![靜電場(chǎng)和穩(wěn)恒電場(chǎng)課件_第1頁](http://file4.renrendoc.com/view4/M00/04/1C/wKhkGGaWaRSAC_XNAAJ6BbklxPI470.jpg)
![靜電場(chǎng)和穩(wěn)恒電場(chǎng)課件_第2頁](http://file4.renrendoc.com/view4/M00/04/1C/wKhkGGaWaRSAC_XNAAJ6BbklxPI4702.jpg)
![靜電場(chǎng)和穩(wěn)恒電場(chǎng)課件_第3頁](http://file4.renrendoc.com/view4/M00/04/1C/wKhkGGaWaRSAC_XNAAJ6BbklxPI4703.jpg)
![靜電場(chǎng)和穩(wěn)恒電場(chǎng)課件_第4頁](http://file4.renrendoc.com/view4/M00/04/1C/wKhkGGaWaRSAC_XNAAJ6BbklxPI4704.jpg)
![靜電場(chǎng)和穩(wěn)恒電場(chǎng)課件_第5頁](http://file4.renrendoc.com/view4/M00/04/1C/wKhkGGaWaRSAC_XNAAJ6BbklxPI4705.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1電場(chǎng)電場(chǎng)強(qiáng)度電通量高斯定理靜電場(chǎng)的環(huán)路定理電勢(shì)能等勢(shì)面電勢(shì)與電場(chǎng)強(qiáng)度的關(guān)系靜電場(chǎng)和穩(wěn)恒電場(chǎng)靜電場(chǎng)中的導(dǎo)體電容靜電能21、電荷守恒定律——電絕緣系統(tǒng)中,電荷的代數(shù)和保持常量。
+-電子對(duì)湮滅
+-電子對(duì)產(chǎn)生§9.1電場(chǎng)電場(chǎng)強(qiáng)度
一、電荷300.51.01.5質(zhì)子+e00.51.01.5中子+-宏觀物體帶電量為e的整數(shù)倍??淇?、電荷的量子性電子電量43、電荷相對(duì)論不變性+++電荷為Q電荷為Q5電荷1受電荷2的力有理化真空中的介電常數(shù)兩個(gè)點(diǎn)電荷之間的作用力,不會(huì)因?yàn)榈谌齻€(gè)電荷的存在而改變疊加原理
二、庫侖定律62、當(dāng)帶電體在電場(chǎng)中移動(dòng)時(shí),電場(chǎng)所作用的力將對(duì)帶電體作功.(物質(zhì)性1)靜電場(chǎng)1、處于靜電場(chǎng)中的任何帶電體都受到電場(chǎng)所作用的力;(物質(zhì)性1)一般情況下,場(chǎng)強(qiáng)與場(chǎng)強(qiáng)的空間分布有關(guān)。7線度足夠地小——場(chǎng)點(diǎn)確定;電量充分地小——不至于使場(chǎng)源電荷重新分布。1、試驗(yàn)電荷大?。簡挝徽姾墒芰Ψ较颍赫姾墒芰Φ姆较騿挝唬篘/C、V/m說明2、Q0只是使場(chǎng)顯露出來,即使無Q0
,
也存在三、電場(chǎng)強(qiáng)度此式為電場(chǎng)強(qiáng)度的定義式8點(diǎn)電荷試驗(yàn)電荷方向試驗(yàn)電荷受力場(chǎng)強(qiáng)疊加原理由定義四、電場(chǎng)疊加原理9電荷連續(xù)分布的帶電體的場(chǎng)強(qiáng)場(chǎng)強(qiáng)疊加原理分量式Q10例題求:電偶極子中垂面上任意點(diǎn)的場(chǎng)強(qiáng)解定義:偶極矩r>>lr+=r-
r+-11由對(duì)稱性例題均勻帶電細(xì)棒,長
L
,電荷線密度
,求:中垂面上的場(chǎng)強(qiáng)。解:0yx012當(dāng)L
1-
22
2一般yx0?13已知:總電量Q;半徑R
。求:均勻帶電圓環(huán)軸線上的場(chǎng)強(qiáng)。x(2)R<<x(1)討論:例題R14x已知:總電量Q;半徑R
。求:均勻帶電圓盤軸線上的場(chǎng)強(qiáng)。當(dāng)R>>x無限大帶電平面場(chǎng)強(qiáng)例題15一、電場(chǎng)線電場(chǎng)中假想的曲線疏密——表征場(chǎng)強(qiáng)的大小(穿過單位垂直截面的電場(chǎng)線數(shù)=附近的場(chǎng)強(qiáng)大?。┣芯€方向——場(chǎng)強(qiáng)的方向++
任何兩條電場(chǎng)線不會(huì)在無電荷處相交?!?.2電通量高斯定理16幾種常見電場(chǎng)的電力線圖17電場(chǎng)線特性
1)始于正電荷,止于負(fù)電荷(或來自無窮遠(yuǎn),去向無窮遠(yuǎn)),不會(huì)在沒有電荷處中斷.
2)
電場(chǎng)線不相交.3)
靜電場(chǎng)電場(chǎng)線不閉合.18二、電通量
e(電場(chǎng)強(qiáng)度通量)SS1、均勻電場(chǎng)2、均勻電場(chǎng)
=
S3、非均勻電場(chǎng)、任意曲面dS單位:Vm19K.F.Gauss——德國物理學(xué)家、數(shù)學(xué)家、天文學(xué)家定理:真空中的靜電場(chǎng)內(nèi),通過任意封閉曲面的電通量等于曲面內(nèi)所包圍的電荷電量的代數(shù)和除以真空介電常數(shù)。
=0
>0
<0三、高斯定理規(guī)定外法線為正向。20+點(diǎn)電荷位于球面中心高斯定理的導(dǎo)出高斯定理庫侖定律電場(chǎng)強(qiáng)度疊加原理21+點(diǎn)電荷在任意封閉曲面內(nèi)其中立體角22點(diǎn)電荷在封閉曲面之外23由多個(gè)點(diǎn)電荷產(chǎn)生的電場(chǎng)24高斯定理1)高斯面上的電場(chǎng)強(qiáng)度為所有內(nèi)外電荷的總電場(chǎng)強(qiáng)度.總結(jié):4)僅高斯面內(nèi)的電荷對(duì)高斯面的電場(chǎng)強(qiáng)度通量有貢獻(xiàn).2)高斯面為封閉曲面.5)靜電場(chǎng)是有源場(chǎng).3)穿進(jìn)高斯面的電場(chǎng)強(qiáng)度通量為正,穿出為負(fù).25在點(diǎn)電荷和的靜電場(chǎng)中,做如下的三個(gè)閉合面求通過各閉合面的電通量.討論
將從移到點(diǎn)電場(chǎng)強(qiáng)度是否變化?穿過高斯面的有變化?26四高斯定理的應(yīng)用
其步驟為對(duì)稱性分析;根據(jù)對(duì)稱性選擇合適的高斯面;應(yīng)用高斯定理計(jì)算.(用高斯定理求解的靜電場(chǎng)必須具有一定的對(duì)稱性)27對(duì)于具有某種對(duì)稱性的電場(chǎng),用高斯定理求場(chǎng)強(qiáng)簡便。例題求電量為Q
、半徑為R的均勻帶電球面的場(chǎng)強(qiáng)分布。源球?qū)ΨQ場(chǎng)球?qū)ΨQR0ER選高斯面高斯定理的應(yīng)用解題28例題
求:電量為Q
、半徑為R的均勻帶電球體的場(chǎng)強(qiáng)分布。R解:選擇高斯面——同心球面r0ER29?r例題
求:電荷線密度為
的無限長帶電直線的場(chǎng)強(qiáng)分布。解:選擇高斯面上下底面?zhèn)让?,且同一柱面上E大小相等。0思考:如果線粗細(xì)不可忽略,空間場(chǎng)強(qiáng)分布如何?30求:電荷面密度為
的無限大均勻帶電平面的場(chǎng)強(qiáng)分布。解:選擇高斯面——與平面正交對(duì)稱的柱面?zhèn)让娴酌?+++++++++且
大小相等;例題31當(dāng)場(chǎng)源是幾個(gè)具有對(duì)稱性的帶電體時(shí),可用高斯定理分別求各帶電體單獨(dú)存在時(shí)的場(chǎng)強(qiáng),再作矢量疊加。例題
求:電荷面密度分別為
1
、
2兩個(gè)平行放置的無限大均勻帶電平面的場(chǎng)強(qiáng)分布。ABC++++++++++++++++++++++++當(dāng)1=-
2=解:帶電平板電容器間的場(chǎng)強(qiáng)32P1§9.3靜電場(chǎng)的環(huán)路定理電勢(shì)能Q0Q原點(diǎn)OP2靜止點(diǎn)電荷場(chǎng)是保守力場(chǎng)保守力場(chǎng)
一、靜電力的功電場(chǎng)力作功A1–2=?試驗(yàn)電荷Q0從P1P2
沿任意路徑
1.點(diǎn)電荷的電場(chǎng)332.任意帶電體的電場(chǎng)力做功根據(jù)電場(chǎng)強(qiáng)度疊加原理,任意帶電體在某點(diǎn)產(chǎn)生的電場(chǎng)強(qiáng)度,等于各電荷元單獨(dú)在該點(diǎn)產(chǎn)生的電場(chǎng)強(qiáng)度的矢量和。實(shí)驗(yàn)電荷q0在電場(chǎng)中從a點(diǎn)沿某一路徑L移動(dòng)到b點(diǎn)時(shí)靜電場(chǎng)力作的功為:靜電場(chǎng)力作功與移動(dòng)實(shí)驗(yàn)電荷的具體路徑無關(guān)34靜電場(chǎng)的環(huán)路定理所有的靜電場(chǎng)都是保守力場(chǎng)ab靜電場(chǎng)的電場(chǎng)線不可能是閉合的.Q0L1L235ab例:證明靜電場(chǎng)中無電荷區(qū)域,凡電力線是平行直線的地方,(既電場(chǎng)強(qiáng)度方向處處相同),電場(chǎng)強(qiáng)度的大小必定處處相等。證:1.以任意一條電力線為軸,作圓柱形高斯面。側(cè)面a,b
兩個(gè)底面在兩底面處
大小相等;362.選取如圖所示的矩形閉合路徑ABCD。既垂直于電場(chǎng)線方向上任意兩點(diǎn)的電場(chǎng)強(qiáng)度相等。ABCD以上證明同一電場(chǎng)線上各點(diǎn)電場(chǎng)強(qiáng)度的數(shù)值處處相等。此積分為零此積分為零37保守力作功與路徑無關(guān),只取決于系統(tǒng)的始末位置。存在由位置決定的函數(shù)WP——?jiǎng)菽芎瘮?shù)保守力作功以損失勢(shì)能為代價(jià)。
系統(tǒng)——電場(chǎng)+試驗(yàn)電荷——在P1處的電勢(shì)能為A1-2=WP1-WP2當(dāng)r2
,位置2的電勢(shì)能為0,位置1的電勢(shì)能為:二、電勢(shì)能電勢(shì)1、電勢(shì)能點(diǎn)電荷的電場(chǎng)Wp138一、定義P1
點(diǎn)的電勢(shì)1、單位正電荷放在P1處,系統(tǒng)的電勢(shì)能。2、把單位正電荷從P1處移到0電勢(shì)(無限遠(yuǎn))處,電場(chǎng)力所做的功。單位:V(伏特)二、靜電場(chǎng)中任意兩點(diǎn)P1、P2
間的電勢(shì)差P2P1O把單位正電荷從P1處沿任意路徑移到P2處電場(chǎng)力做的功。電勢(shì)電勢(shì)差39把
從P1處移到P2處電場(chǎng)力做的功可表示為U
1
U
2Q0
0
A120Q0
0
A12
0U
1
U
2
情況自行討論在靜電場(chǎng)中釋放正電荷
向電勢(shì)低處運(yùn)動(dòng)正電荷受力方向
沿電力線方向結(jié)論:電力線指向電勢(shì)減弱的方向。討論:401、根據(jù)定義例題求:點(diǎn)電荷電場(chǎng)的電勢(shì)分布Q·P解:已知設(shè)無限遠(yuǎn)處為0電勢(shì),則電場(chǎng)中距離點(diǎn)電荷r
的P點(diǎn)處電勢(shì)為點(diǎn)電荷電場(chǎng)的電勢(shì)分布0U三、電勢(shì)的計(jì)算41R0ER例題求:均勻帶電球面的電場(chǎng)的電勢(shì)分布.P·解:已知設(shè)無限遠(yuǎn)處為0電勢(shì),則電場(chǎng)中與球心距離為r
P
的P點(diǎn)處電勢(shì)為UP=?to2542
求:電荷線密度為
的無限長帶電直線的電勢(shì)分布。解:由
分析如果仍選擇無限遠(yuǎn)為電勢(shì)0點(diǎn),積分將趨于無限大。必須選擇某一定點(diǎn)為電勢(shì)0點(diǎn)——通??蛇x地球?,F(xiàn)在選距離線a米的P0點(diǎn)為電勢(shì)0點(diǎn)。aP0例題343點(diǎn)電荷電場(chǎng)的電勢(shì)P點(diǎn)電荷系UP
=?根據(jù)定義分立的點(diǎn)電荷系連續(xù)分布的帶電體系QP2、電勢(shì)利用疊加原理44例題5已知:總電量Q;半徑R
。求:均勻帶電圓環(huán)軸線上的電勢(shì)分布Rx0P解:x45例:計(jì)算電偶極子場(chǎng)中任一點(diǎn)P的電勢(shì)當(dāng)可做如下近似:46x已知:總電量Q;半徑R
。求:均勻帶電圓盤軸線上的電勢(shì)。當(dāng)x>>RX=0
例題Ux471、等勢(shì)面特點(diǎn)(1)沿等勢(shì)面移動(dòng)電荷,電場(chǎng)力不作功。(2)等勢(shì)面處處與電力線正交。+UaUbUcP1P2同一等勢(shì)面上0Q0E0dr0(當(dāng)規(guī)定相鄰兩等勢(shì)面的電勢(shì)差為定值)(3)等勢(shì)面稠密處——電勢(shì)變化快電場(chǎng)強(qiáng)度大同一等勢(shì)面上0電勢(shì)變化快四、場(chǎng)強(qiáng)和電勢(shì)的微分關(guān)系——
電勢(shì)相等的空間各點(diǎn)所組成的面482、電勢(shì)梯度
U1U2P1P2
P1、P2相距很近,兩處場(chǎng)強(qiáng)相等。兩點(diǎn)間電勢(shì)差沿方向電勢(shì)增量電勢(shì)沿某一方向的減少率=場(chǎng)強(qiáng)沿此方向的分量電勢(shì)梯度沿著的方向電勢(shì)空間變化率最大++
49已知:總電量Q;半徑R
。求:均勻帶電圓環(huán)軸線上的場(chǎng)強(qiáng)與電勢(shì)。Rx例題650例題6已知:總電量Q;半徑R
。求:均勻帶電圓環(huán)軸線上的電勢(shì)解:Rx0Px與場(chǎng)強(qiáng)。512、可有計(jì)算電勢(shì)的方法1、點(diǎn)電荷場(chǎng)的電勢(shì)及疊加原理小結(jié)計(jì)算場(chǎng)強(qiáng)的方法1、點(diǎn)電荷場(chǎng)的場(chǎng)強(qiáng)及疊加原理2、根據(jù)電勢(shì)的定義(分立)(連續(xù))(分立)(連續(xù))52典型電場(chǎng)電勢(shì)典型電場(chǎng)的場(chǎng)強(qiáng)3.高斯定理均勻帶電直線l均勻帶電圓環(huán)均勻帶電圓盤方向垂直于環(huán)面方向垂直于盤面(2)R<<x(1)53典型
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京課改版歷史七年級(jí)上冊(cè)第11課《秦朝的統(tǒng)一》聽課評(píng)課記錄
- 新人教版九年級(jí)歷史下冊(cè)第19課《現(xiàn)代音樂和電影》聽課評(píng)課記錄
- 蘇科版九年級(jí)數(shù)學(xué)聽評(píng)課記錄:第31講 與圓有關(guān)的位置關(guān)系
- 人教版九年級(jí)數(shù)學(xué)下冊(cè):29《復(fù)習(xí)題》聽評(píng)課記錄1
- 二年級(jí)體育聽評(píng)課記錄
- 首師大版道德與法治七年級(jí)下冊(cè)1.2《彼此尊重顯自尊》聽課評(píng)課記錄
- 五年級(jí)數(shù)學(xué)下冊(cè)聽評(píng)課記錄-《6 圓的面積》蘇教版
- 蘇教版小學(xué)數(shù)學(xué)四年級(jí)上口算部分
- 三年級(jí)語文教學(xué)計(jì)劃模板
- 新員工入職工作計(jì)劃書
- 人教版小學(xué)數(shù)學(xué)(2024)一年級(jí)下冊(cè)第五單元100以內(nèi)的筆算加、減法綜合素養(yǎng)測(cè)評(píng) B卷(含答案)
- 2024-2025學(xué)年北京市豐臺(tái)區(qū)高三語文上學(xué)期期末試卷及答案解析
- 2024年度體育賽事贊助合同:運(yùn)動(dòng)員代言與贊助權(quán)益2篇
- 2025屆西藏林芝一中高三第二次診斷性檢測(cè)英語試卷含解析
- 藥企銷售總經(jīng)理競聘
- 開封市第一屆職業(yè)技能大賽健康照護(hù)項(xiàng)目技術(shù)文件(國賽)
- 公路電子收費(fèi)系統(tǒng)安裝合同范本
- 醫(yī)院培訓(xùn)課件:《傷口評(píng)估與測(cè)量》
- 2021年全國高考物理真題試卷及解析(全國已卷)
- 期末試卷(試題)-2024-2025學(xué)年四年級(jí)上冊(cè)數(shù)學(xué)滬教版
- 《第一單元口語交際:即興發(fā)言》教案-2023-2024學(xué)年六年級(jí)下冊(cè)語文統(tǒng)編版
評(píng)論
0/150
提交評(píng)論