版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.如圖,矩形EFGO的兩邊在坐標軸上,點O為平面直角坐標系的原點,以y軸上的某一點為位似中心,作位似圖形ABCD,且點B,F(xiàn)的坐標分別為(﹣4,4),(2,1),則位似中心的坐標為()A.(0,3) B.(0,2.5) C.(0,2) D.(0,1.5)2.用配方法解一元二次方程x2﹣4x+2=0,下列配方正確的是()A.(x+2)2=2 B.(x﹣2)2=﹣2 C.(x﹣2)2=2 D.(x﹣2)2=63.拋物線的頂點坐標是()A.(3,5) B.(-3,-5) C.(-3,5) D.(3,-5)4.已知函數(shù)y=(k-1)x2-4x+4的圖象與x軸只有一個交點,則k的取值范圍是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或15.在一次酒會上,每兩人都只碰一次杯,如果一共碰杯55次,則參加酒會的人數(shù)為(
)A.9人 B.10人 C.11人 D.12人6.拋物線y=(x-4)(x+2)的對稱軸方程為()A.直線x=-2 B.直線x=1 C.直線x=-4 D.直線x=47.如圖,一次函數(shù)y1=x+b與一次函數(shù)y2=kx+4的圖象交于點P(1,3),則關(guān)于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<18.將拋物線向上平移1個單位長度,再向右平移3個單位長度后,得到的拋物線的解析式為()A. B. C. D.9.一個盒子內(nèi)裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,則兩次都摸到白球的概率是()A. B. C. D.10.一元二次方程x2﹣2kx+k2﹣k+2=0有兩個不相等的實數(shù)根,則k的取值范圍是()A.k>﹣2 B.k<﹣2 C.k<2 D.k>211.如圖,已知菱形OABC,OC在x軸上,AB交y軸于點D,點A在反比例函數(shù)上,點B在反比例函數(shù)上,且OD=2,則k的值為()A.3 B. C. D.12.在數(shù)軸上,點A所表示的實數(shù)為3,點B所表示的實數(shù)為a,⊙A的半徑為2,下列說法中不正確的是()A.當(dāng)1<a<5時,點B在⊙A內(nèi)B.當(dāng)a<5時,點B在⊙A內(nèi)C.當(dāng)a<1時,點B在⊙A外D.當(dāng)a>5時,點B在⊙A外二、填空題(每題4分,共24分)13.已知m,n是方程的兩個根,則代數(shù)式的值是__________.14.若實數(shù)、滿足,則以、的值為邊長的等腰三角形的周長為.15.如圖,在平面直角坐標系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、(k>1)的圖象分別交于點A、B,若∠AOB=45°,則△AOB的面積是________.16.如圖,一架長為米的梯子斜靠在一豎直的墻上,這時測得,如果梯子的底端外移到,則梯子頂端下移到,這時又測得,那么的長度約為______米.(,,,)17.如圖,在正方形鐵皮上剪下一個扇形和一個半徑為的圓形,使之恰好圍成一個圓錐,則圓錐的高為____.18.如圖,直角三角形中,,,,在線段上取一點,作交于點,現(xiàn)將沿折疊,使點落在線段上,對應(yīng)點記為;的中點的對應(yīng)點記為.若,則______.三、解答題(共78分)19.(8分)小明本學(xué)期4次數(shù)學(xué)考試成績?nèi)缦卤砣缡荆撼煽冾悇e第一次月考第二次月考期中期末成績分138142140138(1)小明4次考試成績的中位數(shù)為__________分,眾數(shù)為______________分;(2)學(xué)校規(guī)定:兩次月考的平均成績作為平時成績,求小明本學(xué)期的平時成績;(3)如果本學(xué)期的總評成績按照平時成績占20%、期中成績占30%、期末成績占50%計算,那么小明本學(xué)期的數(shù)學(xué)總評成績是多少分?20.(8分)在平行四邊形ABCD中,點E是AD邊上的點,連接BE.(1)如圖1,若BE平分∠ABC,BC=8,ED=3,求平行四邊形ABCD的周長;(2)如圖2,點F是平行四邊形外一點,F(xiàn)B=CD.連接BF、CF,CF與BE相交于點G,若∠FBE+∠ABC=180°,點G是CF的中點,求證:2BG+ED=BC.21.(8分)隨著移動互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運而生.為了解某小區(qū)居民使用共享單車的情況,某研究小組隨機采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車的次數(shù)分別為:17,12,15,20,17,0,7,26,17,1.(1)這組數(shù)據(jù)的中位數(shù)是,眾數(shù)是;(2)計算這10位居民一周內(nèi)使用共享單車的平均次數(shù);(3)若該小區(qū)有200名居民,試估計該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).22.(10分)如圖⑴,在△ABC中,∠C=90°,AC=8cm,BC=6cm.點M由點B出發(fā)沿BA方向向點A勻速運動,同時點N由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/s.連接MN,設(shè)運動時間為t(s)﹙0<t<4﹚,解答下列問題:⑴設(shè)△AMN的面積為S,求S與t之間的函數(shù)關(guān)系式,并求出S的最大值;⑵如圖⑵,連接MC,將△MNC沿NC翻折,得到四邊形MNPC,當(dāng)四邊形MNPC為菱形時,求t的值;⑶當(dāng)t的值為,△AMN是等腰三角形.23.(10分)如圖,點A,P,B,C是⊙O上的四個點,∠DAP=∠PBA.(1)求證:AD是⊙O的切線;(2)若∠APC=∠BPC=60°,試探究線段PA,PB,PC之間的數(shù)量關(guān)系,并證明你的結(jié)論;(3)在第(2)問的條件下,若AD=2,PD=1,求線段AC的長.24.(10分)在一個不透明的口袋里,裝有若干個完全相同的A、B、C三種球,其中A球x個,B球x個,C球(x+1)個.若從中任意摸出一個球是A球的概率為0.1.(1)這個袋中A、B、C三種球各多少個?(2)若小明從口袋中隨機模出1個球后不放回,再隨機摸出1個.請你用畫樹狀圖的方法求小明摸到1個A球和1個C球的概率.25.(12分)如圖1,△ABC是等邊三角形,點D在BC上,BD=2CD,點F是射線AC上的動點,點M是射線AD上的動點,∠AFM=∠DAB,F(xiàn)M的延長線與射線AB交于點E,設(shè)AM=x,△AME與△ABD重疊部分的面積為y,y與x的函數(shù)圖象如圖2所示(其中0<x≤m,m<x<n,x≥n時,函數(shù)的解析式不同).(1)填空:AB=_______;(2)求出y與x的函數(shù)關(guān)系式,并求出x的取值范圍.26.在平面直角坐標系中的兩個圖形與,給出如下定義:為圖形上任意一點,為圖形上任意一點,如果兩點間的距離有最小值,那么稱這個最小值為圖形間的“和睦距離”,記作,若圖形有公共點,則.(1)如圖(1),,,⊙的半徑為2,則,;(2)如圖(2),已知的一邊在軸上,在上,且,,.①是內(nèi)一點,若、分別且⊙于E、F,且,判斷與⊙的位置關(guān)系,并求出點的坐標;②若以為半徑,①中的為圓心的⊙,有,,直接寫出的取值范圍.
參考答案一、選擇題(每題4分,共48分)1、C【解析】如圖,連接BF交y軸于P,
∵四邊形ABCD和四邊形EFGO是矩形,點B,F(xiàn)的坐標分別為(-4,4),(2,1),
∴點C的坐標為(0,4),點G的坐標為(0,1),
∴CG=3,
∵BC∥GF,∴,∴GP=1,PC=2,
∴點P的坐標為(0,2),
故選C.【點睛】本題考查的是位似變換的概念、坐標與圖形性質(zhì),掌握如果兩個圖形不僅是相似圖形,而且對應(yīng)頂點的連線相交于一點,對應(yīng)邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心是解題的關(guān)鍵.2、C【分析】按照配方法的步驟:移項,配方(方程兩邊都加上4),即可得出選項.【詳解】解:x2﹣4x+2=0,x2﹣4x=﹣2,x2﹣4x+4=﹣2+4,(x﹣2)2=2,故選:C.【點睛】本題主要考查配方法,掌握完全平方公式是解題的關(guān)鍵.3、C【解析】由題意根據(jù)二次函數(shù)y=a(x-h)2+k(a≠0)的頂點坐標是(h,k),求出頂點坐標即可.【詳解】解:∵;∴頂點坐標為:(-3,5).故選:C.【點睛】本題考查二次函數(shù)的性質(zhì)和二次函數(shù)的頂點式.熟悉二次函數(shù)的頂點式方程y=a(x-h)2+k中的h、k所表示的意義是解決問題的關(guān)鍵.4、D【分析】當(dāng)k+1=0時,函數(shù)為一次函數(shù)必與x軸有一個交點;當(dāng)k+1≠0時,函數(shù)為二次函數(shù),根據(jù)條件可知其判別式為0,可求得k的值.【詳解】當(dāng)k-1=0,即k=1時,函數(shù)為y=-4x+4,與x軸只有一個交點;當(dāng)k-1≠0,即k≠1時,由函數(shù)與x軸只有一個交點可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,綜上可知k的值為1或2,故選D.【點睛】本題主要考查函數(shù)與x軸的交點,掌握二次函數(shù)與x軸只有一個交點的條件是解題的關(guān)鍵,解決本題時注意考慮一次函數(shù)和二次函數(shù)兩種情況.5、C【分析】設(shè)參加酒會的人數(shù)為x人,根據(jù)每兩人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【詳解】設(shè)參加酒會的人數(shù)為x人,依題可得:
x(x-1)=55,
化簡得:x2-x-110=0,
解得:x1=11,x2=-10(舍去),
故答案為C.【點睛】考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題中的等量關(guān)系列出方程.6、B【解析】把拋物線解析式整理成頂點式解析式,然后寫出對稱軸方程即可.【詳解】解:y=(x+2)(x-4),=x2-2x-8,=x2-2x+1-9,=(x-1)2-9,∴對稱軸方程為x=1.故選:B.【點睛】本題考查了二次函數(shù)的性質(zhì),是基礎(chǔ)題,把拋物線解析式整理成頂點式解析式是解題的關(guān)鍵.7、C【解析】試題分析:當(dāng)x>1時,x+b>kx+4,即不等式x+b>kx+4的解集為x>1.故選C.考點:一次函數(shù)與一元一次不等式.8、B【分析】根據(jù)函數(shù)圖象向上平移加,向右平移減,可得函數(shù)解析式.【詳解】解:將拋物線向上平移1個單位長度,再向右平移3個單位長度后,得到的拋物線的解析式為:.故選:B.【點睛】本題考查了二次函數(shù)圖象與幾何變換,函數(shù)圖象的平移規(guī)律是:左加右減,上加下減.9、C【分析】畫樹狀圖求出共有12種等可能結(jié)果,符合題意得有2種,從而求解.【詳解】解:畫樹狀圖得:∵共有12種等可能的結(jié)果,兩次都摸到白球的有2種情況,∴兩次都摸到白球的概率是:.故答案為C.【點睛】本題考查畫樹狀圖求概率,掌握樹狀圖的畫法準確求出所有的等可能結(jié)果及符合題意的結(jié)果是本題的解題關(guān)鍵.10、D【分析】根據(jù)一元二次方程有兩個不相等的實數(shù)根,得△即可求解.【詳解】∵一元二次方程x2﹣2kx+k2﹣k+2=0有兩個不相等的實數(shù)根,∴△解得k>2.故選D.【點睛】本題考查一元二次方程△與參數(shù)的關(guān)系,列不等式是解題關(guān)鍵.11、B【分析】由OD=,則點A、B的縱坐標為,得到A(,),B(,),求得AB=AO=,AD=,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:∵四邊形OABC是菱形,∴AB∥OC,AB=AO,∵OD=,∴點A、B的縱坐標為,∴A(,),B(,),∴AB=,AD=,∴AO=,在Rt△AOD中,由勾股定理,得,∴,解得:;故選:B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,菱形的性質(zhì),勾股定理,正確的識別圖形是解題的關(guān)鍵.12、B【解析】試題解析:由于圓心A在數(shù)軸上的坐標為3,圓的半徑為2,∴當(dāng)d=r時,⊙A與數(shù)軸交于兩點:1、5,故當(dāng)a=1、5時點B在⊙A上;當(dāng)d<r即當(dāng)1<a<5時,點B在⊙A內(nèi);當(dāng)d>r即當(dāng)a<1或a>5時,點B在⊙A外.由以上結(jié)論可知選項A、C、D正確,選項B錯誤.故選B.點睛:若用d、r分別表示點到圓心的距離和圓的半徑,則當(dāng)d>r時,點在圓外;當(dāng)d=r時,點在圓上;當(dāng)d<r時,點在圓內(nèi).二、填空題(每題4分,共24分)13、1【分析】由m,n是方程x2-x-2=0的兩個根知m+n=1,m2-m=2,代入到原式=2(m2-m)-(m+n)計算可得.【詳解】解:∵m,n是方程x2-x-2=0的兩個根,
∴m+n=1,m2-m=2,
則原式=2(m2-m)-(m+n)
=2×2-1
=4-1
=1,
故答案為:1.【點睛】本題主要考查根與系數(shù)的關(guān)系,x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=,,x1x2=.14、1.【解析】先根據(jù)非負數(shù)的性質(zhì)列式求出x、y的值,再分4是腰長與底邊兩種情況討論求解:根據(jù)題意得,x﹣4=0,y﹣2=0,解得x=4,y=2.①4是腰長時,三角形的三邊分別為4、4、2,∵4+4=2,∴不能組成三角形,②4是底邊時,三角形的三邊分別為4、2、2,能組成三角形,周長=4+2+2=1.所以,三角形的周長為1.15、2【解析】作BD⊥x軸,AC⊥y軸,OH⊥AB(如圖),設(shè)A(x1,y1),B(x2,y2),根據(jù)反比例函數(shù)k的幾何意義得x1y1=x2y2=2;將反比例函數(shù)分別與y=kx,y=聯(lián)立,解得x1=,x2=,從而得x1x2=2,所以y1=x2,y2=x1,根據(jù)SAS得△ACO≌△BDO,由全等三角形性質(zhì)得AO=BO,∠AOC=∠BOD,由垂直定義和已知條件得∠AOC=∠BOD=∠AOH=∠BOH=22.5°,根據(jù)AAS得△ACO≌△BDO≌△AHO≌△BHO,根據(jù)三角形面積公式得S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+x2y2=×2+×2=2.【詳解】如圖:作BD⊥x軸,AC⊥y軸,OH⊥AB,設(shè)A(x1,y1),B(x2,y2),∵A、B在反比例函數(shù)上,∴x1y1=x2y2=2,∵,解得:x1=,又∵,解得:x2=,∴x1x2=×=2,∴y1=x2,y2=x1,即OC=OD,AC=BD,∵BD⊥x軸,AC⊥y軸,∴∠ACO=∠BDO=90°,∴△ACO≌△BDO(SAS),∴AO=BO,∠AOC=∠BOD,又∵∠AOB=45°,OH⊥AB,∴∠AOC=∠BOD=∠AOH=∠BOH=22.5°,∴△ACO≌△BDO≌△AHO≌△BHO,∴S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+x2y2=×2+×2=2,故答案為:2.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,反比例函數(shù)與一次函數(shù)的交點問題,全等三角形的判定與性質(zhì)等,正確添加輔助線是解題的關(guān)鍵.16、【分析】直接利用銳角三角函數(shù)關(guān)系得出,的長,進而得出答案.【詳解】由題意可得:∵,,,解得:,∵,,,解得:,則,答:的長度約為米.故答案為.【點睛】此題主要考查了解直角三角形的應(yīng)用,正確得出,的長是解題關(guān)鍵.17、【分析】利用已知得出底面圓的半徑為,周長為,進而得出母線長,再利用勾股定理進行計算即可得出答案.【詳解】解:∵半徑為的圓形∴底面圓的半徑為∴底面圓的周長為∴扇形的弧長為∴,即圓錐的母線長為∴圓錐的高為.故答案是:【點睛】此題主要考查了圓錐展開圖與原圖對應(yīng)情況,以及勾股定理等知識,根據(jù)已知得出母線長是解決問題的關(guān)鍵.18、3.2【分析】先利用勾股定理求出AC,設(shè),依題意得,故,易證,得到,再在中利用勾股定理解出,又得,列出方程解方程得到x,即可得到AD【詳解】在中利用勾股定理求出,設(shè),依題意得,故.由求出,再在中,利用勾股定理求出,然后由得,即,解得,從而.【點睛】本題考查勾股定理與相似三角形,解題關(guān)鍵在于靈活運用兩者進行線段替換三、解答題(共78分)19、(1)139,138;(2)140分;(3)139分【分析】(1)根據(jù)中位數(shù)和眾數(shù)的定義解答;(2)根據(jù)平均數(shù)的定義求解;(3)根據(jù)加權(quán)平均數(shù)的計算方法求解.【詳解】解:(1)將4個數(shù)按照從小到大的順序排列為:138,138,140,142,所以中位數(shù)是分,眾數(shù)是138分;故答案為:139,138;(2)(分),∴小明的平時成績?yōu)?40分;(3)(分)∴小明本學(xué)期的數(shù)學(xué)總評成績?yōu)?39分.【點睛】本題是有關(guān)統(tǒng)計的綜合題,主要考查了中位數(shù)、眾數(shù)和平均數(shù)的知識,屬于基礎(chǔ)題型,熟練掌握以上基本知識是解題關(guān)鍵.20、(1)26;(2)見解析【分析】(1)由平行四邊形的性質(zhì)得出AD=BC=8,AB=CD,AD∥BC,由平行線的性質(zhì)得出∠AEB=∠CBE,由BE平分∠ABC,得出∠ABE=∠CBE,推出∠ABE=∠AEB,則AB=AE,AE=AD﹣ED=BC﹣ED=5,得出AB=5,即可得出結(jié)果;(2)連接CE,過點C作CK∥BF交BE于K,則∠FBG=∠CKG,由點G是CF的中點,得出FG=CG,由AAS證得△FBG≌△CKG,得出BG=KG,CK=BF=CD,由平行四邊形的性質(zhì)得出∠ABC=∠D,∠BAE+∠D=180°,AB=CD=CK,AD∥BC,由平行線的性質(zhì)得出∠DEC=∠BCE,∠AEB=∠KBC,易證∠EKC=∠D,∠CKB=∠BAE,由AAS證得△AEB≌△KBC,得出BC=BE,則∠KEC=∠BCE,推出∠KEC=∠DEC,由AAS證得△KEC≌△DEC,得出KE=ED,即可得出結(jié)論.【詳解】(1)∵四邊形ABCD是平行四邊形,∴AD=BC=8,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵AE=AD﹣ED=BC﹣ED=8﹣3=5,∴AB=5,∴平行四邊形ABCD的周長=2AB+2BC=2×5+2×8=26;(2)連接CE,過點C作CK∥BF交BE于K,如圖2所示:則∠FBG=∠CKG,∵點G是CF的中點,∴FG=CG,在△FBG和△CKG中,∵,∴△FBG≌△CKG(AAS),∴BG=KG,CK=BF=CD,∵四邊形ABCD是平行四邊形,∴∠ABC=∠D,∠BAE+∠D=180°,AB=CD=CK,AD∥BC,∴∠DEC=∠BCE,∠AEB=∠KBC,∵∠FBE+∠ABC=180°,∴∠FBE+∠D=180°,∴∠CKB+∠D=180°,∴∠EKC=∠D,∵∠BAE+∠D=180°,∴∠CKB=∠BAE,在△AEB和△KBC中,∵,∴△AEB≌△KBC(AAS),∴BC=EB,∴∠KEC=∠BCE,∴∠KEC=∠DEC,在△KEC和△DEC中,∵,∴△KEC≌△DEC(AAS),∴KE=ED,∵BE=BG+KG+KE=2BG+ED,∴2BG+ED=BC.【點睛】本題主要考查三角形全等的判定和性質(zhì)定理和平行四邊形的性質(zhì)定理的綜合應(yīng)用,添加合適的輔助線,構(gòu)造全等三角形,是解題的關(guān)鍵.21、(1)16,17;(2)14;(3)2.【分析】(1)將數(shù)據(jù)按照大小順序重新排列,計算出中間兩個數(shù)的平均數(shù)即是中位數(shù),出現(xiàn)次數(shù)最多的即為眾數(shù);(2)根據(jù)平均數(shù)的概念,將所有數(shù)的和除以10即可;(3)用樣本平均數(shù)估算總體的平均數(shù).【詳解】(1)按照大小順序重新排列后,第5、第6個數(shù)分別是15和17,所以中位數(shù)是(15+17)÷2=16,17出現(xiàn)3次最多,所以眾數(shù)是17,故答案為16,17;(2)14,答:這10位居民一周內(nèi)使用共享單車的平均次數(shù)是14次;(3)200×14=2答:該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù)為2次.【點睛】本題考查了中位數(shù)、眾數(shù)、平均數(shù)的概念以及利用樣本平均數(shù)估計總體.抓住概念進行解題,難度不大,但是中位數(shù)一定要先將所給數(shù)據(jù)按照大小順序重新排列后再求,以免出錯.22、(1),;(2)t=;(3)或或【分析】(1)如圖過點M作MD⊥AC于點D,利用相似三角形的性質(zhì)求出MD即可解決問題;(2)連接PM,交AC于D,,當(dāng)四邊形MNPC為菱形時,ND=,即可用t表示AD,再結(jié)合第一問的相似可以用另外一個含t式子表示AD,列方程計算即可;(3)分別用t表示出AP、AQ、PQ,再分三種情況討論:①當(dāng)AQ=AP②當(dāng)PQ=AQ③當(dāng)PQ=AP,再分別計算即可.【詳解】解:⑴過點M作MD⊥AC于點D.∵,;∴AB=10cm.BM=AN=2t∴AM=10-2t.∵△ADM∽△ACB∴即∴∴又∴S的最大值是;⑵連接PM,交AC于D,∵四邊形MNPC是菱形,則MP⊥NC,ND=CD∵CN=8-2t∴ND=4-t∴AD=2t+4-t=t+4由⑴知AD=∴=t+4∴t=;(3)由(1)知,PE=﹣t+3,與(2)同理得:QE=AE﹣AQ=﹣t+4∴PQ===,在△APQ中,①當(dāng)AQ=AP,即t=5﹣t時,解得:t1=;②當(dāng)PQ=AQ,即=t時,解得:t2=,t3=5;③當(dāng)PQ=AP,即=5﹣t時,解得:t4=0,t5=;∵0<t<4,∴t3=5,t4=0不合題意,舍去,∴當(dāng)t為s或s或s時,△APQ是等腰三角形.【點睛】此題主要考查了相似形綜合,用到的知識點是相似三角形的判定與性質(zhì)、勾股定理、三角形的面積公式以及二次函數(shù)的最值問題,關(guān)鍵是根據(jù)題意做出輔助線,利用數(shù)形結(jié)合思想進行解答.23、(1)證明見解析;(2)PA+PB=PF+FC=PC;(3)1+.【分析】(1)欲證明AD是⊙O的切線,只需推知AD⊥AE即可;(2)首先在線段PC上截取PF=PB,連接BF,進而得出△BPA≌△BFC(AAS),即可得出PA+PB=PF+FC=PC;(3)利用△ADP∽△BDA,得出==,求出BP的長,進而得出△ADP∽△CAP,則=,則AP2=CP?PD求出AP的長,即可得出答案.【詳解】(1)證明:先作⊙O的直徑AE,連接PE,∵AE是直徑,∴∠APE=90°.∴∠E+∠PAE=90°.又∵∠DAP=∠PBA,∠E=∠PBA,∴∠DAP=E,∴∠DAP+∠PAE=90°,即AD⊥AE,∴AD是⊙O的切線;(2)PA+PB=PC,證明:在線段PC上截取PF=PB,連接BF,∵PF=PB,∠BPC=60°,∴△PBF是等邊三角形,∴PB=BF,∠BFP=60°,∴∠BFC=180°﹣∠PFB=120°,∵∠BPA=∠APC+∠BPC=120°,∴∠BPA=∠BFC,在△BPA和△BFC中,,∴△BPA≌△BFC(AAS),∴PA=FC,AB=CB,∴PA+PB=PF+FC=PC;(3)∵△ADP∽△BDA,∴==,∵AD=2,PD=1,∴BD=4,AB=2AP,∴BP=BD﹣DP=3,∵∠APD=180°﹣∠BPA=60°,∴∠APD=∠APC,∵∠PAD=∠E,∠PCA=∠E,∴∠PAD=∠PCA,∴△ADP∽△CAP,∴=,∴AP2=CP?PD,∴AP2=(3+AP)?1,解得:AP=或AP=(舍去),由(2)知△ABC是等邊三角形,∴AC=BC=AB=2AP=1+.【點睛】此題屬于圓的綜合題,涉及了圓周角定理,切線的判定與性質(zhì),相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì)等知識,綜合性較強,解答本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024二手車交易協(xié)議書樣本
- 2021年新教材人教A版高中數(shù)學(xué)必修第一冊第二章一元二次函數(shù)、方程和不等式-教學(xué)課件
- 建筑工地勞務(wù)承包協(xié)議樣本
- 臨時店鋪租賃合同
- 工礦加工合同模板
- 簡單建材供貨合同
- 普通員工勞動合同的示范文本
- 手機美容保護膜系統(tǒng)購銷協(xié)議范本
- 工程合同管理費用解析
- 商場裝修合同書
- 懸臂澆筑連續(xù)梁施工作業(yè)指導(dǎo)書
- Unit 3 Just a brother 閱讀理解課件-高中英語外研版必修第一冊
- 醫(yī)務(wù)人員手衛(wèi)生的SOP
- 建筑材料進場驗收制度頁
- 護理員培訓(xùn)-課件
- 7的乘法口訣(省一等獎)課件
- 1.《鄭人買履》課件PPT
- 合同責(zé)任分解表
- 土建工程招標文件范本
- 《中外美術(shù)史》課件14文藝復(fù)興美術(shù)
- 幼兒園戶外活動PPT課件
評論
0/150
提交評論