)的圖象經(jīng)過(guò)第一、二、四象限,則下列不等式一定成立的是()A. B. C. D.5.已知二次函數(shù)y=a(x﹣2)2+c,當(dāng)x=x1時(shí),函數(shù)值為y1;當(dāng)x=x2時(shí),函數(shù)值為y2,若|x1﹣2|>|x2﹣2|,則下列表達(dá)式正確的是()A.y1+y2>0 B.y1﹣y2>0 C.a(chǎn)(y1﹣y2)>0 D.a(chǎn)(y1+y2)>06.如圖,正六邊形ABCDEF內(nèi)接于,M為EF的中點(diǎn),連接DM,若的半徑為2,則MD的長(zhǎng)度為A. B. C.2 D.17.關(guān)于的分式方程解為,則常數(shù)的值為()A. B. C. D.8.如圖,已知△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,則cosA的值為()A. B. C. D.9.如圖,釣魚(yú)竿AC長(zhǎng)6m,露在水面上的魚(yú)線BC長(zhǎng)m,某釣者想看看魚(yú)釣上的情況,把魚(yú)竿AC轉(zhuǎn)動(dòng)到AC'的位置,此時(shí)露在水面上的魚(yú)線B′C′為m,則魚(yú)竿轉(zhuǎn)過(guò)的角度是()A.60° B.45° C.15° D.90°10.下列函數(shù)中,二次函數(shù)是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.半徑為2的圓中,60°的圓心角所對(duì)的弧的弧長(zhǎng)為_(kāi)____.12.如圖,△ABC中,∠A=80°,∠B=40°,BC的垂直平分線交AB于點(diǎn)D,聯(lián)結(jié)DC.如果AD=2,BD=6,那么△ADC的周長(zhǎng)為.13.如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,AE是⊙O的切線,A為切點(diǎn),連接BC并延長(zhǎng)交AE于點(diǎn)D.若AOC=80°,則ADB的度數(shù)為()A.40°B.50°C.60°D.20°14.如圖,正方形ABCD中,E是BC邊上一點(diǎn),以E為圓心,EC為半徑的半圓與以A為圓心,AB為半徑的圓弧外切,則sin∠EAB的值為.15.如圖所示,邊長(zhǎng)為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點(diǎn)上,則∠AED的正切值等于__________.16.如圖所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步驟作圖:①以點(diǎn)A為圓心,小于AC的長(zhǎng)為半徑畫(huà)弧,分別交AB,AC于點(diǎn)E,F;②分別以點(diǎn)E,F為圓心,大于EF的長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)G;③作射線AG交BC邊于點(diǎn)D.則∠ADC的度數(shù)為.
三、解答題(共8題,共72分)17.(8分)(1)解方程:.(2)解不等式組:18.(8分)(1)問(wèn)題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說(shuō)明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作正方形AMEF,點(diǎn)N為正方形AMEF的中點(diǎn),連接CN,若BC=10,CN=,試求EF的長(zhǎng).19.(8分)如圖,四邊形ABCD是平行四邊形,點(diǎn)E在BC上,點(diǎn)F在AD上,BE=DF,求證:AE=CF.20.(8分)某船的載重為260噸,容積為1000m1.現(xiàn)有甲、乙兩種貨物要運(yùn),其中甲種貨物每噸體積為8m1,乙種貨物每噸體積為2m1,若要充分利用這艘船的載重與容積,求甲、乙兩種貨物應(yīng)各裝的噸數(shù)(設(shè)裝運(yùn)貨物時(shí)無(wú)任何空隙).21.(8分)解不等式組并寫(xiě)出它的整數(shù)解.22.(10分)在一個(gè)不透明的口袋里裝有四個(gè)球,這四個(gè)球上分別標(biāo)記數(shù)字﹣3、﹣1、0、2,除數(shù)字不同外,這四個(gè)球沒(méi)有任何區(qū)別.從中任取一球,求該球上標(biāo)記的數(shù)字為正數(shù)的概率;從中任取兩球,將兩球上標(biāo)記的數(shù)字分別記為x、y,求點(diǎn)(x,y)位于第二象限的概率.23.(12分)如圖1,在直角梯形ABCD中,AB⊥BC,AD∥BC,點(diǎn)P為DC上一點(diǎn),且AP=AB,過(guò)點(diǎn)C作CE⊥BP交直線BP于E.(1)若ABBC=3(2)若AB=BC.①如圖2,當(dāng)點(diǎn)P與E重合時(shí),求PDPC②如圖3,設(shè)∠DAP的平分線AF交直線BP于F,當(dāng)CE=1,PDPC24.先化簡(jiǎn),再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
根據(jù)實(shí)數(shù)比較大小的法則進(jìn)行比較即可.【詳解】∵在這四個(gè)數(shù)中3>0,>0,-2<0,∴-2最?。蔬xB.【點(diǎn)睛】本題考查的是實(shí)數(shù)的大小比較,即正實(shí)數(shù)都大于0,負(fù)實(shí)數(shù)都小于0,正實(shí)數(shù)大于一切負(fù)實(shí)數(shù),兩個(gè)負(fù)實(shí)數(shù)絕對(duì)值大的反而?。?、C【解析】
根據(jù)圓的弦的性質(zhì),連接DC,計(jì)算CD的長(zhǎng),再根據(jù)直角三角形的三角函數(shù)計(jì)算即可.【詳解】∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,連接CD,如圖所示:∵∠OBD=∠OCD,∴cos∠OBD=cos∠OCD=.故選:C.【點(diǎn)睛】本題主要三角函數(shù)的計(jì)算,結(jié)合考查圓性質(zhì)的計(jì)算,關(guān)鍵在于利用等量替代原則.3、A【解析】
根據(jù)要證明一個(gè)結(jié)論不成立,可以通過(guò)舉反例的方法來(lái)證明一個(gè)命題是假命題.由此即可解答.【詳解】∵當(dāng)a=﹣2,b=1時(shí),(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命題的反例.故選A.【點(diǎn)睛】本題考查了命題與定理,要說(shuō)明數(shù)學(xué)命題的錯(cuò)誤,只需舉出一個(gè)反例即可,這是數(shù)學(xué)中常用的一種方法.4、D【解析】∵一次函數(shù)y=ax+b的圖象經(jīng)過(guò)第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A錯(cuò)誤,a?b<0,故B錯(cuò)誤,ab<0,故C錯(cuò)誤,<0,故D正確.故選D.5、C【解析】
分a>1和a<1兩種情況根據(jù)二次函數(shù)的對(duì)稱性確定出y1與y2的大小關(guān)系,然后對(duì)各選項(xiàng)分析判斷即可得解.【詳解】解:①a>1時(shí),二次函數(shù)圖象開(kāi)口向上,∵|x1﹣2|>|x2﹣2|,∴y1>y2,無(wú)法確定y1+y2的正負(fù)情況,a(y1﹣y2)>1,②a<1時(shí),二次函數(shù)圖象開(kāi)口向下,∵|x1﹣2|>|x2﹣2|,∴y1<y2,無(wú)法確定y1+y2的正負(fù)情況,a(y1﹣y2)>1,綜上所述,表達(dá)式正確的是a(y1﹣y2)>1.故選:C.【點(diǎn)睛】本題主要考查二次函數(shù)的性質(zhì),利用了二次函數(shù)的對(duì)稱性,關(guān)鍵要掌握根據(jù)二次項(xiàng)系數(shù)a的正負(fù)分情況討論.6、A【解析】
連接OM、OD、OF,由正六邊形的性質(zhì)和已知條件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函數(shù)求出OM,再由勾股定理求出MD即可.【詳解】連接OM、OD、OF,∵正六邊形ABCDEF內(nèi)接于⊙O,M為EF的中點(diǎn),∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF?sin∠MFO=2×=,∴MD=,故選A.【點(diǎn)睛】本題考查了正多邊形和圓、正六邊形的性質(zhì)、三角函數(shù)、勾股定理;熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問(wèn)題的關(guān)鍵.7、D【解析】
根據(jù)分式方程的解的定義把x=4代入原分式方程得到關(guān)于a的一次方程,解得a的值即可.【詳解】解:把x=4代入方程,得,解得a=1.經(jīng)檢驗(yàn),a=1是原方程的解故選D.點(diǎn)睛:此題考查了分式方程的解,分式方程注意分母不能為2.8、D【解析】
過(guò)B點(diǎn)作BD⊥AC,如圖,由勾股定理得,AB=,AD=,cosA===,故選D.9、C【解析】試題解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,魚(yú)竿轉(zhuǎn)過(guò)的角度是15°.故選C.考點(diǎn):解直角三角形的應(yīng)用.10、B【解析】A.y=-4x+5是一次函數(shù),故此選項(xiàng)錯(cuò)誤;B.
y=x(2x-3)=2x2-3x,是二次函數(shù),故此選項(xiàng)正確;C.
y=(x+4)2?x2=8x+16,為一次函數(shù),故此選項(xiàng)錯(cuò)誤;D.
y=是組合函數(shù),故此選項(xiàng)錯(cuò)誤.故選B.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】根據(jù)弧長(zhǎng)公式可得:=,故答案為.12、1.【解析】試題分析:由BC的垂直平分線交AB于點(diǎn)D,可得CD=BD=6,又由等邊對(duì)等角,可求得∠BCD的度數(shù),繼而求得∠ADC的度數(shù),則可判定△ACD是等腰三角形,繼而求得答案.試題解析:∵BC的垂直平分線交AB于點(diǎn)D,∴CD=BD=6,∴∠DCB=∠B=40°,∴∠ADC=∠B+∠BCD=80°,∴∠ADC=∠A=80°,∴AC=CD=6,∴△ADC的周長(zhǎng)為:AD+DC+AC=2+6+6=1.考點(diǎn):1.線段垂直平分線的性質(zhì);2.等腰三角形的判定與性質(zhì).13、B.【解析】試題分析:根據(jù)AE是⊙O的切線,A為切點(diǎn),AB是⊙O的直徑,可以先得出∠BAD為直角.再由同弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半,求出∠B,從而得到∠ADB的度數(shù).由題意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故選B.考點(diǎn):圓的基本性質(zhì)、切線的性質(zhì).14、.【解析】試題分析:設(shè)正方形的邊長(zhǎng)為y,EC=x,由題意知,AE2=AB2+BE2,即(x+y)2=y2+(y-x)2,由于y≠0,化簡(jiǎn)得y=4x,∴sin∠EAB=.考點(diǎn):1.相切兩圓的性質(zhì);2.勾股定理;3.銳角三角函數(shù)的定義15、【解析】
根據(jù)同弧或等弧所對(duì)的圓周角相等來(lái)求解.【詳解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD==.故選D.【點(diǎn)睛】本題利用了圓周角定理(同弧或等弧所對(duì)的圓周角相等)和正切的概念求解.16、65°【解析】
根據(jù)已知條件中的作圖步驟知,AG是∠CAB的平分線,根據(jù)角平分線的性質(zhì)解答即可.【詳解】根據(jù)已知條件中的作圖步驟知,AG是∠CAB的平分線,∵∠CAB=50°,
∴∠CAD=25°;
在△ADC中,∠C=90°,∠CAD=25°,
∴∠ADC=65°(直角三角形中的兩個(gè)銳角互余);
故答案是:65°.三、解答題(共8題,共72分)17、(1)無(wú)解;(1)﹣1<x≤1.【解析】
(1)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解;(1)分別求出不等式組中兩不等式的解集,找出兩解集的公共部分即可.【詳解】(1)去分母得:1﹣x+1=﹣3x+6,解得:x=1,經(jīng)檢驗(yàn)x=1是增根,分式方程無(wú)解;(1),由①得:x>﹣1,由②得:x≤1,則不等式組的解集為﹣1<x≤1.【點(diǎn)睛】此題考查了解分式方程,利用了轉(zhuǎn)化的思想,解分式方程注意要檢驗(yàn).18、(1)NC∥AB;理由見(jiàn)解析;(2)∠ABC=∠ACN;理由見(jiàn)解析;(3);【解析】
(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.
(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;
(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.【詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.【點(diǎn)睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識(shí);本題綜合性強(qiáng),有一定難度,證明三角形全等和三角形相似是解決問(wèn)題的關(guān)鍵.19、見(jiàn)解析【解析】
根據(jù)平行四邊形性質(zhì)得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根據(jù)平行四邊形的判定推出四邊形AECF是平行四邊形,即可得出結(jié)論.【詳解】證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四邊形AECF是平行四邊形,∴AE=CF.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)和判定的應(yīng)用,注意:平行四邊形的對(duì)邊平行且相等,有一組對(duì)邊平行且相等的四邊形是平行四邊形.20、這艘船裝甲貨物80噸,裝乙貨物180噸.【解析】
根據(jù)題意先列二元一次方程,再解方程即可.【詳解】解:設(shè)這艘船裝甲貨物x噸,裝乙貨物y噸,根據(jù)題意,得.解得.答:這艘船裝甲貨物80噸,裝乙貨物180噸.【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對(duì)二元一次方程的應(yīng)用能力,熟練掌握二元一次方程的解法是解題的關(guān)鍵.21、不等式組的解集是5<x≤1,整數(shù)解是6,1【解析】
先分別求出兩個(gè)不等式的解,求出解集,再根據(jù)整數(shù)的定義得到答案.【詳解】∵解①得:x>5,解不等式②得:x≤1,∴不等式組的解集是5<x≤1,∴不等式組的整數(shù)解是6,1.【點(diǎn)睛】本題考查求一元一次不等式組,解題的關(guān)鍵是掌握求一元一次不等式組的方法22、(1);(2).【解析】
(1)直接根據(jù)概率公式求解;
(2)先利用樹(shù)狀圖展示所有12種等可能的結(jié)果數(shù),再找出第二象限內(nèi)的點(diǎn)的個(gè)數(shù),然后根據(jù)概率公式計(jì)算點(diǎn)(x,y)位于第二象限的概率.【詳解】(1)正數(shù)為2,所以該球上標(biāo)記的數(shù)字為正數(shù)的概率為;(2)畫(huà)樹(shù)狀圖為:共有12種等可能的結(jié)果數(shù),它們是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的點(diǎn)有2個(gè),所以點(diǎn)(x,y)位于第二象限的概率==.【點(diǎn)睛】本題考查列表法與樹(shù)狀圖法:利用列表法或樹(shù)狀圖法展示所有可能的結(jié)果求出n,再?gòu)闹羞x出符合事件A或B的結(jié)果數(shù)目m,求出概率.23、(1)證明見(jiàn)解析;(2)①32【解析】
(1)過(guò)點(diǎn)A作AF⊥BP于F,根據(jù)等腰三角形的性質(zhì)得到BF=BP,易證Rt△ABF∽R(shí)t△BCE,根據(jù)相似三角形的性質(zhì)得到ABBC=BF(2)①延長(zhǎng)BP、AD交于點(diǎn)F,過(guò)點(diǎn)A作
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025大理石合同范本
- 2025住宅區(qū)委托管理合同
- 美國(guó)土地合同范例
- 淘寶轉(zhuǎn)讓合同范例
- 線下帶貨合同范例
- 外單合同范例
- 外商投資合同范例
- 管理股分合同范例
- 報(bào)考駕校合同范例
- 動(dòng)物糞便回收合同范例
- 兵地融合發(fā)展工作總結(jié)【3篇】
- GA/T 2133.2-2024便攜式微型計(jì)算機(jī)移動(dòng)警務(wù)終端第2部分:安全監(jiān)控組件技術(shù)規(guī)范
- 概率論與數(shù)理統(tǒng)計(jì)智慧樹(shù)知到期末考試答案章節(jié)答案2024年中國(guó)農(nóng)業(yè)大學(xué)
- 小學(xué)勞動(dòng)教育實(shí)施三年規(guī)劃(2024-2026)
- 網(wǎng)課智慧樹(shù)知道《英漢口譯(四川大學(xué))》章節(jié)測(cè)試答案
- 生產(chǎn)建設(shè)項(xiàng)目水土保持設(shè)施驗(yàn)收技術(shù)規(guī)程-編制說(shuō)明
- 人工智能設(shè)計(jì)倫理智慧樹(shù)知到期末考試答案章節(jié)答案2024年浙江大學(xué)
- 2024春期國(guó)開(kāi)電大本科《經(jīng)濟(jì)學(xué)(本)》在線形考(形考任務(wù)1至6)試題及答案
- 四川省公需科目(數(shù)字經(jīng)濟(jì)與驅(qū)動(dòng)發(fā)展)考試題庫(kù)及答案
- 2024年中國(guó)eVTOL產(chǎn)業(yè)(低空經(jīng)濟(jì))發(fā)展報(bào)告
- 智慧醫(yī)療信息化建設(shè)項(xiàng)目技術(shù)標(biāo)準(zhǔn)建設(shè)方案
評(píng)論
0/150
提交評(píng)論