2025屆天津市河北區(qū)九上數學期末考試試題含解析_第1頁
2025屆天津市河北區(qū)九上數學期末考試試題含解析_第2頁
2025屆天津市河北區(qū)九上數學期末考試試題含解析_第3頁
2025屆天津市河北區(qū)九上數學期末考試試題含解析_第4頁
2025屆天津市河北區(qū)九上數學期末考試試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆天津市河北區(qū)九上數學期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.有一個矩形苗圃園,其中一邊靠墻,另外三邊用長為的籬笆圍成.已知墻長為若平行于墻的一邊長不小于則這個苗圃園面積的最大值和最小值分別為()A. B.C. D.2.二次函數y=﹣(x﹣1)2+5,當m≤x≤n且mn<0時,y的最小值為2m,最大值為2n,則m+n的值為()A. B.2 C. D.3.已知如圖所示,在Rt△ABC中,∠A=90°,∠BCA=75°,AC=8cm,DE垂直平分BC,則BE的長是()A.4cm B.8cm C.16cm D.32cm4.如圖,AD∥BE∥CF,直線l1,l2與這三條平行線分別交于點A,B,C和點D,E,F.已知AB=1,BC=3,DE=2,則EF的長為()A.4 B..5 C.6 D.85.如圖,點P在△ABC的邊AC上,要判斷△ABP∽△ACB,添加一個條件,不正確的是()A.∠ABP=∠C B.∠APB=∠ABCC. D.6.張華同學的身高為米,某一時刻他在陽光下的影長為米,同時與他鄰近的一棵樹的影長為米,則這棵樹的高為()A.米 B.米 C.米 D.米7.方程的根的情況是()A.有兩個不相等的實數根 B.有兩個相等的實數根C.沒有實數根 D.無法確定8.平面直角坐標系內一點P(2,-3)關于原點對稱點的坐標是()A.(3,-2)B.(2,3)C.(-2,3)D.(2,-3)9.如圖,在△ABC中,點D、E分別在邊AB、AC上,則在下列五個條件中:①∠AED=∠B;②DE∥BC;③=;④AD·BC=DE·AC;⑤∠ADE=∠C,能滿足△ADE∽△ACB的條件有()A.1個 B.2 C.3個 D.4個10.一個盒子內裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,則兩次都摸到白球的概率是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,矩形ABCD中,AB=3cm,AD=6cm,點E為AB邊上的任意一點,四邊形EFGB也是矩形,且EF=2BE,則S△AFC=__________cm2.12.如圖,在平面直角坐標系中,已知?OABC的頂點坐標分別是O(0,0),A(3,0),B(4,2),C(1,2),以坐標原點O為位似中心,將?OABC放大3倍,得到?ODEF,則點E的坐標是_____.13.已知拋物線,那么點P(-3,4)關于該拋物線的對稱軸對稱的點的坐標是______.14.拋物線y=x2﹣4x+3與x軸交于A、B,與y軸交于C,則△ABC的面積=__.15.從一副沒有“大小王”的撲克牌中隨機抽取一張,點數為“”的概率是________.16.如圖,用圓心角為120°,半徑為6cm的扇形紙片卷成一個圓錐形無底紙帽,則這個紙帽的高是_____cm.17.如圖,在中,,,.將繞點逆時針旋轉,使點落在邊上的處,點落在處,則,兩點之間的距離為__________;18.已知點A(4,y1),B(,y2),C(-2,y3)都在二次函數y=(x-2)2-1的圖象上,則y1,y2,y3的大小關系是.三、解答題(共66分)19.(10分)如圖示,是的直徑,點是半圓上的一動點(不與,重合),弦平分,過點作交射線于點.(1)求證:與相切:(2)若,,求長;(3)若,長記為,長記為,求與之間的函數關系式,并求出的最大值.20.(6分)如圖是某學校體育看臺側面的示意圖,看臺的坡比為,看臺高度為米,從頂棚的處看處的仰角,距離為米,處到觀眾區(qū)底端處的水平距離為米.(,,結果精確到米)(1)求的長;(2)求的長.21.(6分)某企業(yè)生產并銷售某種產品,假設銷售量與產量相等,如圖中的折線ABD、線段CD分別表示該產品每千克生產成本(單位:元)、銷售價(單位:元)與產量x(單位:kg)之間的函數關系.(1)請解釋圖中點D的橫坐標、縱坐標的實際意義;(2)求線段AB所表示的與x之間的函數表達式;(3)當該產品產量為多少時,獲得的利潤最大?最大利潤是多少?22.(8分)[問題發(fā)現]如圖①,在中,點是的中點,點在邊上,與相交于點,若,則_____;[拓展提高]如圖②,在等邊三角形中,點是的中點,點在邊上,直線與相交于點,若,求的值.[解決問題]如圖③,在中,,點是的中點,點在直線上,直線與直線相交于點,.請直接寫出的長.23.(8分)如圖,是的直徑,直線與相切于點.過點作的垂線,垂足為,線段與相交于點.(1)求證:是的平分線;(2)若,求的長.24.(8分)某學校舉行冬季“趣味體育運動會”,在一個箱內裝入只有標號不同的三顆實心球,標號分別為1,2,3.每次隨機取出一顆實心球,記下標號作為得分,再將實心球放回箱內。小明從箱內取球兩次,若兩次得分的總分不小于5分,請用畫樹狀圖或列表的方法,求發(fā)生“兩次取球得分的總分不小于5分”情況的概率.25.(10分)數學活動課上老師帶領全班學生測量旗桿高度.如圖垂直于地面的旗桿頂端A垂下一根繩子.小明同學將繩子拉直釘在地上,繩子末端恰好在點C處且測得旗桿頂端A的仰角為75°;小亮同學接著拿起繩子末端向前至D處,拉直繩子,此時測得繩子末端E距離地面1.5m且與旗桿頂端A的仰角為60°根據兩位同學的測量數據,求旗桿AB的高度.(參考數據:sin75°≈0.97,cos75°≈0.26,sin60°≈0.87,結果精確到1米)26.(10分)已知:如圖,是正方形的對角線上的兩點,且.求證:四邊形是菱形.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】設垂直于墻面的長為xm,則平行于墻面的長為(20-2x)m,這個苗圃園的面積為ym2,根據二次函數的圖象及性質求最值即可.【詳解】解:設垂直于墻面的長為xm,則平行于墻面的長為(20-2x)m,這個苗圃園的面積為ym2由題意可得y=x(20-2x)=-2(x-5)2+50,且8≤20-2x≤15解得:2.5≤x≤6∵-2<0,二次函數圖象的對稱軸為直線x=5∴當x=5時,y取最大值,最大值為50;當x=2.5時,y取最小值,最小值為37.5;故選C.【點睛】此題考查的是二次函數的應用,掌握二次函數的圖象及性質是解題關鍵.2、D【解析】由m≤x≤n和mn<0知m<0,n>0,據此得最小值為1m為負數,最大值為1n為正數.將最大值為1n分兩種情況,①頂點縱坐標取到最大值,結合圖象最小值只能由x=m時求出.②頂點縱坐標取不到最大值,結合圖象最大值只能由x=n求出,最小值只能由x=m求出.【詳解】解:二次函數y=﹣(x﹣1)1+5的大致圖象如下:.①當m≤0≤x≤n<1時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=n時y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合題意,舍去);②當m≤0≤x≤1≤n時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=1時y取最大值,即1n=﹣(1﹣1)1+5,解得:n=,或x=n時y取最小值,x=1時y取最大值,

1m=-(n-1)1+5,n=,∴m=,

∵m<0,

∴此種情形不合題意,所以m+n=﹣1+=.3、C【分析】連接CE,先由三角形內角和定理求出∠B的度數,再由線段垂直平分線的性質及三角形外角的性質求出∠CEA的度數,由直角三角形中30°所對的直角邊是斜邊的一半即可解答.【詳解】解:連接CE,∵Rt△ABC中,∠A=90°,∠BCA=75°,∴∠B=90°﹣∠BCA=90°﹣75°=15°,∵DE垂直平分BC,∴BE=CE,∴∠BCE=∠B=15°,∴∠AEC=∠BCE+∠B=30°,∵Rt△AEC中,AC=8cm,∴CE=2AC=16cm,∵BE=CE,∴BE=16cm.故選:C.【點睛】此題考查的是垂直平分線的性質、等腰三角形的性質、三角形外角的性質和直角三角形的性質,掌握垂直平分線的性質、等邊對等角、三角形外角的性質和30°所對的直角邊是斜邊的一半是解決此題的關鍵.4、C【解析】解:∵AD∥BE∥CF,根據平行線分線段成比例定理可得,即,解得EF=6,故選C.5、D【解析】試題分析:A.當∠ABP=∠C時,又∵∠A=∠A,∴△ABP∽△ACB,故此選項錯誤;B.當∠APB=∠ABC時,又∵∠A=∠A,∴△ABP∽△ACB,故此選項錯誤;C.當時,又∵∠A=∠A,∴△ABP∽△ACB,故此選項錯誤;D.無法得到△ABP∽△ACB,故此選項正確.故選D.考點:相似三角形的判定.6、A【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體、影子、經過物體頂部的太陽光線三者構成的兩個直角三角形相似.【詳解】解:據相同時刻的物高與影長成比例,

設這棵樹的高度為xm,

則可列比例為,,解得,x=3.1.

故選:A.【點睛】本題主要考查同一時刻物高和影長成正比,考查利用所學知識解決實際問題的能力.7、A【分析】此題考查一元二次方程解的情況的判斷.利用判別式來判斷,當時,有兩個不等的實根;當時,有兩個相等的實根;當時,無實根;【詳解】題中,所以次方程有兩個不相等的實數根,故選A;8、C【解析】略9、D【分析】根據相似三角形的判定定理判斷即可.【詳解】解:①由∠AED=∠B,∠A=∠A,則可判斷△ADE∽△ACB;②DE∥BC,則有∠AED=∠C,∠ADE=∠B,則可判斷△ADE∽△ACB;③=,∠A=∠A,則可判斷△ADE∽△ACB;④AD·BC=DE·AC,可化為,此時不確定∠ADE=∠ACB,故不能確定△ADE∽△ACB;⑤由∠ADE=∠C,∠A=∠A,則可判斷△ADE∽△ACB;所以能滿足△ADE∽△ACB的條件是:①②③⑤,共4個,故選:D.【點睛】此題考查了相似三角形的判定,關鍵是掌握相似三角形的三種判定定理.10、C【分析】畫樹狀圖求出共有12種等可能結果,符合題意得有2種,從而求解.【詳解】解:畫樹狀圖得:∵共有12種等可能的結果,兩次都摸到白球的有2種情況,∴兩次都摸到白球的概率是:.故答案為C.【點睛】本題考查畫樹狀圖求概率,掌握樹狀圖的畫法準確求出所有的等可能結果及符合題意的結果是本題的解題關鍵.二、填空題(每小題3分,共24分)11、9【解析】連接BF,過B作BO⊥AC于O,過點F作FM⊥AC于M.Rt△ABC中,AB=3,BC=6,.∵∠CAB=∠BAC,∠AOB=∠ABC,∴△AOB∽△ABC,,.∵EF=BG=2BE=2GF,BC=2AB,∴Rt△BGF和Rt△ABC中,,∴Rt△BGF∽Rt△ABC,∴∠FBG=∠ACB,∴AC∥BF,∴S△AFC=AC×FM=9.【點睛】△ACF中,AC的長度不變,所以以AC為底邊求面積.因為兩矩形相似,所以易證AC∥BF,從而△ACF的高可用BO表示.在△ABC中求BO的長度,即可計算△ACF的面積.12、(12,6)或(-12,-6)【分析】根據平行四邊形的性質、位似變換的性質計算,得到答案.【詳解】以坐標原點O為位似中心,將?OABC放大3倍,得到?ODEF∵點B的坐標為(4,2),且點B的對應點為點E∴點E的坐標為(4×3,2×3)或(-4×3,-2×3)即:(12,6)或(-12,-6)故答案為:(12,6)或(-12,-6).【點睛】本題考查了位似和平行四邊形的知識;求解的關鍵是熟練掌握位似的性質,從而完成求解.13、(1,4).【解析】試題解析:拋物線的對稱軸為:點關于該拋物線的對稱軸對稱的點的坐標是故答案為14、1【分析】先根據題意求出AB的長。再得到C點坐標,故可求解.【詳解】解:y=0時,0=x2﹣4x+1,解得x1=1,x2=1∴線段AB的長為2,∵與y軸交點C(0,1),∴以AB為底的△ABC的高為1,∴S△ABC=×2×1=1,故答案為:1.【點睛】此題主要考查二次函數與幾何綜合,解題的關鍵是熟知函數與坐標軸交點的求解方法.15、【分析】讓點數為6的撲克牌的張數除以沒有大小王的撲克牌總張數即為所求的概率.【詳解】∵沒有大小王的撲克牌共52張,其中點數為6的撲克牌4張,

∴隨機抽取一張點數為6的撲克,其概率是

故答案為【點睛】本題考查的是隨機事件概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.16、【分析】先求出扇形弧長,再求出圓錐的底面半徑,再根據勾股定理即可出圓錐的高.【詳解】圓心角為120°,半徑為6cm的扇形的弧長為4cm∴圓錐的底面半徑為2,故圓錐的高為=4cm【點睛】此題主要考查圓的弧長及圓錐的底面半徑,解題的關鍵是熟知圓的相關公式.17、【分析】利用勾股定理算出AB的長,再算出BE的長,再利用勾股定理算出BD即可.【詳解】∵AC=4,BC=3,∠C=90°,∴AB=5,∴EB=5-4=1,∴BD=.故答案為:.【點睛】本題考查勾股定理的應用,關鍵在于通過旋轉找到等量關系.18、y3>y1>y2.【解析】試題分析:將A,B,C三點坐標分別代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.考點:二次函數的函數值比較大小.三、解答題(共66分)19、(1)詳見解析;(2)4;(3)【分析】(1)首先連接,通過半徑和角平分線的性質進行等角轉換,得出,進而得出,即可得證;(2)首先連接,得出,進而得出,再根據勾股定理得出DE;(3)首先連接,過點作,得出,再得,進而得出,然后構建二次函數,即可得出其最大值.【詳解】(1)證明:連接∵∴∵平分∴∴∴∵∴又∵是的半徑∴與相切(2)解:連接∵AB為直徑∴∠ADB=90°∵∴∴∴∴中(3)連接,過點作于∵,DE⊥AE,AD=AD∴∴,DE=DG∴∴∴即:∴∴根據二次函數知識可知:當時,【點睛】此題主要考查直線與圓的位置關系、相似三角形的判定與性質以及全等三角形的判定與性質與二次函數的綜合應用,熟練掌握,即可解題.20、(1)24;(2)25.6【分析】(1)根據坡比=垂直高度比水平距離代入求值即可.(2)先過D做EF的垂線,形成直角三角形,再根據銳角三角函數來求.【詳解】解:(1)的坡比為,(2)過點作交于點,在中,,,,【點睛】本題考查了坡比公式和銳角三角函數,銳角三角函數必須在直角三角形中求解.21、(1)點D的橫坐標、縱坐標的實際意義:當產量為130kg時,該產品每千克生產成本與銷售價相等,都為42元;(2)y=﹣0.2x+60(0≤x≤90);(3)當該產品產量為75kg時,獲得的利潤最大,最大值為1.【解析】試題分析:(1)點D的橫坐標、縱坐標的實際意義:當產量為130kg時,該產品每千克生產成本與銷售價相等,都為42元;(2)根據線段AB經過的兩點的坐標利用待定系數法確定一次函數的表達式即可;(3)利用總利潤=單位利潤×產量列出有關x的二次函數,求得最值即可.試題解析:(1)點D的橫坐標、縱坐標的實際意義:當產量為130kg時,該產品每千克生產成本與銷售價相等,都為42元;(2)設線段AB所表示的與x之間的函數關系式為,∵的圖象過點(0,60)與(90,42),∴,∴解得:,∴這個一次函數的表達式為:y=﹣0.2x+60(0≤x≤90);(3)設與x之間的函數關系式為,∵經過點(0,120)與(130,42),∴,解得:,∴這個一次函數的表達式為(0≤x≤130),設產量為xkg時,獲得的利潤為W元,當0≤x≤90時,W==,∴當x=75時,W的值最大,最大值為1;當90≤x130時,W==,∴當x=90時,W=,由﹣0.6<0知,當x>65時,W隨x的增大而減小,∴90≤x≤130時,W≤2160,因此當該產品產量為75kg時,獲得的利潤最大,最大值為1.考點:二次函數的應用.22、[問題發(fā)現];[拓展提高];[解決問題]或.【分析】[問題發(fā)現]由,可知AD是中線,則點P是△ABC的重心,即可得到2∶3;[拓展提高]過點作交于點,則EF是△ACD的中位線,由平行線分線段成比例,得到,通過變形,即可得到答案;[解決問題]根據題意,可分為兩種情況進行討論,①點D在點C的右邊;②點D在點C的左邊;分別畫出圖形,求出BP的長度,即可得到答案.【詳解】解:[問題發(fā)現]:∵,∴點D是BC的中點,∴AD是△ABC的中線,∵點是的中點,則BE是△ABC的中線,∴點P是△ABC的重心,∴;故答案為:.[拓展提高]:過點作交于點.是的中點,是的中點,∴EF是△ACD的中位線,,,,∴,,即..[解決問題]:∵在中,,,∵點E是AC的中點,∴,∵CD=4,則點D可能在點C的右邊和左邊兩種可能;①當點D在點C的右邊時,如圖:過點P作PF⊥CD與點F,∵,,∴△ACD∽△PFD,∴,即,∴,∵,,∴△ECB∽△PBF,∴,∵,∴,解得:,∴,,∴;②當點D在點C的左邊時,如圖:過點P作PF⊥CD與點F,與①同理,可證△ACD∽△PFD,△ECB∽△PBF,∴,,∵,∴,解得:,∴,,∴;∴或.【點睛】本題考查了相似三角形的判定和性質,平行線分線段成比例,勾股定理,以及三角形的重心,解題的關鍵是熟練掌握相似三角形的判定和性質,以及勾股定理解三角形.注意運用分類討論的思想進行解題.23、(1)見解析;(2)【分析】(1)連接OC,可證得OC∥AD,根據平行線性質及等腰三角形性質,可得∠DAC=∠CAO,即得AC平分∠DAB;(2)連接,連接交于點,通過構造直角三角形,利用勾股定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論