遼寧大連甘井子區(qū)育文中學(xué)2024年中考數(shù)學(xué)模擬預(yù)測題含解析_第1頁
遼寧大連甘井子區(qū)育文中學(xué)2024年中考數(shù)學(xué)模擬預(yù)測題含解析_第2頁
遼寧大連甘井子區(qū)育文中學(xué)2024年中考數(shù)學(xué)模擬預(yù)測題含解析_第3頁
遼寧大連甘井子區(qū)育文中學(xué)2024年中考數(shù)學(xué)模擬預(yù)測題含解析_第4頁
遼寧大連甘井子區(qū)育文中學(xué)2024年中考數(shù)學(xué)模擬預(yù)測題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

遼寧大連甘井子區(qū)育文中學(xué)2024年中考數(shù)學(xué)模擬預(yù)測題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.為了解中學(xué)300名男生的身高情況,隨機抽取若干名男生進行身高測量,將所得數(shù)據(jù)整理后,畫出頻數(shù)分布直方圖(如圖).估計該校男生的身高在169.5cm~174.5cm之間的人數(shù)有()A.12 B.48 C.72 D.962.如圖,在平行四邊形ABCD中,AC與BD相交于O,且AO=BD=4,AD=3,則△BOC的周長為()A.9 B.10 C.12 D.143.如圖,二次函數(shù)y=ax1+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=1,且OA=OC.則下列結(jié)論:①abc>0;②9a+3b+c>0;③c>﹣1;④關(guān)于x的方程ax1+bx+c=0(a≠0)有一個根為﹣;⑤拋物線上有兩點P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,則y1>y1.其中正確的結(jié)論有()A.1個 B.3個 C.4個 D.5個4.二次函數(shù)y=ax2+bx﹣2(a≠0)的圖象的頂點在第三象限,且過點(1,0),設(shè)t=a﹣b﹣2,則t值的變化范圍是()A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<05.如圖,直線a、b被c所截,若a∥b,∠1=45°,∠2=65°,則∠3的度數(shù)為()A.110° B.115° C.120° D.130°6.如圖,從邊長為a的正方形中去掉一個邊長為b的小正方形,然后將剩余部分剪后拼成一個長方形,上述操作能驗證的等式是()A. B.C. D.7.如圖,點P(x,y)(x>0)是反比例函數(shù)y=(k>0)的圖象上的一個動點,以點P為圓心,OP為半徑的圓與x軸的正半軸交于點A,若△OPA的面積為S,則當(dāng)x增大時,S的變化情況是()A.S的值增大 B.S的值減小C.S的值先增大,后減小 D.S的值不變8.利用運算律簡便計算52×(–999)+49×(–999)+999正確的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–19989.已知二次函數(shù)y=a(x﹣2)2+c,當(dāng)x=x1時,函數(shù)值為y1;當(dāng)x=x2時,函數(shù)值為y2,若|x1﹣2|>|x2﹣2|,則下列表達式正確的是()A.y1+y2>0 B.y1﹣y2>0 C.a(chǎn)(y1﹣y2)>0 D.a(chǎn)(y1+y2)>010.如圖,數(shù)軸上的A、B、C、D四點中,與數(shù)﹣表示的點最接近的是()A.點A B.點B C.點C D.點D二、填空題(本大題共6個小題,每小題3分,共18分)11.已知點P(1,2)關(guān)于x軸的對稱點為P′,且P′在直線y=kx+3上,把直線y=kx+3的圖象向上平移2個單位,所得的直線解析式為.12.如圖,四邊形ABCD與四邊形EFGH位似,位似中心點是點O,,則=_____.13.如圖,在△ABC中,BC=7,,tanC=1,點P為AB邊上一動點(點P不與點B重合),以點P為圓心,PB為半徑畫圓,如果點C在圓外,那么PB的取值范圍______.14.已知二次函數(shù)的圖像與軸交點的橫坐標是和,且,則________.15.如圖,在矩形ABCD中,E是AD上一點,把△ABE沿直線BE翻折,點A正好落在BC邊上的點F處,如果四邊形CDEF和矩形ABCD相似,那么四邊形CDEF和矩形ABCD面積比是__.16.用一個圓心角為120°,半徑為4的扇形作一個圓錐的側(cè)面,這個圓錐的底面圓的半徑為____.三、解答題(共8題,共72分)17.(8分)如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O.有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G.(1)求四邊形OEBF的面積;(2)求證:OG?BD=EF2;(3)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時,求AE的長.18.(8分)網(wǎng)上購物已經(jīng)成為人們常用的一種購物方式,售后評價特別引人關(guān)注,消費者在網(wǎng)店購買某種商品后,對其有“好評”、“中評”、“差評”三種評價,假設(shè)這三種評價是等可能的.(1)小明對一家網(wǎng)店銷售某種商品顯示的評價信息進行了統(tǒng)計,并列出了兩幅不完整的統(tǒng)計圖.利用圖中所提供的信息解決以下問題:①小明一共統(tǒng)計了個評價;②請將圖1補充完整;③圖2中“差評”所占的百分比是;(2)若甲、乙兩名消費者在該網(wǎng)店購買了同一商品,請你用列表格或畫樹狀圖的方法幫助店主求一下兩人中至少有一個給“好評”的概率.19.(8分)我校對全校學(xué)生進傳統(tǒng)文化禮儀知識測試,為了了解測試結(jié)果,隨機抽取部分學(xué)生的成績進行分析,現(xiàn)將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:(1)本次隨機抽取的人數(shù)是人,并將以上兩幅統(tǒng)計圖補充完整;(2)若“一般”和“優(yōu)秀”均被視為達標成績,則我校被抽取的學(xué)生中有人達標;(3)若我校學(xué)生有1200人,請你估計此次測試中,全校達標的學(xué)生有多少人?20.(8分)計算.21.(8分)定安縣定安中學(xué)初中部三名學(xué)生競選校學(xué)生會主席,他們的筆試成績和演講成績(單位:分)分別用兩種方式進行統(tǒng)計,如表和圖.ABC筆試859590口試8085(1)請將表和圖中的空缺部分補充完整;圖中B同學(xué)對應(yīng)的扇形圓心角為度;競選的最后一個程序是由初中部的300名學(xué)生進行投票,三名候選人的得票情況如圖(沒有棄權(quán)票,每名學(xué)生只能推薦一人),則A同學(xué)得票數(shù)為,B同學(xué)得票數(shù)為,C同學(xué)得票數(shù)為;若每票計1分,學(xué)校將筆試、演講、得票三項得分按4:3:3的比例確定個人成績,請計算三名候選人的最終成績,并根據(jù)成績判斷當(dāng)選.(從A、B、C、選擇一個填空)22.(10分)某校團委為研究該校學(xué)生的課余活動情況,采取抽樣調(diào)查的方法,從閱讀、運動、娛樂、其他等四個方面調(diào)查了若干名學(xué)生的興趣愛好,并將調(diào)查的結(jié)果繪制了如下的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列各題:(1)在這次研究中,一共調(diào)查了多少名學(xué)生?(2)“其他”在扇形統(tǒng)計圖中所占的圓心角是多少度?(3)補全頻數(shù)分布直方圖;(4)該校共有3200名學(xué)生,請你估計一下全校大約有多少學(xué)生課余愛好是閱讀.23.(12分)(1)計算:﹣14+sin61°+()﹣2﹣(π﹣)1.(2)解不等式組,并把它的解集在數(shù)軸上表示出來.24.某企業(yè)信息部進行市場調(diào)研發(fā)現(xiàn):信息一:如果單獨投資A種產(chǎn)品,所獲利潤yA(萬元)與投資金額x(萬元)之間存在某種關(guān)系的部分對應(yīng)值如下表:x(萬元)122.535yA(萬元)0.40.811.22信息二:如果單獨投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:yB=ax2+bx,且投資2萬元時獲利潤2.4萬元,當(dāng)投資4萬元時,可獲利潤3.2萬元.(1)求出yB與x的函數(shù)關(guān)系式;(2)從所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)中確定哪種函數(shù)能表示yA與x之間的關(guān)系,并求出yA與x的函數(shù)關(guān)系式;(3)如果企業(yè)同時對A、B兩種產(chǎn)品共投資15萬元,請設(shè)計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

解:根據(jù)圖形,身高在169.5cm~174.5cm之間的人數(shù)的百分比為:,∴該校男生的身高在169.5cm~174.5cm之間的人數(shù)有300×24%=72(人).故選C.2、A【解析】

利用平行四邊形的性質(zhì)即可解決問題.【詳解】∵四邊形ABCD是平行四邊形,∴AD=BC=3,OD=OB==2,OA=OC=4,∴△OBC的周長=3+2+4=9,故選:A.【點睛】題考查了平行四邊形的性質(zhì)和三角形周長的計算,平行四邊形的性質(zhì)有:平行四邊形對邊平行且相等;平行四邊形對角相等,鄰角互補;平行四邊形對角線互相平分.3、D【解析】

根據(jù)拋物線的圖象與系數(shù)的關(guān)系即可求出答案.【詳解】解:由拋物線的開口可知:a<0,由拋物線與y軸的交點可知:c<0,由拋物線的對稱軸可知:>0,∴b>0,∴abc>0,故①正確;令x=3,y>0,∴9a+3b+c>0,故②正確;∵OA=OC<1,∴c>﹣1,故③正確;∵對稱軸為直線x=1,∴﹣=1,∴b=﹣4a.∵OA=OC=﹣c,∴當(dāng)x=﹣c時,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴設(shè)關(guān)于x的方程ax1+bx+c=0(a≠0)有一個根為x,∴x﹣c=4,∴x=c+4=,故④正確;∵x1<1<x1,∴P、Q兩點分布在對稱軸的兩側(cè),∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,即x1到對稱軸的距離小于x1到對稱軸的距離,∴y1>y1,故⑤正確.故選D.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax1+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.本題屬于中等題型.4、D【解析】

由二次函數(shù)的解析式可知,當(dāng)x=1時,所對應(yīng)的函數(shù)值y=a+b-2,把點(1,0)代入y=ax2+bx-2,a+b-2=0,然后根據(jù)頂點在第三象限,可以判斷出a與b的符號,進而求出t=a-b-2的變化范圍.【詳解】解:∵二次函數(shù)y=ax2+bx-2的頂點在第三象限,且經(jīng)過點(1,0)∴該函數(shù)是開口向上的,a>0

∵y=ax2+bx﹣2過點(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵頂點在第三象限,∴-<0.∴b>0.∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t<0.【點睛】本題考查大小二次函數(shù)的圖像,熟練掌握圖像的性質(zhì)是解題的關(guān)鍵.5、A【解析】試題分析:首先根據(jù)三角形的外角性質(zhì)得到∠1+∠2=∠4,然后根據(jù)平行線的性質(zhì)得到∠3=∠4求解.解:根據(jù)三角形的外角性質(zhì),∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故選A.點評:本題考查了平行線的性質(zhì)以及三角形的外角性質(zhì),屬于基礎(chǔ)題,難度較?。?、A【解析】

由圖形可以知道,由大正方形的面積-小正方形的面積=矩形的面積,進而可以證明平方差公式.【詳解】解:大正方形的面積-小正方形的面積=,

矩形的面積=,

故,

故選:A.【點睛】本題主要考查平方差公式的幾何意義,用兩種方法表示陰影部分的面積是解題的關(guān)鍵.7、D【解析】

作PB⊥OA于B,如圖,根據(jù)垂徑定理得到OB=AB,則S△POB=S△PAB,再根據(jù)反比例函數(shù)k的幾何意義得到S△POB=|k|,所以S=2k,為定值.【詳解】作PB⊥OA于B,如圖,則OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值為定值.故選D.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.8、B【解析】

根據(jù)乘法分配律和有理數(shù)的混合運算法則可以解答本題.【詳解】原式=-999×(52+49-1)=-999×100=-1.故選B.【點睛】本題考查了有理數(shù)的混合運算,解答本題的關(guān)鍵是明確有理數(shù)混合運算的計算方法.9、C【解析】

分a>1和a<1兩種情況根據(jù)二次函數(shù)的對稱性確定出y1與y2的大小關(guān)系,然后對各選項分析判斷即可得解.【詳解】解:①a>1時,二次函數(shù)圖象開口向上,∵|x1﹣2|>|x2﹣2|,∴y1>y2,無法確定y1+y2的正負情況,a(y1﹣y2)>1,②a<1時,二次函數(shù)圖象開口向下,∵|x1﹣2|>|x2﹣2|,∴y1<y2,無法確定y1+y2的正負情況,a(y1﹣y2)>1,綜上所述,表達式正確的是a(y1﹣y2)>1.故選:C.【點睛】本題主要考查二次函數(shù)的性質(zhì),利用了二次函數(shù)的對稱性,關(guān)鍵要掌握根據(jù)二次項系數(shù)a的正負分情況討論.10、B【解析】

,計算-1.732與-3,-2,-1的差的絕對值,確定絕對值最小即可.【詳解】,,,,因為0.268<0.732<1.268,所以表示的點與點B最接近,故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、y=﹣1x+1.【解析】

由對稱得到P′(1,﹣2),再代入解析式得到k的值,再根據(jù)平移得到新解析式.【詳解】∵點P(1,2)關(guān)于x軸的對稱點為P′,∴P′(1,﹣2),∵P′在直線y=kx+3上,∴﹣2=k+3,解得:k=﹣1,則y=﹣1x+3,∴把直線y=kx+3的圖象向上平移2個單位,所得的直線解析式為:y=﹣1x+1.故答案為y=﹣1x+1.考點:一次函數(shù)圖象與幾何變換.12、【解析】試題分析:∵四邊形ABCD與四邊形EFGH位似,位似中心點是點O,∴==,則===.故答案為.點睛:本題考查的是位似變換的性質(zhì),掌握位似圖形與相似圖形的關(guān)系、相似多邊形的性質(zhì)是解題的關(guān)鍵.13、【解析】分析:根據(jù)題意作出合適的輔助線,然后根據(jù)題意即可求得PB的取值范圍.詳解:作AD⊥BC于點D,作PE⊥BC于點E.∵在△ABC中,BC=7,AC=3,tanC=1,∴AD=CD=3,∴BD=4,∴AB=5,由題意可得,當(dāng)PB=PC時,點C恰好在以點P為圓心,PB為半徑圓上.∵AD⊥BC,PE⊥BC,∴PE∥AD,∴△BPE∽△BDA,∴,即,得:BP=.故答案為0<PB<.點睛:本題考查了點與圓的位置關(guān)系、解直角三角形,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.14、-12【解析】

令y=0,得方程,和即為方程的兩根,利用根與系數(shù)的關(guān)系求得和,利用完全平方式并結(jié)合即可求得k的值.【詳解】解:∵二次函數(shù)的圖像與軸交點的橫坐標是和,令y=0,得方程,則和即為方程的兩根,∴,,∵,兩邊平方得:,∴,即,解得:,故答案為:.【點睛】本題考查了一元二次方程與二次函數(shù)的關(guān)系,函數(shù)與x軸的交點的橫坐標就是方程的根,解題的關(guān)鍵是利用根與系數(shù)的關(guān)系,整體代入求解.15、【解析】由題意易得四邊形ABFE是正方形,設(shè)AB=1,CF=x,則有BC=x+1,CD=1,∵四邊形CDEF和矩形ABCD相似,∴CD:BC=FC:CD,即1:(x+1)=x:1,∴x=或x=(舍去),∴=,故答案為.【點睛】本題考查了折疊的性質(zhì),相似多邊形的性質(zhì)等,熟練掌握相似多邊形的面積比等于相似比的平方是解題的關(guān)鍵.16、【解析】試題分析:,解得r=.考點:弧長的計算.三、解答題(共8題,共72分)17、(1);(2)詳見解析;(3)AE=.【解析】

(1)由四邊形ABCD是正方形,直角∠MPN,易證得△BOE≌△COF(ASA),則可證得S四邊形OEBF=S△BOC=S正方形ABCD;(2)易證得△OEG∽△OBE,然后由相似三角形的對應(yīng)邊成比例,證得OG?OB=OE2,再利用OB與BD的關(guān)系,OE與EF的關(guān)系,即可證得結(jié)論;(3)首先設(shè)AE=x,則BE=CF=1﹣x,BF=x,繼而表示出△BEF與△COF的面積之和,然后利用二次函數(shù)的最值問題,求得AE的長.【詳解】(1)∵四邊形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,∴△BOE≌△COF(ASA),∴S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD(2)證明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG?OB=OE2,∵∴OG?BD=EF2;(3)如圖,過點O作OH⊥BC,∵BC=1,∴設(shè)AE=x,則BE=CF=1﹣x,BF=x,∴S△BEF+S△COF=BE?BF+CF?OH∵∴當(dāng)時,S△BEF+S△COF最大;即在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時,【點睛】本題屬于四邊形的綜合題,主要考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理以及二次函數(shù)的最值問題.注意掌握轉(zhuǎn)化思想的應(yīng)用是解此題的關(guān)鍵.18、(1)①150;②作圖見解析;③13.3%;(2).【解析】

(1)①用“中評”、“差評”的人數(shù)除以二者的百分比之和即可得總?cè)藬?shù);②用總?cè)藬?shù)減去“中評”、“差評”的人數(shù)可得“好評”的人數(shù),補全條形圖即可;③根據(jù)“差評”的人數(shù)÷總?cè)藬?shù)×100%即可得“差評”所占的百分比;(2)可通過列表表示出甲、乙對商品評價的所有可能結(jié)果數(shù),根據(jù)概率公式即可計算出兩人中至少有一個給“好評”的概率.【詳解】①小明統(tǒng)計的評價一共有:(40+20)÷(1-60%=150(個);②“好評”一共有150×60%=90(個),補全條形圖如圖1:③圖2中“差評”所占的百分比是:×100%=13.3%;(2)列表如下:好中差好好,好好,中好,差中中,好中,中中,差差差,好差,中差,差由表可知,一共有9種等可能結(jié)果,其中至少有一個給“好評”的有5種,∴兩人中至少有一個給“好評”的概率是.考點:扇形統(tǒng)計圖;條形統(tǒng)計圖;列表法與樹狀圖法.19、(1)120,補圖見解析;(2)96;(3)960人.【解析】

(1)由“不合格”的人數(shù)除以占的百分比求出總?cè)藬?shù),確定出“優(yōu)秀”的人數(shù),以及一般的百分比,補全統(tǒng)計圖即可;

(2)求出“一般”與“優(yōu)秀”占的百分比,乘以總?cè)藬?shù)即可得到結(jié)果;

(3)求出達標占的百分比,乘以1200即可得到結(jié)果.【詳解】(1)根據(jù)題意得:24÷20%=120(人),則“優(yōu)秀”人數(shù)為120﹣(24+36)=60(人),“一般”占的百分比為×100%=30%,補全統(tǒng)計圖,如圖所示:(2)根據(jù)題意得:36+60=96(人),則達標的人數(shù)為96人;(3)根據(jù)題意得:×1200=960(人),則全校達標的學(xué)生有960人.故答案為(1)120;(2)96人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?0、【解析】分析:先計算,再做除法,結(jié)果化為整式或最簡分式.詳解:.點睛:本題考查了分式的混合運算.解題過程中注意運算順序.解決本題亦可先把除法轉(zhuǎn)化成乘法,利用乘法對加法的分配律后再求和.21、(1)90;(2)144度;(3)105,120,75;(4)B【解析】

(1)由條形圖可得A演講得分,由表格可得C筆試得分,據(jù)此補全圖形即可;(2)用360°乘以B對應(yīng)的百分比可得答案;(3)用總?cè)藬?shù)乘以A、B、C三人對應(yīng)的百分比可得答案;(4)根據(jù)加權(quán)平均數(shù)的定義計算可得.【詳解】解:(1)由條形圖知,A演講得分為90分,補全圖形如下:故答案為90;(2)扇圖中B同學(xué)對應(yīng)的扇形圓心角為360°×40%=144°,故答案為144;(3)A同學(xué)得票數(shù)為300×35%=105,B同學(xué)得票數(shù)為300×40%=120,C同學(xué)得票數(shù)為300×25%=75,故答案為105、120、75;(4)A的最終得分為=92.5(分),B的最終得分為=98(分),C的最終得分為=84(分),∴B最終當(dāng)選,故答案為B.【點睛】本題考查的是條形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).22、(1)總調(diào)查人數(shù)是100人;(2)在扇形統(tǒng)計圖中“其它”類的圓心角是36°;(3)補全頻數(shù)分布直方圖見解析;(4)估計一下全校課余愛好是閱讀的學(xué)生約為960人.【解析】

(1)利用參加運動的人數(shù)除以其所占的比例即可求得這次調(diào)查的總?cè)藬?shù);(2)用360°乘以“其它”類的人數(shù)所占的百分比即可求解;(3)求得“其它”類的人數(shù)、“娛樂”類的人數(shù),補全統(tǒng)計圖即可;(4)用總?cè)藬?shù)乘以課余愛好是閱讀的學(xué)生人數(shù)所占的百分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論