




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
遼寧省沈陽市鐵西區(qū)達標名校2023-2024學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.小明在學(xué)習(xí)了正方形之后,給同桌小文出了道題,從下列四個條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個作為補充條件,使?ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認為其中錯誤的是()A.①② B.②③ C.①③ D.②④2.下列計算正確的是()A.(﹣2a)2=2a2 B.a(chǎn)6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a(chǎn)?a2=a23.如圖,在平行四邊形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④ B.②和③ C.③和④ D.②和④4.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數(shù)為()A.50° B.110° C.130° D.150°5.方程x-2x-3A.x=﹣1 B.x=1 C.x=2 D.x=36.下列四個幾何體中,主視圖是三角形的是()A. B. C. D.7.已知二次函數(shù)y=ax2+bx+c的圖像經(jīng)過點(0,m)、(4、m)、(1,n),若n<m,則()A.a(chǎn)>0且4a+b=0 B.a(chǎn)<0且4a+b=0C.a(chǎn)>0且2a+b=0 D.a(chǎn)<0且2a+b=08.如圖圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.9.如圖,直線AB、CD相交于點O,EO⊥CD,下列說法錯誤的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°10.在對某社會機構(gòu)的調(diào)查中收集到以下數(shù)據(jù),你認為最能夠反映該機構(gòu)年齡特征的統(tǒng)計量是()年齡13141525283035其他人數(shù)30533171220923A.平均數(shù) B.眾數(shù) C.方差 D.標準差二、填空題(共7小題,每小題3分,滿分21分)11.寫出一個平面直角坐標系中第三象限內(nèi)點的坐標:(__________)12.閱讀下面材料:在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題:已知:求作:的內(nèi)切圓.小明的作法如下:如圖2,作,的平分線BE和CF,兩線相交于點O;過點O作,垂足為點D;
點O為圓心,OD長為半徑作所以,即為所求作的圓.請回答:該尺規(guī)作圖的依據(jù)是______.13.如圖,在平面直角坐標系xOy中,A(-2,0),B(0,2),⊙O的半徑為1,點C為⊙O上一動點,過點B作BP⊥直線AC,垂足為點P,則P點縱坐標的最大值為cm.14.現(xiàn)有一張圓心角為108°,半徑為40cm的扇形紙片,小紅剪去圓心角為θ的部分扇形紙片后,將剩下的紙片制作成一個底面半徑為10cm的圓錐形紙帽(接縫處不重疊),則剪去的扇形紙片的圓心角θ為_____.15.使得分式值為零的x的值是_________;16.某地區(qū)的居民用電,按照高峰時段和空閑時段規(guī)定了不同的單價.某戶5月份高峰時段用電量是空閑時段用電量2倍,6月份高峰時段用電量比5月份高峰時段用電量少50%,結(jié)果6月份的用電量和5月份的用電量相等,但6月份的電費卻比5月份的電費少25%,求該地區(qū)空閑時段民用電的單價比高峰時段的用電單價低的百分率是_____.17.化簡:=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知拋物線與x軸負半軸相交于點A,與y軸正半軸相交于點B,,直線l過A、B兩點,點D為線段AB上一動點,過點D作軸于點C,交拋物線于點
E.(1)求拋物線的解析式;(2)若拋物線與x軸正半軸交于點F,設(shè)點D的橫坐標為x,四邊形FAEB的面積為S,請寫出S與x的函數(shù)關(guān)系式,并判斷S是否存在最大值,如果存在,求出這個最大值;并寫出此時點E的坐標;如果不存在,請說明理由.(3)連接BE,是否存在點D,使得和相似?若存在,求出點D的坐標;若不存在,說明理由.19.(5分)定義:若某拋物線上有兩點A、B關(guān)于原點對稱,則稱該拋物線為“完美拋物線”.已知二次函數(shù)y=ax2-2mx+c(a,m,c均為常數(shù)且ac≠0)是“完美拋物線”:(1)試判斷ac的符號;(2)若c=-1,該二次函數(shù)圖象與y軸交于點C,且S△ABC=1.①求a的值;②當(dāng)該二次函數(shù)圖象與端點為M(-1,1)、N(3,4)的線段有且只有一個交點時,求m的取值范圍.20.(8分)甲乙兩件服裝的進價共500元,商場決定將甲服裝按30%的利潤定價,乙服裝按20%的利潤定價,實際出售時,兩件服裝均按9折出售,商場賣出這兩件服裝共獲利67元.求甲乙兩件服裝的進價各是多少元;由于乙服裝暢銷,制衣廠經(jīng)過兩次上調(diào)價格后,使乙服裝每件的進價達到242元,求每件乙服裝進價的平均增長率;若每件乙服裝進價按平均增長率再次上調(diào),商場仍按9折出售,定價至少為多少元時,乙服裝才可獲得利潤(定價取整數(shù)).21.(10分)綜合與實踐﹣﹣﹣折疊中的數(shù)學(xué)在學(xué)習(xí)完特殊的平行四邊形之后,某學(xué)習(xí)小組針對矩形中的折疊問題進行了研究.問題背景:在矩形ABCD中,點E、F分別是BC、AD上的動點,且BE=DF,連接EF,將矩形ABCD沿EF折疊,點C落在點C′處,點D落在點D′處,射線EC′與射線DA相交于點M.猜想與證明:(1)如圖1,當(dāng)EC′與線段AD交于點M時,判斷△MEF的形狀并證明你的結(jié)論;操作與畫圖:(2)當(dāng)點M與點A重合時,請在圖2中作出此時的折痕EF和折疊后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,標注相應(yīng)的字母);操作與探究:(3)如圖3,當(dāng)點M在線段DA延長線上時,線段C′D'分別與AD,AB交于P,N兩點時,C′E與AB交于點Q,連接MN并延長MN交EF于點O.求證:MO⊥EF且MO平分EF;(4)若AB=4,AD=4,在點E由點B運動到點C的過程中,點D'所經(jīng)過的路徑的長為.22.(10分)“千年古都,大美西安”.某校數(shù)學(xué)興趣小組就“最想去的西安旅游景點”隨機調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個最想去的景點,(景點對應(yīng)的名稱分別是:A:大雁塔B:兵馬俑C:陜西歷史博物館D:秦嶺野生動物園E:曲江海洋館).下面是根據(jù)調(diào)查結(jié)果進行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:請根據(jù)圖中提供的信息,解答下列問題:(1)求被調(diào)查的學(xué)生總?cè)藬?shù);(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);(3)若該校共有800名學(xué)生,請估計“最想去景點B”的學(xué)生人數(shù).23.(12分)某校為了解本校學(xué)生每周參加課外輔導(dǎo)班的情況,隨機調(diào)査了部分學(xué)生一周內(nèi)參加課外輔導(dǎo)班的學(xué)科數(shù),并將調(diào)查結(jié)果繪制成如圖1、圖2所示的兩幅不完整統(tǒng)計圖(其中A:0個學(xué)科,B:1個學(xué)科,C:2個學(xué)科,D:3個學(xué)科,E:4個學(xué)科或以上),請根據(jù)統(tǒng)計圖中的信息,解答下列問題:請將圖2的統(tǒng)計圖補充完整;根據(jù)本次調(diào)查的數(shù)據(jù),每周參加課外輔導(dǎo)班的學(xué)科數(shù)的眾數(shù)是個學(xué)科;若該校共有2000名學(xué)生,根據(jù)以上調(diào)查結(jié)果估計該校全體學(xué)生一周內(nèi)參加課外輔導(dǎo)班在3個學(xué)科(含3個學(xué)科)以上的學(xué)生共有人.24.(14分)某景區(qū)在同一線路上順次有三個景點A,B,C,甲、乙兩名游客從景點A出發(fā),甲步行到景點C;乙花20分鐘時間排隊后乘觀光車先到景點B,在B處停留一段時間后,再步行到景點C.甲、乙兩人離景點A的路程s(米)關(guān)于時間t(分鐘)的函數(shù)圖象如圖所示.甲的速度是______米/分鐘;當(dāng)20≤t≤30時,求乙離景點A的路程s與t的函數(shù)表達式;乙出發(fā)后多長時間與甲在途中相遇?若當(dāng)甲到達景點C時,乙與景點C的路程為360米,則乙從景點B步行到景點C的速度是多少?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
A、∵四邊形ABCD是平行四邊形,當(dāng)①AB=BC時,平行四邊形ABCD是菱形,當(dāng)②∠ABC=90°時,菱形ABCD是正方形,故此選項正確,不合題意;B、∵四邊形ABCD是平行四邊形,∴當(dāng)②∠ABC=90°時,平行四邊形ABCD是矩形,當(dāng)AC=BD時,這是矩形的性質(zhì),無法得出四邊形ABCD是正方形,故此選項錯誤,符合題意;C、∵四邊形ABCD是平行四邊形,當(dāng)①AB=BC時,平行四邊形ABCD是菱形,當(dāng)③AC=BD時,菱形ABCD是正方形,故此選項正確,不合題意;D、∵四邊形ABCD是平行四邊形,∴當(dāng)②∠ABC=90°時,平行四邊形ABCD是矩形,當(dāng)④AC⊥BD時,矩形ABCD是正方形,故此選項正確,不合題意.故選C.2、C【解析】
解:選項A,原式=;選項B,原式=a3;選項C,原式=-2a+2=2-2a;選項D,原式=故選C3、D【解析】∵四邊形ABCD是平行四邊形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②與④不一定成立,∵當(dāng)四邊形是菱形時,②和④成立.故選D.4、C【解析】
如圖,根據(jù)長方形的性質(zhì)得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì)等,準確識圖是解題的關(guān)鍵.5、B【解析】
觀察可得最簡公分母是(x-3)(x+1),方程兩邊乘最簡公分母,可以把分式方程轉(zhuǎn)化為整式方程求解.【詳解】方程的兩邊同乘(x?3)(x+1),得(x?2)(x+1)=x(x?3),x2解得x=1.檢驗:把x=1代入(x?3)(x+1)=-4≠0.∴原方程的解為:x=1.故選B.【點睛】本題考查的知識點是解分式方程,解題關(guān)鍵是注意解得的解要進行檢驗.6、D【解析】
主視圖是從幾何體的正面看,主視圖是三角形的一定是一個錐體,是長方形的一定是柱體,由此分析可得答案.【詳解】解:主視圖是三角形的一定是一個錐體,只有D是錐體.故選D.【點睛】此題主要考查了幾何體的三視圖,主要考查同學(xué)們的空間想象能力.7、A【解析】
由圖像經(jīng)過點(0,m)、(4、m)可知對稱軸為x=2,由n<m知x=1時,y的值小于x=0時y的值,根據(jù)拋物線的對稱性可知開口方向,即可知道a的取值.【詳解】∵圖像經(jīng)過點(0,m)、(4、m)∴對稱軸為x=2,則,∴4a+b=0∵圖像經(jīng)過點(1,n),且n<m∴拋物線的開口方向向上,∴a>0,故選A.【點睛】此題主要考查拋物線的圖像,解題的關(guān)鍵是熟知拋物線的對稱性.8、B【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A不正確;B、既是軸對稱圖形,又是中心對稱圖形,故B正確;C、是軸對稱圖形,不是中心對稱圖形,故C不正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D不正確.故選B.【點睛】本題考查了軸對稱圖形和中心對稱圖形的概念,以及對軸對稱圖形和中心對稱圖形的認識.9、C【解析】
根據(jù)對頂角性質(zhì)、鄰補角定義及垂線的定義逐一判斷可得.【詳解】A、∠AOD與∠BOC是對頂角,所以∠AOD=∠BOC,此選項正確;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此選項正確;C、∠AOC與∠BOD是對頂角,所以∠AOC=∠BOD,此選項錯誤;D、∠AOD與∠BOD是鄰補角,所以∠AOD+∠BOD=180°,此選項正確;故選C.【點睛】本題主要考查垂線、對頂角與鄰補角,解題的關(guān)鍵是掌握對頂角性質(zhì)、鄰補角定義及垂線的定義.10、B【解析】分析:根據(jù)平均數(shù)的意義,眾數(shù)的意義,方差的意義進行選擇.詳解:由于14歲的人數(shù)是533人,影響該機構(gòu)年齡特征,因此,最能夠反映該機構(gòu)年齡特征的統(tǒng)計量是眾數(shù).故選B.點睛:本題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當(dāng)?shù)倪\用.二、填空題(共7小題,每小題3分,滿分21分)11、答案不唯一,如:(﹣1,﹣1),橫坐標和縱坐標都是負數(shù)即可.【解析】
讓橫坐標、縱坐標為負數(shù)即可.【詳解】在第三象限內(nèi)點的坐標為:(﹣1,﹣1)(答案不唯一).故答案為答案不唯一,如:(﹣1,﹣1),橫坐標和縱坐標都是負數(shù)即可.12、到角兩邊距離相等的點在角平分線上;兩點確定一條直線;角平分上的點到角兩邊的距離相等;圓的定義;經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線.【解析】
根據(jù)三角形的內(nèi)切圓,三角形的內(nèi)心的定義,角平分線的性質(zhì)即可解答.【詳解】解:該尺規(guī)作圖的依據(jù)是到角兩邊距離相等的點在角平分線上;兩點確定一條直線;角平分上的點到角兩邊的距離相等;圓的定義;經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線;故答案為到角兩邊距離相等的點在角平分線上;兩點確定一條直線;角平分上的點到角兩邊的距離相等;圓的定義;經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線.【點睛】此題主要考查了復(fù)雜作圖,三角形的內(nèi)切圓與內(nèi)心,關(guān)鍵是掌握角平分線的性質(zhì).13、【解析】
當(dāng)AC與⊙O相切于點C時,P點縱坐標的最大值,如圖,直線AC交y軸于點D,連結(jié)OC,作CH⊥x軸于H,PM⊥x軸于M,DN⊥PM于N,∵AC為切線,∴OC⊥AC,在△AOC中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴OD=OA=,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=BD=(2-)=1-,在Rt△DPN中,∵∠PDN=30°,∴PN=DP=-,而MN=OD=,∴PM=PN+MN=1-+=,即P點縱坐標的最大值為.【點睛】本題是圓的綜合題,先求出OD的長度,最后根據(jù)兩點之間線段最短求出PN+MN的值.14、18°【解析】試題分析:根據(jù)圓錐的展開圖的圓心角計算法則可得:扇形的圓心角=1040考點:圓錐的展開圖15、2【解析】
根據(jù)分式的性質(zhì),要使分式有意義,則必須分母不能為0,要使分式為零,則只有分子為0,因此計算即可.【詳解】解:要使分式有意義則,即要使分式為零,則,即綜上可得故答案為2【點睛】本題主要考查分式的性質(zhì),關(guān)鍵在于分式的分母不能為0.16、60%【解析】
設(shè)空閑時段民用電的單價為x元/千瓦時,高峰時段民用電的單價為y元/千瓦時,該用戶5月份空閑時段用電量為a千瓦時,則5月份高峰時段用電量為2a千瓦時,6月份空閑時段用電量為2a千瓦時,6月份高峰時段用電量為a千瓦時,根據(jù)總價=單價×數(shù)量結(jié)合6月份的電費卻比5月份的電費少25%,即可得出關(guān)于x,y的二元一次方程,解之即可得出x,y之間的關(guān)系,進而即可得出結(jié)論.【詳解】設(shè)空閑時段民用電的單價為x元/千瓦時,高峰時段民用電的單價為y元/千瓦時,該用戶5月份空閑時段用電量為a千瓦時,則5月份高峰時段用電量為2a千瓦時,6月份空閑時段用電量為2a千瓦時,6月份高峰時段用電量為a千瓦時,依題意,得:(1﹣25%)(ax+2ay)=2ax+ay,解得:x=0.4y,∴該地區(qū)空閑時段民用電的單價比高峰時段的用電單價低×100%=60%.故答案為60%.【點睛】本題考查了二元一次方程的應(yīng)用,找準等量關(guān)系,正確列出二元一次方程是解題的關(guān)鍵.17、【解析】
先算除法,再算減法,注意把分式的分子分母分解因式【詳解】原式===【點睛】此題考查分式的混合運算,掌握運算法則是解題關(guān)鍵三、解答題(共7小題,滿分69分)18、(1);(2)與x的函數(shù)關(guān)系式為,S存在最大值,最大值為18,此時點E的坐標為.(3)存在點D,使得和相似,此時點D的坐標為或.【解析】
利用二次函數(shù)圖象上點的坐標特征可得出點A、B的坐標,結(jié)合即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論;由點A、B的坐標可得出直線AB的解析式待定系數(shù)法,由點D的橫坐標可得出點D、E的坐標,進而可得出DE的長度,利用三角形的面積公式結(jié)合即可得出S關(guān)于x的函數(shù)關(guān)系式,再利用二次函數(shù)的性質(zhì)即可解決最值問題;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,設(shè)點D的坐標為,則點E的坐標為,進而可得出DE、BD的長度當(dāng)時,利用等腰直角三角形的性質(zhì)可得出,進而可得出關(guān)于m的一元二次方程,解之取其非零值即可得出結(jié)論;當(dāng)時,由點B的縱坐標可得出點E的縱坐標為4,結(jié)合點E的坐標即可得出關(guān)于m的一元二次方程,解之取其非零值即可得出結(jié)論綜上即可得出結(jié)論.【詳解】當(dāng)時,有,解得:,,點A的坐標為.當(dāng)時,,點B的坐標為.,,解得:,拋物線的解析式為.點A的坐標為,點B的坐標為,直線AB的解析式為.點D的橫坐標為x,則點D的坐標為,點E的坐標為,如圖.點F的坐標為,點A的坐標為,點B的坐標為,,,,.,當(dāng)時,S取最大值,最大值為18,此時點E的坐標為,與x的函數(shù)關(guān)系式為,S存在最大值,最大值為18,此時點E的坐標為.,,若要和相似,只需或如圖.設(shè)點D的坐標為,則點E的坐標為,,當(dāng)時,,,,為等腰直角三角形.,即,解得:舍去,,點D的坐標為;當(dāng)時,點E的縱坐標為4,,解得:,舍去,點D的坐標為.綜上所述:存在點D,使得和相似,此時點D的坐標為或.故答案為:(1);(2)與x的函數(shù)關(guān)系式為,S存在最大值,最大值為18,此時點E的坐標為.(3)存在點D,使得和相似,此時點D的坐標為或.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征、一次函數(shù)圖象上點的坐標特征、三角形的面積、二次函數(shù)的性質(zhì)、相似三角形的判定、等腰直角三角形以及解一元二次方程,解題的關(guān)鍵是:利用二次函數(shù)圖象上點的坐標特征求出點A、B的坐標;利用三角形的面積找出S關(guān)于x的函數(shù)關(guān)系式;分及兩種情況求出點D的坐標.19、(1)ac<3;(3)①a=1;②m>或m<.【解析】
(1)設(shè)A
(p,q).則B
(-p,-q),把A、B坐標代入解析式可得方程組即可得到結(jié)論;
(3)由c=-1,得到p3=,a>3,且C(3,-1),求得p=±,①根據(jù)三角形的面積公式列方程即可得到結(jié)果;②由①可知:拋物線解析式為y=x3-3mx-1,根據(jù)M(-1,1)、N(3,4).得到這些MN的解析式y(tǒng)=x+(-1≤x≤3),聯(lián)立方程組得到x3-3mx-1=x+,故問題轉(zhuǎn)化為:方程x3-(3m+)x-=3在-1≤x≤3內(nèi)只有一個解,建立新的二次函數(shù):y=x3-(3m+)x-,根據(jù)題意得到(Ⅰ)若-1≤x1<3且x3>3,(Ⅱ)若x1<-1且-1<x3≤3:列方程組即可得到結(jié)論.【詳解】(1)設(shè)A
(p,q).則B
(-p,-q),
把A、B坐標代入解析式可得:,
∴3ap3+3c=3.即p3=?,
∴?≥3,
∵ac≠3,
∴?>3,
∴ac<3;
(3)∵c=-1,
∴p3=,a>3,且C(3,-1),
∴p=±,
①S△ABC=×3×1=1,
∴a=1;
②由①可知:拋物線解析式為y=x3-3mx-1,
∵M(-1,1)、N(3,4).
∴MN:y=x+(-1≤x≤3),
依題,只需聯(lián)立在-1≤x≤3內(nèi)只有一個解即可,
∴x3-3mx-1=x+,
故問題轉(zhuǎn)化為:方程x3-(3m+)x-=3在-1≤x≤3內(nèi)只有一個解,
建立新的二次函數(shù):y=x3-(3m+)x-,
∵△=(3m+)3+11>3且c=-<3,
∴拋物線y=x3?(3m+)x?與x軸有兩個交點,且交y軸于負半軸.
不妨設(shè)方程x3?(3m+)x?=3的兩根分別為x1,x3.(x1<x3)
則x1+x3=3m+,x1x3=?
∵方程x3?(3m+)x?=3在-1≤x≤3內(nèi)只有一個解.
故分兩種情況討論:
(Ⅰ)若-1≤x1<3且x3>3:則.即:,
可得:m>.
(Ⅱ)若x1<-1且-1<x3≤3:則.即:,
可得:m<,
綜上所述,m>或m<.【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,一元二次方程根與系數(shù)的關(guān)系,三角形面積公式,正確的理解題意是解題的關(guān)鍵.20、(1)甲服裝的進價為300元、乙服裝的進價為1元.(2)每件乙服裝進價的平均增長率為10%;(3)乙服裝的定價至少為296元.【解析】
(1)若設(shè)甲服裝的成本為x元,則乙服裝的成本為(500-x)元.根據(jù)公式:總利潤=總售價-總進價,即可列出方程.(2)利用乙服裝的成本為1元,經(jīng)過兩次上調(diào)價格后,使乙服裝每件的進價達到242元,利用增長率公式求出即可;(3)利用每件乙服裝進價按平均增長率再次上調(diào),再次上調(diào)價格為:242×(1+10%)=266.2(元),進而利用不等式求出即可.【詳解】(1)設(shè)甲服裝的成本為x元,則乙服裝的成本為(500-x)元,根據(jù)題意得:90%?(1+30%)x+90%?(1+20%)(500-x)-500=67,解得:x=300,500-x=1.答:甲服裝的成本為300元、乙服裝的成本為1元.(2)∵乙服裝的成本為1元,經(jīng)過兩次上調(diào)價格后,使乙服裝每件的進價達到242元,∴設(shè)每件乙服裝進價的平均增長率為y,則,解得:=0.1=10%,=-2.1(不合題意,舍去).答:每件乙服裝進價的平均增長率為10%;(3)∵每件乙服裝進價按平均增長率再次上調(diào)∴再次上調(diào)價格為:242×(1+10%)=266.2(元)∵商場仍按9折出售,設(shè)定價為a元時0.9a-266.2>0解得:a>故定價至少為296元時,乙服裝才可獲得利潤.考點:一元二次方程的應(yīng)用,不等式的應(yīng)用,打折銷售問題21、(1)△MEF是等腰三角形(2)見解析(3)證明見解析(4)【解析】
(1)由AD∥BC,可得∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,依據(jù)∠MFE=∠MEF,即可得到ME=MF,進而得出△MEF是等腰三角形;(2)作AC的垂直平分線,即可得到折痕EF,依據(jù)軸對稱的性質(zhì),即可得到D'的位置;(3)依據(jù)△BEQ≌△D'FP,可得PF=QE,依據(jù)△NC'P≌△NAP,可得AN=C'N,依據(jù)Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,進而得到△MEF是等腰三角形,依據(jù)三線合一,即可得到MO⊥EF且MO平分EF;(4)依據(jù)點D'所經(jīng)過的路徑是以O(shè)為圓心,4為半徑,圓心角為240°的扇形的弧,即可得到點D'所經(jīng)過的路徑的長.【詳解】(1)△MEF是等腰三角形.理由:∵四邊形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折疊后的圖形如圖所示:(3)如圖,∵FD=BE,由折疊可得,D'F=DF,∴BE=D'F,在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN,∵∠C'QN=∠BQE,∠APN=∠D'PF,∴∠BQE=∠D'PF,在△BEQ和△D'FP中,,∴△BEQ≌△D'FP(AAS),∴PF=QE,∵四邊形ABCD是矩形,∴AD=BC,∴AD﹣FD=BC﹣BE,∴AF=CE,由折疊可得,C'E=EC,∴AF=C'E,∴AP=C'Q,在△NC'Q和△NAP中,,∴△NC'P≌△NAP(AAS),∴AN=C'N,在Rt△MC'N和Rt△MAN中,,∴Rt△MC'N≌Rt△MAN(HL),∴∠AMN=∠C'MN,由折疊可得,∠C'EF=∠CEF,∵四邊形ABCD是矩形,∴AD∥BC,∴∠AFE=∠FEC,∴∠C'EF=∠AFE,∴ME=MF,∴△MEF是等腰三角形,∴MO⊥EF且MO平分EF;(4)在點E由點B運動到點C的過程中,點D'所經(jīng)過的路徑是以O(shè)為圓心,4為半徑,圓心角為240°的扇形的弧,如圖:故其長為L=.故答案為.【點睛】此題是四邊形綜合題,主要考查了折疊問題與菱形的判定與性質(zhì)、弧長計算公式,等腰三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì)的綜合應(yīng)用,熟練掌握等腰三角形的判定定理和性質(zhì)定理是解本題的關(guān)鍵.22、(1)40;(2)想去D景點的人數(shù)是8,圓心角度數(shù)是72°;(3)280.【解析】
(1)用最想去A景點的人數(shù)除以它所占的百分比即可得到被調(diào)查的學(xué)生總?cè)藬?shù);(2)先計算出最想去D景點的人數(shù),再補全條形統(tǒng)計圖,然后用360°乘以最想去D景點的人數(shù)所占的百分比即可得到扇形統(tǒng)計圖中表示“醉美旅游景點D”的扇形圓心角的度數(shù);(3)用800乘以樣本中最想去B景點的人
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年合同到期解約申請模板
- 2025年藥店店員合同模板
- 一年級下冊數(shù)學(xué)教案-兩位數(shù)加減整十?dāng)?shù)、一位數(shù)的口算 (20)-西師大版
- 分數(shù)的初步認識(一)練習(xí)十一(教案)2024-2025學(xué)年數(shù)學(xué)三年級上冊 蘇教版
- 2024年人工種植牙項目投資申請報告代可行性研究報告
- 2025年杭州科技職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性測試題庫1套
- 2025屆黑龍江省“六校聯(lián)盟”高三上學(xué)期聯(lián)考化學(xué)試題及答案
- 2025年度教師專業(yè)成長路徑規(guī)劃聘用合同
- 2025年度養(yǎng)老產(chǎn)業(yè)簡易版股份轉(zhuǎn)讓合同模板
- 2025年度文化旅游產(chǎn)業(yè)合作授權(quán)委托書
- 舞臺設(shè)計課件
- 高中勞動教育課教案8篇
- 急性髓性白血病教學(xué)查房課件
- 高中英語 高中閱讀高頻單詞
- 初一年級班級日志記載表(詳)
- 《胃癌課件:病理和分子機制解析》
- 生產(chǎn)制造企業(yè)流程匯編
- 國際貿(mào)易實務(wù)課程教案
- 部編版六年級語文下冊全冊課件PPT
- 人教版三年級數(shù)學(xué)下冊 (認識東北、西北、東南、西南)位置與方向課件
- 與食品經(jīng)營相適應(yīng)的主要設(shè)備設(shè)施布局、操作流程等文件
評論
0/150
提交評論