2023屆重慶市秀山縣數(shù)學九上期末預測試題含解析_第1頁
2023屆重慶市秀山縣數(shù)學九上期末預測試題含解析_第2頁
2023屆重慶市秀山縣數(shù)學九上期末預測試題含解析_第3頁
2023屆重慶市秀山縣數(shù)學九上期末預測試題含解析_第4頁
2023屆重慶市秀山縣數(shù)學九上期末預測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如圖,AB是⊙O的直徑,OC是⊙O的半徑,點D是半圓AB上一動點(不與A、B重合),連結(jié)DC交直徑AB與點E,若∠AOC=60°,則∠AED的范圍為()A.0°<∠AED<180° B.30°<∠AED<120°C.60°<∠AED<120° D.60°<∠AED<150°2.如圖,直線y1=kx+b過點A(0,3),且與直線y2=mx交于點P(1,m),則不等式組mx>kx+b>mx﹣2的解集是().A. B. C. D.1<x<23.將拋物線向右平移1個單位,再向上平移3個單位,得到的拋物線是()A. B.C. D.4.計算得()A.1 B.﹣1 C. D.5.由四個相同的小正方體搭建了一個積木,它的三視圖如圖所示,則這個積木可能是()A. B. C. D.6.如圖,是的直徑,是的弦,已知,則的度數(shù)為()A. B. C. D.7.已知坐標平面上有一直線L,其方程式為y+2=0,且L與二次函數(shù)y=3x2+a的圖形相交于A,B兩點:與二次函數(shù)y=﹣2x2+b的圖形相交于C,D兩點,其中a、b為整數(shù).若AB=2,CD=1.則a+b之值為何?()A.1 B.9 C.16 D.218.﹣3的絕對值是()A.﹣3 B.3 C.- D.9.已知點O是△ABC的外心,作正方形OCDE,下列說法:①點O是△AEB的外心;②點O是△ADC的外心;③點O是△BCE的外心;④點O是△ADB的外心.其中一定不成立的說法是()A.②④ B.①③ C.②③④ D.①③④10.若拋物線y=x2﹣3x+c與y軸的交點為(0,2),則下列說法正確的是()A.拋物線開口向下B.拋物線與x軸的交點為(﹣1,0),(3,0)C.當x=1時,y有最大值為0D.拋物線的對稱軸是直線x=11.若反比例函數(shù)y=的圖象位于第二、四象限,則k的取值可以是()A.0 B.1 C.2 D.以上都不是12.如圖,要測量小河兩岸相對兩點、寬度,可以在小河邊的垂線上取一點,則得,,則小河的寬等于()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,在邊長為1的正方形網(wǎng)格中,.線段與線段存在一種變換關系,即其中一條線段繞著某點旋轉(zhuǎn)一個角度可以得到另一條線段,則這個旋轉(zhuǎn)中心的坐標為__________.14.已知tan(α+15°)=,則銳角α的度數(shù)為______°.15.已知兩個數(shù)的差等于2,積等于15,則這兩個數(shù)中較大的是.16.已知函數(shù),當時,函數(shù)的最小值是-4,實數(shù)的取值范圍是______.17.在一次射擊比賽中,甲、乙兩名運動員10次射擊的平均成績都是7環(huán),其中甲的成績的方差為1.2,乙的成績的方差為3.9,由此可知_____的成績更穩(wěn)定.18.若正六邊形的邊長為2,則此正六邊形的邊心距為______.三、解答題(共78分)19.(8分)某超市銷售一種商品,成本每千克30元,規(guī)定每千克售價不低于成本,且不高于70元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:售價x(元/千克)405060銷售量y(千克)1008060(1)求y與x之間的函數(shù)表達式;(2)設商品每天的總利潤為W(元),求W與x之間的函數(shù)表達式(利潤=收入?成本);(3)試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少元時獲得最大利潤,最大利潤是多少?20.(8分)如圖,一電線桿AB的影子分別落在了地上和墻上.同一時刻,小明豎起1米高的直桿MN,量得其影長MF為0.5米,量得電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米.你能利用小明測量的數(shù)據(jù)算出電線桿AB的高嗎?21.(8分)某商店經(jīng)營一種小商品,進價為2.5元,據(jù)市場調(diào)查,銷售單價是13.5元時平均每天銷售量是500件,而銷售單價每降低1元,平均每天就可以多售出100件.(1)假設每件商品降低x元,商店每天銷售這種小商品的利潤是y元,請你寫出y與x的之間的函數(shù)關系式,并注明x的取值范圍;(2)每件小商品銷售價是多少元時,商店每天銷售這種小商品的利潤最大;最大利潤是多少.(注:銷售利潤=銷售收入-購進成本)22.(10分)某商家在購進一款產(chǎn)品時,由于運輸成本及產(chǎn)品成本的提高,該產(chǎn)品第天的成本(元/件)與(天)之間的關系如圖所示,并連續(xù)50天均以80元/件的價格出售,第天該產(chǎn)品的銷售量(件)與(天)滿足關系式.(1)第40天,該商家獲得的利潤是______元;(2)設第天該商家出售該產(chǎn)品的利潤為元.①求與之間的函數(shù)關系式,并指出第幾天的利潤最大,最大利潤是多少?②在出售該產(chǎn)品的過程中,當天利潤不低于1000元的共有多少天?23.(10分)如圖,在△ABC中,D為AC上一點,E為CB延長線上一點,且,DG∥AB,求證:DF=BG.24.(10分)如圖,在平面直角坐標系中A點的坐標為(8,y),AB⊥x軸于點B,sin∠OAB=,反比例函數(shù)y=的圖象的一支經(jīng)過AO的中點C,且與AB交于點D.(1)求反比例函數(shù)解析式;(2)若函數(shù)y=3x與y=的圖象的另一支交于點M,求三角形OMB與四邊形OCDB的面積的比.25.(12分)如圖,點D、O在△ABC的邊AC上,以CD為直徑的⊙O與邊AB相切于點E,連結(jié)DE、OB,且DE∥OB.(1)求證:BC是⊙O的切線.(2)設OB與⊙O交于點F,連結(jié)EF,若AD=OD,DE=4,求弦EF的長.26.如圖,在鈍角中,點為上的一個動點,連接,將射線繞點逆時針旋轉(zhuǎn),交線段于點.已知∠C=30°,CA=2cm,BC=7cm,設B,P兩點間的距離為xcm,A,D兩點間的距離ycm.小牧根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行了探究.下面是小牧探究的過程,請補充完整:(1)根據(jù)圖形.可以判斷此函數(shù)自變量X的取值范圍是;(2)通過取點、畫圖、測量,得到了與的幾組值,如下表:0.511.021.913.4734.164.473.973.222.421.66a2.022.50通過測量??梢缘玫絘的值為;(3)在平而直角坐標系xOy中.描出上表中以各對對應值為坐標的點,畫出該函數(shù)的圖象;(4)結(jié)合畫出的函數(shù)圖象,解決問題:當AD=3.5cm時,BP的長度約為cm.

參考答案一、選擇題(每題4分,共48分)1、D【分析】連接BD,根據(jù)圓周角定理得出∠ADC=30°,∠ADB=90°,再根據(jù)三角形的外角性質(zhì)可得到結(jié)論.【詳解】如圖,連接BD,由∵∠AOC=60°,∴∠ADC=30°,∴∠DEB>30°∴∠AED<150°,∵AB是⊙O的直徑,∴∠ADB=90°,∴∠EDB=90°-30°=60°,∴∠AED>60°∴60°<∠AED<150°,故選D【點睛】本題考查了圓周角定理和三角形的外角性質(zhì).正確應用圓周角定理找出∠ADC=30°,∠ADB=90°是解題的關鍵.2、C【分析】先把A點代入y+kx+b得b=3,再把P(1,m)代入y=kx+3得k=m?3,接著解(m?3)x+3>mx?2得x<,然后利用函數(shù)圖象可得不等式組mx>kx+b>mx?2的解集.【詳解】把P(1,m)代入y=kx+3得k+3=m,解得k=m?3,解(m?3)x+3>mx?2得x<,所以不等式組mx>kx+b>mx?2的解集是1<x<.故選:C.【點睛】本題考查了一次函數(shù)與一元一次不等式:從函數(shù)的角度看,就是尋求使一次函數(shù)y=kx+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標所構成的集合.3、D【分析】由題意可知原拋物線的頂點及平移后拋物線的頂點,根據(jù)平移不改變拋物線的二次項系數(shù)可得新的拋物線解析式.【詳解】解:由題意得原拋物線的頂點為(0,0),∴平移后拋物線的頂點為(1,3),∴得到的拋物線解析式為y=2(x-1)2+3,故選:D.【點睛】本題考查二次函數(shù)的幾何變換,熟練掌握二次函數(shù)的平移不改變二次項的系數(shù)得出新拋物線的頂點是解決本題的關鍵.4、A【分析】根據(jù)題意對原式變形后,利用同分母分式的減法法則計算,約分即可得到結(jié)果.【詳解】解:=1.故選:A.【點睛】本題考查分式的加減法,熟練掌握分式的加減法運算法則是解答本題的關鍵.5、A【解析】分析:從主視圖上可以看出上下層數(shù),從俯視圖上可以看出底層有多少小正方體,從左視圖上可以看出前后層數(shù),綜合三視圖可得到答案.解答:解:從主視圖上可以看出左面有兩層,右面有一層;從左視圖上看分前后兩層,后面一層上下兩層,前面只有一層,從俯視圖上看,底面有3個小正方體,因此共有4個小正方體組成,故選A.6、C【分析】根據(jù)圓周角定理即可解決問題.【詳解】∵,∴.故選:C.【點睛】本題考查圓周角定理,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.7、A【解析】分析:判斷出A、C兩點坐標,利用待定系數(shù)法求出a、b即可;詳解:如圖,由題意知:A(1,﹣2),C(2,﹣2),分別代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故選A.點睛:本題考查二次函數(shù)圖形上點的坐標特征,待定系數(shù)法等知識,解題的關鍵是理解題意,判斷出A、C兩點坐標是解決問題的關鍵.8、B【分析】根據(jù)負數(shù)的絕對值是它的相反數(shù),可得出答案.【詳解】根據(jù)絕對值的性質(zhì)得:|-1|=1.故選B.【點睛】本題考查絕對值的性質(zhì),需要掌握非負數(shù)的絕對值是它本身,負數(shù)的絕對值是它的相反數(shù).9、A【分析】根據(jù)三角形的外心得出OA=OC=OB,根據(jù)正方形的性質(zhì)得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐個判斷即可.【詳解】解:如圖,連接OB、OD、OA,∵O為銳角三角形ABC的外心,∴OA=OC=OB,∵四邊形OCDE為正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OC≠OD,即O不是△ADC的外心,OA=OE=OB,即O是△AEB的外心,OB=OC=OE,即O是△BCE的外心,OB=OA≠OD,即O不是△ABD的外心,故選:A.【點睛】本題考查了正方形的性質(zhì)和三角形的外心.熟記三角形的外心到三個頂點的距離相等是解決此題的關鍵.10、D【解析】A、由a=1>0,可得出拋物線開口向上,A選項錯誤;B、由拋物線與y軸的交點坐標可得出c值,進而可得出拋物線的解析式,令y=0求出x值,由此可得出拋物線與x軸的交點為(1,0)、(1,0),B選項錯誤;C、由拋物線開口向上,可得出y無最大值,C選項錯誤;D、由拋物線的解析式利用二次函數(shù)的性質(zhì),即可求出拋物線的對稱軸為直線x=-,D選項正確.綜上即可得出結(jié)論.【詳解】解:A、∵a=1>0,∴拋物線開口向上,A選項錯誤;B、∵拋物線y=x1-3x+c與y軸的交點為(0,1),∴c=1,∴拋物線的解析式為y=x1-3x+1.當y=0時,有x1-3x+1=0,解得:x1=1,x1=1,∴拋物線與x軸的交點為(1,0)、(1,0),B選項錯誤;C、∵拋物線開口向上,∴y無最大值,C選項錯誤;D、∵拋物線的解析式為y=x1-3x+1,∴拋物線的對稱軸為直線x=-=-=,D選項正確.故選D.【點睛】本題考查了拋物線與x軸的交點、二次函數(shù)的性質(zhì)、二次函數(shù)的最值以及二次函數(shù)圖象上點的坐標特征,利用二次函數(shù)的性質(zhì)及二次函數(shù)圖象上點的坐標特征逐一分析四個選項的正誤是解題的關鍵.11、A【詳解】∵反比例函數(shù)y=的圖象位于第二、四象限,∴k﹣1<0,即k<1.故選A.12、C【分析】利用∠ABC的正切函數(shù)求解即可.【詳解】解:∵AC⊥CD,,,∴小河寬AC=BC·tan∠ABC=100tan50°(m).?故選C.【點睛】本題考查了解直角三角形的應用,解決此問題的關鍵在于正確理解題意得基礎上建立數(shù)學模型,把實際問題轉(zhuǎn)化為數(shù)學問題.二、填空題(每題4分,共24分)13、或【分析】根據(jù)旋轉(zhuǎn)后的對應關系分類討論,分別畫出對應的圖形,作出對應點連線的垂直平分線即可找到旋轉(zhuǎn)中心,最后根據(jù)點A的坐標即可求結(jié)論.【詳解】解:①若旋轉(zhuǎn)后點A的對應點是點C,點B的對稱點是點D,連接AC和BD,分別作AC和BD的垂直平分線,兩個垂直平分線交于點O,根據(jù)垂直平分線的性質(zhì)可得OA=OC,OB=OD,故點O即為所求,∵,∴由圖可知:點O的坐標為(5,2);②若旋轉(zhuǎn)后點A的對應點是點D,點B的對稱點是點C,連接AD和BC,分別作AD和BC的垂直平分線,兩個垂直平分線交于點O,根據(jù)垂直平分線的性質(zhì)可得OA=OD,OB=OC,故點O即為所求,∵,∴由圖可知:點O的坐標為綜上:這個旋轉(zhuǎn)中心的坐標為或故答案為:或.【點睛】此題考查的是根據(jù)旋轉(zhuǎn)圖形找旋轉(zhuǎn)中心,掌握垂直平分線的性質(zhì)及作法是解決此題的關鍵.14、15【分析】直接利用特殊角的三角函數(shù)值求出答案.【詳解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【點睛】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關特殊角的三角函數(shù)值是解題關鍵.15、5【分析】設這兩個數(shù)中的大數(shù)為x,則小數(shù)為x﹣2,由題意建立方程求其解即可.【詳解】解:設這兩個數(shù)中的大數(shù)為x,則小數(shù)為x﹣2,由題意,得x(x﹣2)=15,解得:x1=5,x2=﹣3,∴這兩個數(shù)中較大的數(shù)是5,故答案為5;考點:一元二次方程的應用.16、【分析】將二次函數(shù)化為頂點式,可知當時,函數(shù)的最小值為,再結(jié)合當時,函數(shù)的最小值是-4,可得的取值范圍.【詳解】∵,∴拋物線開口向上,當,二次函數(shù)的最小值為∵當時,函數(shù)的最小值是-4∴的取值范圍是:.【點睛】本題考查二次函數(shù)的圖像和性質(zhì),熟練掌握二次函數(shù)的圖像和性質(zhì)是解題的關鍵.17、甲【分析】根據(jù)方差的定義,方差越小數(shù)據(jù)越穩(wěn)定.【詳解】解:因為S甲2=1.2<S乙2=3.9,方差小的為甲,所以本題中成績比較穩(wěn)定的是甲.故答案為甲;【點睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.18、.【分析】連接OA、OB,根據(jù)正六邊形的性質(zhì)求出∠AOB,得出等邊三角形OAB,求出OA、AM的長,根據(jù)勾股定理求出即可.【詳解】連接OA、OB、OC、OD、OE、OF,∵正六邊形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,∴△AOB是等邊三角形,∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,在△OAM中,由勾股定理得:OM=.三、解答題(共78分)19、(1)y=﹣2x+180;(2)W=﹣2x2+240x﹣5400;(3)當x=60時,W取得最大值,此時W=1.【分析】(1)待定系數(shù)法求解可得;(2)根據(jù)“總利潤=每千克利潤×銷售量”可得函數(shù)解析式;(3)將所得函數(shù)解析式配方成頂點式即可得最值情況.【詳解】(1)設y與x之間的函數(shù)解析式為y=kx+b,則,解得k=-2,b=180.即y與x之間的函數(shù)表達式是y=﹣2x+180;(2)由題意可得,W=(x﹣30)(﹣2x+180)=﹣2x2+240x﹣5400,即W與x之間的函數(shù)表達式是W=﹣2x2+240x﹣5400;(3)∵W=﹣2x2+240x﹣5400=﹣2(x﹣60)2+1,30≤x≤70,∴當30≤x≤60時,W隨x的增大而增大;當60≤x≤70時,W隨x的增大而減?。划攛=60時,W取得最大值,此時W=1.【點睛】考查二次函數(shù)的應用,解題的關鍵是熟練掌握待定系數(shù)法求函數(shù)解析式及二次函數(shù)的性質(zhì).20、電線桿AB的高為8米【解析】試題分析:過C點作CG⊥AB于點G,把直角梯形ABCD分割成一個直角三角形和一個矩形,由于太陽光線是平行的,就可以構造出相似三角形,根據(jù)相似三角形的性質(zhì)解答即可.試題解析:過C點作CG⊥AB于點G,∴GC=BD=3米,GB=CD=2米,∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC,∴,∴AG==6,∴AB=AG+GB=6+2=8(米),故電線桿AB的高為8米21、(1)y=-100x2+600x+5500(0≤x≤11);(2)每件商品銷售價是10.5元時,商店每天銷售這種小商品的利潤最大,最大利潤是6400元.【分析】(1)根據(jù)等量關系“利潤=(13.5-降價-進價)×(500+100×降價)”列出函數(shù)關系式;(2)根據(jù)(1)中的函數(shù)關系式求得利潤最大值.【詳解】解:(1)設降價x元時利潤最大.依題意:y=(13.5-x-2.5)(500+100x)=100(-x2+6x+55)=-100x2+600x+5500整理得:y=-100(x-3)2+6400(0≤x≤11);(2)由(1)可知,∵a=-100<0,∴當x=3時y取最大值,最大值是6400,即降價3元時利潤最大,∴銷售單價為10.5元時,最大利潤6400元.答:銷售單價為10.5元時利潤最大,最大利潤為6400元.【點睛】本題考查的是函數(shù)關系式的求法以及最值的求法.22、(1)1000(2)①,25,1225;②1.【分析】(1)根據(jù)圖象可求出BC的解析式,即可求出第40天時的成本為60元,此時的產(chǎn)量為z=40+10=50,則可求得第40天的利潤;(2)利用每件利潤×總銷量=總利潤,進而求出二次函數(shù)最值即可.【詳解】(1)根據(jù)圖象得,B(20,40),C(50,70),設BC的解析式為y=kx+b,把B(20,40),C(50,70)代入得,,解得,,所以,直線BC的解析式為:y=x+20,當x=40時,y=60,即第40天時該產(chǎn)品的成本是60元/件,利潤為:80-60=20(元/件)此時的產(chǎn)量為z=40+10=50件,則第40天的利潤為:20×50=1000元故答案為:1000(2)①當時,,∴時,元;當時,,∴時,元;綜上所述,當時,元②當時,若元,則(天),第15天至第20天的利潤都不低于1000元;當時,若元,則(舍去)(天),所以第21天至第40天的利潤都不低于1000元,則總共有1天的利潤不低于1000元.【點睛】本題考查了二次函數(shù)的性質(zhì)在實際生活中的應用.最大銷售利潤的問題常利函數(shù)的增減性來解答,我們首先要吃透題意,確定變量,建立函數(shù)模型,然后結(jié)合實際選擇最優(yōu)方案.根據(jù)每天的利潤=一件的利潤×銷售件數(shù),建立函數(shù)關系式,此題為數(shù)學建模題,借助二次函數(shù)解決實際問題.23、詳見解析【分析】證明△DFH∽△EBH,證出DF‖BC,可證出四邊形BGDF平行四邊形,則DF=BG.【詳解】證明:∵DG∥AB,∴,∵,∴,∵∠EHB=∠DHF,∴△DFH∽△EBH,∴∠E=∠FDH,∴DF//BC,∴四邊形BGDF平行四邊形,∴DF=BG.【點睛】本題考查了相似三角形的判定與性質(zhì),平行線分線段成比例定理,平行四邊形的判定與性質(zhì)等知識,解題的關鍵是熟練掌握相似三角形的判定與性質(zhì).24、y=;【解析】試題分析:(1)先根據(jù)銳角三角函數(shù)的定義,求出OA的值,然后根據(jù)勾股定理求出AB的值,然后由C點是OA的中點,求出C點的坐標,然后將C的坐標代入反比例函數(shù)y=中,即可確定反比例函數(shù)解析式;(2)先將y=3x與y=聯(lián)立成方程組,求出點M的坐標,然后求出點D的坐標,然后連接BC,分別求出△OMB的面積,△OBC的面積,△BCD的面積,進而確定四邊形OCDB的面積,進而可求三角形OMB與四邊形OCDB的面積的比.試題解析:(1)∵A點的坐標為(8,y),∴OB=8,∵AB⊥x軸于點B,sin∠OAB=,∴,∴OA=10,由勾股定理得:AB=,∵點C是OA的中點,且在第一象限內(nèi),∴C(4,3),∵點C在反比例函數(shù)y=的圖象上,∴k=12,∴反比例函數(shù)解析式為:y=;(2)將y=3x與y=聯(lián)立成方程組,得:,解得:,,∵M是直線與雙曲線另一支的交點,∴M(﹣2,﹣6),∵點D在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論