湖北襄陽市第二十六中學(xué)2022-2023學(xué)年數(shù)學(xué)九上期末達(dá)標(biāo)檢測試題含解析_第1頁
湖北襄陽市第二十六中學(xué)2022-2023學(xué)年數(shù)學(xué)九上期末達(dá)標(biāo)檢測試題含解析_第2頁
湖北襄陽市第二十六中學(xué)2022-2023學(xué)年數(shù)學(xué)九上期末達(dá)標(biāo)檢測試題含解析_第3頁
湖北襄陽市第二十六中學(xué)2022-2023學(xué)年數(shù)學(xué)九上期末達(dá)標(biāo)檢測試題含解析_第4頁
湖北襄陽市第二十六中學(xué)2022-2023學(xué)年數(shù)學(xué)九上期末達(dá)標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.一個小正方體沿著斜面前進(jìn)了10米,橫截面如圖所示,已知,此時小正方體上的點距離地面的高度升高了()A.5米 B.米 C.米 D.米2.拋物線與軸交于、兩點,則、兩點的距離是()A. B. C. D.3.《九章算術(shù)》是我國古代第一部自成體系的數(shù)學(xué)專著,書中記載:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深兩寸,鋸道長八寸,問徑幾何?”譯為:“今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深2寸(ED=2寸),鋸道長8寸”,問這塊圓形木材的直徑是多少?”如圖所示,請根據(jù)所學(xué)知識計算圓形木材的直徑AC是()A.5寸 B.8寸 C.10寸 D.12寸4.下表是二次函數(shù)y=ax2+bx+c的部分x,y的對應(yīng)值:x…﹣1﹣0123…y…2m﹣1﹣﹣2﹣﹣12…可以推斷m的值為()A.﹣2 B.0 C. D.25.如圖,△ABC中,點D是AB的中點,點E是AC邊上的動點,若△ADE與△ABC相似,則下列結(jié)論一定成立的是()A.E為AC的中點 B.DE是中位線或AD·AC=AE·ABC.∠ADE=∠C D.DE∥BC或∠BDE+∠C=180°6.用配方法解方程x2+4x+1=0時,原方程應(yīng)變形為()A.(x+2)2=3 B.(x﹣2)2=3 C.(x+2)2=5 D.(x﹣2)2=57.如圖,AB切⊙O于點B,C為⊙O上一點,且OC⊥OA,CB與OA交于點D,若∠OCB=15°,AB=2,則⊙O的半徑為()A. B.2 C.3 D.48.下列方程中,關(guān)于x的一元二次方程是()A.2x﹣3=x B.2x+3y=5 C.2x﹣x2=1 D.9.如圖,已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,拋物線y=﹣x2+bx+c經(jīng)過原點,與x軸的另一個交點為A(﹣6,0),點C是拋物線的頂點,且⊙C與y軸相切,點P為⊙C上一動點.若點D為PA的中點,連結(jié)OD,則OD的最大值是()A. B. C.2 D.10.如圖,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.動點P,Q分別從點A,B同時開始移動,點P的速度為1cm/秒,點Q的速度為2cm/秒,點Q移動到點C后停止,點P也隨之停止運動.下列時間瞬間中,能使△PBQ的面積為15cm2的是()A.2秒鐘 B.3秒鐘 C.4秒鐘 D.5秒鐘11.如圖,過x軸正半軸上的任意一點P,作y軸的平行線,分別與反比例函數(shù)和的圖象交于A、B兩點.若點C是y軸上任意一點,連接AC、BC,則△ABC的面積為()A.3 B.4 C.5 D.1012.關(guān)于拋物線y=3(x-1)2+2,下列說法錯誤的是()A.開口方向向上 B.對稱軸是直線x=lC.頂點坐標(biāo)為(1,2) D.當(dāng)x>1時,y隨x的增大而減小二、填空題(每題4分,共24分)13.已知反比例函數(shù)的圖象經(jīng)過點,若點在此反比例函數(shù)的圖象上,則________.14.若能分解成兩個一次因式的積,則整數(shù)k=_________.15.將拋物線先向上平移3個單位,再向右平移2個單位后得到的新拋物線對應(yīng)的函數(shù)表達(dá)式為______.16.如圖,直線y1=x+2與雙曲線y2=交于A(2,m)、B(﹣6,n)兩點.則當(dāng)y1≤y2時,x的取值范圍是______.17.如圖,AC是⊙O的直徑,∠ACB=60°,連接AB,過A、B兩點分別作⊙O的切線,兩切線交于點P.若已知⊙O的半徑為1,則△PAB的周長為_____.18.若,則=___________.三、解答題(共78分)19.(8分)如圖,已知:在△ABC中,AB=AC,BD是AC邊上的中線,AB=13,BC=10,(1)求△ABC的面積;(2)求tan∠DBC的值.20.(8分)深圳國際馬拉松賽事設(shè)有A“全程馬拉松”,B“半程馬拉松”,C“嘉年華馬拉松”三個項目,小智和小慧參加了該賽事的志愿者服務(wù)工作,組委會將志愿者隨機分配到三個項目組.(1)小智被分配到A“全程馬拉松”項目組的概率為.(2)用樹狀圖或列表法求小智和小慧被分到同一個項目標(biāo)組進(jìn)行志愿服務(wù)的概率.21.(8分)隨著冬季的來臨,為了方便冰雪愛好者雪上娛樂,某體育用品商店購進(jìn)一批簡易滑雪板,每件進(jìn)價為100元,售價為130元,每星期可賣出80件,由于商品庫存較多,商家決定降價促銷,根據(jù)市場調(diào)查,每件降價1元,每星期可多賣出4件.(1)設(shè)商家每件滑雪板降價x元,每星期的銷售量為y件,寫出y與x之間的函數(shù)關(guān)系式:(2)降價后,商家要使每星期的利潤最大,應(yīng)將售價定為每件多少元?最大銷售利潤多少?22.(10分)如圖,點D是∠AOB的平分線OC上任意一點,過D作DE⊥OB于E,以DE為半徑作⊙D,①判斷⊙D與OA的位置關(guān)系,并證明你的結(jié)論.②通過上述證明,你還能得出哪些等量關(guān)系?23.(10分)某商場購進(jìn)了一批名牌襯衫,平均每天可售出件,每件盈利元為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施.調(diào)查發(fā)現(xiàn),如果這種襯衫的售價每降低元,那么該商場平均每天可多售出件.(1)若該商場計劃平均每天盈利元,則每件襯衫應(yīng)降價多少元?(2)該商場平均每天盈利能否達(dá)到元?24.(10分)某商場一種商品的進(jìn)價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件32.4元,求兩次下降的百分率;(2)經(jīng)調(diào)查,若該商品每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應(yīng)降價多少元?25.(12分)在平行四邊形中,為對角線,,點分別為邊上的點,連接平分.(1)如圖,若且,求平行四邊形的面積.(2)如圖,若過作交于求證:26.如圖,在平面直角坐標(biāo)系中,已知拋物線與直線都經(jīng)過、兩點,該拋物線的頂點為C.(1)求此拋物線和直線的解析式;(2)設(shè)直線與該拋物線的對稱軸交于點E,在射線上是否存在一點M,過M作x軸的垂線交拋物線于點N,使點M、N、C、E是平行四邊形的四個頂點?若存在,求點M的坐標(biāo);若不存在,請說明理由;(3)設(shè)點P是直線下方拋物線上的一動點,當(dāng)面積最大時,求點P的坐標(biāo),并求面積的最大值.

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)題意,用未知數(shù)設(shè)出斜面的鉛直高度和水平寬度,再運用勾股定理列方程求解.【詳解】解:Rt△ABC中,AB=2BC,

設(shè)BC=x,則AC=2x,

根據(jù)勾股定理可得,

x2+(2x)2=102,

解得x=或x=(負(fù)值舍去),即小正方體上的點N距離地面AB的高度升高了米,

故選:B.【點睛】此題主要考查了解直角三角形的應(yīng)用-坡度坡角問題,解題的關(guān)鍵是熟練運用勾股定理的知識,此題比較簡單.2、B【分析】令y=0,求出拋物線與x軸交點的橫坐標(biāo),再把橫坐標(biāo)作差即可.【詳解】解:令,即,解得,,∴、兩點的距離為1.故選:B.【點睛】本題考查了拋物線與x軸交點坐標(biāo)的求法,兩點之間距離的表示方法.3、C【分析】設(shè)⊙O的半徑為r,在Rt△AEO中,AE=4,OE=r-2,OA=r,則有r2=42+(r-2)2,解方程即可.【詳解】設(shè)⊙O的半徑為r,在Rt△AEO中,AE=4,OE=r﹣2,OA=r,則有r2=42+(r﹣2)2,解得r=5,∴⊙O的直徑為10寸,故選C.【點睛】本題主要考查垂徑定理、勾股定理等知識,解決本題的關(guān)鍵是學(xué)會利用利用勾股定理構(gòu)造方程進(jìn)行求解.4、C【分析】首先根據(jù)表中的x、y的值確定拋物線的對稱軸,然后根據(jù)對稱性確定m的值即可.【詳解】解:觀察表格發(fā)現(xiàn)該二次函數(shù)的圖象經(jīng)過點(,﹣)和(,﹣),所以對稱軸為x==1,∵,∴點(﹣,m)和(,)關(guān)于對稱軸對稱,∴m=,故選:C.【點睛】本題考查了二次函數(shù)的圖象與性質(zhì),解題的關(guān)鍵是通過表格信息確定拋物線的對稱軸.5、D【分析】如圖,分兩種情況分析:由△ADE與△ABC相似,得,∠ADE=∠B或∠ADE=∠C,故DE∥BC或∠BDE+∠C=180°.【詳解】因為,△ADE與△ABC相似,所以,∠ADE=∠B或∠ADE=∠C所以,DE∥BC或∠BDE+∠C=∠BDE+∠ADE=180°故選D【點睛】本題考核知識點:相似性質(zhì).解題關(guān)鍵點:理解相似三角形性質(zhì).6、A【分析】先把常數(shù)項移到方程右側(cè),然后配一次項系數(shù)一半的平方即可求解.【詳解】x2+4x=﹣1,x2+4x+4=3,(x+2)2=3,故選:A.【點睛】本題考查了解一元二次方程-配方法,掌握在二次項系數(shù)為1的前提下,配一次項系數(shù)一半的平方是關(guān)鍵.7、B【分析】連接OB,由切線的性質(zhì)可得∠OBA=90°,結(jié)合已知條件可求出∠A=30°,因為AB的長已知,所以⊙O的半徑可求出.【詳解】連接OB,∵AB切⊙O于點B,∴OB⊥AB,∴∠ABO=90°,∵OC⊥OA,∠OCB=15°,∴∠CDO=∠ADO=75°,∵OC=OB,∴∠C=∠OBD=15°,∴∠ABD=75°,∴∠ADB=∠ABD=75°,∴∠A=30°,∴BO=AO,∵AB=2,∴BO2+AB2=4OB2,∴BO=2,∴⊙O的半徑為2,故選:B.【點睛】本題考查了切線的性質(zhì)、等腰三角形的判定和性質(zhì)以及勾股定理的運用,求出∠A=30°,是解題的關(guān)鍵.8、C【分析】利用一元二次方程的定義判斷即可.【詳解】A、方程2x﹣3=x為一元一次方程,不符合題意;B、方程2x+3y=5是二元一次方程,不符合題意;C、方程2x﹣x2=1是一元二次方程,符合題意;D、方程x+=7是分式方程,不符合題意,故選:C.【點睛】本題考查了一元一次方程的問題,掌握一元一次方程的定義是解題的關(guān)鍵.9、B【分析】取點H(6,0),連接PH,由待定系數(shù)法可求拋物線解析式,可得點C坐標(biāo),可得⊙C半徑為4,由三角形中位線的定理可求OD=PH,當(dāng)點C在PH上時,PH有最大值,即可求解.【詳解】如圖,取點H(6,0),連接PH,∵拋物線y=﹣x2+bx+c經(jīng)過原點,與x軸的另一個交點為A(﹣6,0),∴,解得:,∴拋物線解析式為:y=﹣,∴頂點C(﹣3,4),∴⊙C半徑為4,∵AO=OH=6,AD=BD,∴OD=PH,∴PH最大時,OD有最大值,∴當(dāng)點C在PH上時,PH有最大值,∴PH最大值為=3+=3+,∴OD的最大值為:,故選B.【點睛】本題主要考查了切線的性質(zhì),二次函數(shù)的性質(zhì),三角形中位線定理等知識,解決本題的關(guān)鍵是要熟練掌握二次函數(shù)性質(zhì)和三角形中位線的性質(zhì).10、B【詳解】解:設(shè)動點P,Q運動t秒后,能使△PBQ的面積為15cm1,則BP為(8﹣t)cm,BQ為1tcm,由三角形的面積計算公式列方程得:×(8﹣t)×1t=15,解得t1=3,t1=5(當(dāng)t=5時,BQ=10,不合題意,舍去).故當(dāng)動點P,Q運動3秒時,能使△PBQ的面積為15cm1.故選B.【點睛】此題考查借助三角形的面積計算公式來研究圖形中的動點問題.11、C【分析】設(shè)P(a,0),由直線AB∥y軸,則A,B兩點的橫坐標(biāo)都為a,而A,B分別在反比例函數(shù)圖象上,可得到A點坐標(biāo)為(a,-),B點坐標(biāo)為(a,),從而求出AB的長,然后根據(jù)三角形的面積公式計算即可.【詳解】設(shè)P(a,0),a>0,∴A和B的橫坐標(biāo)都為a,OP=a,將x=a代入反比例函數(shù)y=﹣中得:y=﹣,∴A(a,﹣);將x=a代入反比例函數(shù)y=中得:y=,∴B(a,),∴AB=AP+BP=+=,則S△ABC=AB?OP=××a=1.故選C.【點睛】此題考查了反比例函數(shù),以及坐標(biāo)與圖形性質(zhì),其中設(shè)出P的坐標(biāo),表示出AB的長是解本題的關(guān)鍵.12、D【分析】開口方向由a決定,看a是否大于0,由于拋物線為頂點式,可直接確定對稱軸與頂點對照即可,由于拋物線開口向上,在對稱軸左側(cè)函數(shù)值隨x的增大而減小,在對稱軸右側(cè)y隨x的增大而增大即可.【詳解】關(guān)于拋物線y=3(x-1)2+2,a=3>0,拋物線開口向上,A正確,x=1是對稱軸,B正確,拋物線的頂點坐標(biāo)是(1,2),C正確,由于拋物線開口向上,x<1,函數(shù)值隨x的增大而減小,x>1時,y隨x的增大而增大,D不正確.故選:D.【點睛】本題考查拋物線的性質(zhì)問題,由具體拋物線的頂點式抓住有用信息,會用二次項系數(shù)確定開口方向與大小,會求對稱軸,會寫頂點坐標(biāo),會利用對稱軸把函數(shù)的增減性一分為二,還要結(jié)合a確定增減問題.二、填空題(每題4分,共24分)13、【分析】將點(1,3)代入y即可求出k+1的值,再根據(jù)k+1=xy解答即可.【詳解】∵反比例函數(shù)的圖象上有一點(1,3),∴k+1=1×3=6,又點(-3,n)在反比例函數(shù)的圖象上,∴6=-3×n,解得:n=-1.故答案為:-1.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,只要點在函數(shù)的圖象上,則一定滿足函數(shù)的解析式.反之,只要滿足函數(shù)解析式就一定在函數(shù)的圖象上.14、【分析】根據(jù)題意設(shè)多項式可以分解為:(x+ay+c)(2x+by+d),則2c+d=k,根據(jù)cd=6,求出所有符合條件的c、d的值,然后再代入ad+bc=0求出a、b的值,與2a+b=1聯(lián)立求出a、b的值,a、b是整數(shù)則符合,否則不符合,最后把符合條件的值代入k進(jìn)行計算即可.【詳解】解:設(shè)能分解成:(x+ay+c)(2x+by+d),即2x2+aby2+(2a+b)xy+(2c+d)x+(ad+bc)y+cd,∴cd=6,∵6=1×6=2×3=(-2)×(-3)=(-1)×(-6),∴①c=1,d=6時,ad+bc=6a+b=0,與2a+b=1聯(lián)立求解得,或c=6,d=1時,ad+bc=a+6b=0,與2a+b=1聯(lián)立求解得,②c=2,d=3時,ad+bc=3a+2b=0,與2a+b=1聯(lián)立求解得,或c=3,d=2時,ad+bc=2a+3b=0,與2a+b=1聯(lián)立求解得,③c=-2,d=-3時,ad+bc=-3a-2b=0,與2a+b=1聯(lián)立求解得,或c=-3,d=-2,ad+bc=-2a-3b=0,與2a+b=1聯(lián)立求解得,④c=-1,d=-6時,ad+bc=-6a-b=0,與2a+b=1聯(lián)立求解得,或c=-6,d=-1時,ad+bc=-a-6b=0,與2a+b=1聯(lián)立求解得,∴c=2,d=3時,c=-2,d=-3時,符合,∴k=2c+d=2×2+3=1,k=2c+d=2×(-2)+(-3)=-1,∴整數(shù)k的值是1,-1.故答案為:.【點睛】本題考查因式分解的意義,設(shè)成兩個多項式的積的形式是解題的關(guān)鍵,要注意6的所有分解結(jié)果,還需要用a、b進(jìn)行驗證,注意不要漏解.15、【分析】根據(jù)二次函數(shù)平移的特點即可求解.【詳解】將拋物線先向上平移3個單位,再向右平移2個單位后得到的新拋物線對應(yīng)的函數(shù)表達(dá)式為故答案為:.【點睛】此題主要考查二次函數(shù)的平移,解題的關(guān)鍵是熟知二次函數(shù)平移的特點.16、x≤﹣6或0<x≤1【解析】當(dāng)y1≤y1時,x的取值范圍就是當(dāng)y1的圖象與y1重合以及y1的圖象落在y1圖象的下方時對應(yīng)的x的取值范圍.【詳解】根據(jù)圖象可得當(dāng)y1≤y1時,x的取值范圍是:x≤-6或0<x≤1.故答案為x≤-6或0<x≤1.【點睛】本題考查了反比例函數(shù)與一次函數(shù)圖象的交點問題,理解當(dāng)y1≤y1時,求x的取值范圍就是求當(dāng)y1的圖象與y1重合以及y1的圖象落在y1圖象的下方時對應(yīng)的x的取值范圍,解答此題時,采用了“數(shù)形結(jié)合”的數(shù)學(xué)思想.17、【解析】根據(jù)圓周角定理的推論及切線長定理,即可得出答案解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠ACB=60°,∴∠BAC=30°,∴CB=1,AB=,∵AP為切線,∴∠CAP=90°,∴∠PAB=60°,又∵AP=BP,∴△PAB為正三角形,∴△PAB的周長為3.點睛:本題主要考查圓周角定理及切線長定理.熟記圓的相關(guān)性質(zhì)是解題的關(guān)鍵.18、【分析】把所求比例形式進(jìn)行變形,然后整體代入求值即可.【詳解】,,;故答案為.【點睛】本題主要考查比例的性質(zhì),熟練掌握比例的方法是解題的關(guān)鍵.三、解答題(共78分)19、(1)60;(2).【分析】(1)作等腰三角形底邊上的高AH并根據(jù)勾股定理求出,再根據(jù)三角形面積公式即可求解;(2)方法一:作等腰三角形底邊上的高AH并根據(jù)勾股定理求出,與BD交點為E,則E是三角形的重心,再根據(jù)三角形重心的性質(zhì)求出EH,∠DBC的正切值即可求出.方法二:過點A、D分別作AH⊥BC、DF⊥BC,垂足分別為點H、F,先根據(jù)勾股定理求出AH的長,再根據(jù)三角形中位線定理求出DF的長,BF的長就等于BC的,∠DBC的正切值即可求出.【詳解】解:(1)過點A作AH⊥BC,垂足為點H,交BD于點E.∵AB=AC=13,AH⊥BC,BC=10∴BH=5在Rt△ABH中,AH==12,∴△ABC的面積=;(2)方法一:過點A作AH⊥BC,垂足為點H,交BD于點E.∵AB=AC=13,AH⊥BC,BC=10∴BH=5在Rt△ABH中,AH==12∵BD是AC邊上的中線所以點E是△ABC的重心∴EH==4,∴在Rt△EBH中,tan∠DBC==.方法二:過點A、D分別作AH⊥BC、DF⊥BC,垂足分別為點H、F.∵AB=AC=13,AH⊥BC,BC=10∴BH=CH=5在Rt△ABH中,AH==12∵AH⊥BC、DF⊥BC∴AH∥DF,D為AC中點,∴DF=AH=6,∴BF=∴在Rt△DBF中,tan∠DBC==.【點睛】本題主要考查解直角三角形,掌握勾股定理及銳角三角函數(shù)的定義是解題的關(guān)鍵.20、(1)(2)【分析】(1)直接利用概率公式可得;(2)記這三個項目分別為A、B、C,畫樹狀圖列出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式計算可得.【詳解】(1)小智被分配到A“全程馬拉松”項目組的概率為,故答案為:.(2)畫樹狀圖為:共有9種等可能的結(jié)果數(shù),其中小智和小慧被分配到同一個項目組的結(jié)果數(shù)為3,所以小智和小慧被分到同一個項目組進(jìn)行志愿服務(wù)的概率為.【點睛】本題主要考察概率,熟練掌握概率公式是解題關(guān)鍵.21、(1)y=80+4x;(2)每件簡易滑雪板銷售價是125元時,商店每天銷售這種小商品的利潤最大,最大利潤是2500元.【分析】(1)根據(jù)售價每降價1元,平均每星期的期就多售出4件進(jìn)而得出答案;(2)利用總利潤=(實際售價﹣進(jìn)價)×銷售量,即可得函數(shù)解析式,再配方即可得最值情況.【詳解】解:(1)依題意有:y=80+4x;(2)設(shè)利潤為w,則w=(80+4x)(30﹣x)=﹣4(x﹣5)2+2500;∵a=﹣4<0,∴當(dāng)x=5時w取最大值,最大值是2500,即降價5元時利潤最大,∴每件簡易滑雪板銷售價是125元時,商店每天銷售這種小商品的利潤最大,最大利潤是2500元.【點睛】本題考查了列代數(shù)式和二次函數(shù)的應(yīng)用,掌握二次函數(shù)求最值的方法是解答本題的關(guān)鍵.22、(1)⊙D與OA的位置關(guān)系是相切,證明詳見解析;(2)∠DOA=∠DOE,OE=OF.【分析】①首先過點D作DF⊥OA于F,由點D是∠AOB的平分線OC上任意一點,DE⊥OB,根據(jù)角平分線的性質(zhì),即可得DF=DE,則可得D到直線OA的距離等于⊙D的半徑DE,則可證得⊙D與OA相切.

②根據(jù)切線的性質(zhì)解答即可.【詳解】解:①⊙D與OA的位置關(guān)系是相切,

證明:過D作DF⊥OA于F,

∵點D是∠AOB的平分線OC上任意一點,DE⊥OB,

∴DF=DE,

即D到直線OA的距離等于⊙D的半徑DE,

∴⊙D與OA相切.

②∠DOA=∠DOE,OE=OF.23、(1)每件襯衫應(yīng)降價元;(2)商場平均每天盈利不能達(dá)到元.【分析】(1)設(shè)每件襯衫應(yīng)降價元,根據(jù)售價每降低元,那么該商場平均每天可多售出件,利用利潤=單件利潤×數(shù)量列方程求出x的值即可;(2)假設(shè)每件襯衫應(yīng)降價元,利潤能達(dá)到2500元,根據(jù)題意可得關(guān)于x的一元二次方程,根據(jù)一元二次方程的判別式即可得答案.【詳解】(1)設(shè)每件襯衫應(yīng)降價元,則每件盈利元,每天可以售出件由題意得,即解得,∵要盡快減少庫存,∴=,答:若該商場計劃平均每天盈利元,每件襯衫應(yīng)降價元.(2)假設(shè)每件襯衫應(yīng)降價元,利潤能達(dá)到2500元,∴,整理得:,∵,∴方程無解,∴商場平均每天盈利不能達(dá)到元.【點睛】本題考查一元二次方程的應(yīng)用,正確得出降價和銷售量的關(guān)系,然后以利潤為等量關(guān)系列方程是解題關(guān)鍵.24、(1)兩次下降的百分率為10%;(2)要使每月銷售這種商品的利潤達(dá)到110元,且更有利于減少庫存,則商品應(yīng)降價2.1元.【分析】(1)設(shè)每次降價的百分率為x,(1﹣x)2為兩次降價后的百分率,40元降至32.4元就是方程的等量條件,列出方程求解即可;(2)設(shè)每天要想獲得110元的利潤,且更有利于減少庫存,則每件商品應(yīng)降價y元,由銷售問題的數(shù)量關(guān)系建立方程求出其解即可【詳解】解:(1)設(shè)每次降價的百分率為x.40×(1﹣x)2=32.4x=10%或190%(190%不符合題意,舍去)答:該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件32.4元,兩次下降的百分率為10%;(2)設(shè)每天要想獲得110元的利潤,且更有利于減少庫存,則每件商品應(yīng)降價y元,由題意,得解得:=1.1,=2.1,∵有利于減少庫存,∴y=2.1.答:要使商場每月銷售這種商品的利潤達(dá)到110元,且更有利于減少庫存,則每件商品應(yīng)降價2.1元.【點睛】此題主要考查了一元二次方程的應(yīng)用,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論