吉林省舒蘭市2022-2023學年數(shù)學九年級第一學期期末調(diào)研試題含解析_第1頁
吉林省舒蘭市2022-2023學年數(shù)學九年級第一學期期末調(diào)研試題含解析_第2頁
吉林省舒蘭市2022-2023學年數(shù)學九年級第一學期期末調(diào)研試題含解析_第3頁
吉林省舒蘭市2022-2023學年數(shù)學九年級第一學期期末調(diào)研試題含解析_第4頁
吉林省舒蘭市2022-2023學年數(shù)學九年級第一學期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列計算中,結(jié)果是的是A. B. C. D.2.若點M在拋物線的對稱軸上,則點M的坐標可能是()A.(3,-4) B.(-3,0) C.(3,0) D.(0,-4)3.下列事件中,屬于必然事件的是()A.方程無實數(shù)解B.在某交通燈路口,遇到紅燈C.若任取一個實數(shù)a,則D.買一注福利彩票,沒有中獎4.已知關(guān)于的一元二次方程的兩根為,,則一元二次方程的根為()A.0,4 B.-3,5 C.-2,4 D.-3,15.若點,在拋物線上,則下列結(jié)論正確的是()A. B. C. D.6.在Rt△ABC中,∠C=90°,若BC=3,AC=4,則sinB的值為()A. B. C. D.7.下列說法正確的是().A.一顆質(zhì)地均勻的骰子已連續(xù)拋擲了2000次.其中,拋擲出5點的次數(shù)最多,則第2001次一定拋擲出5點.B.某種彩票中獎的概率是1%,因此買100張該種彩票一定會中獎C.天氣預報說:明天下雨的概率是50%,所以明天將有一半時間在下雨D.拋擲一枚圖釘,釘尖觸地和釘尖朝上的概率不相等8.如圖,邊長為的正方形的對角線與交于點,將正方形沿直線折疊,點落在對角線上的點處,折痕交于點,則()A. B. C. D.9.某工廠生產(chǎn)的某種產(chǎn)品按質(zhì)量分為10個檔次,第1檔次(最低檔次)的產(chǎn)品一天能生產(chǎn)95件,每件利潤6元,每提高一個檔次,每件利潤增加2元,但一天產(chǎn)量減少5件.若生產(chǎn)的產(chǎn)品一天的總利潤為1120元,且同一天所生產(chǎn)的產(chǎn)品為同一檔次,則該產(chǎn)品的質(zhì)量檔次是()A.6 B.8 C.10 D.1210.下列命題錯誤的是()A.經(jīng)過三個點一定可以作圓B.經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心C.同圓或等圓中,相等的圓心角所對的弧相等D.三角形的外心到三角形各頂點的距離相等二、填空題(每小題3分,共24分)11.將拋物線y=2x2平移,使頂點移動到點P(﹣3,1)的位置,那么平移后所得新拋物線的表達式是_____.12.如圖,已知一次函數(shù)y=kx-4的圖象與x軸、y軸分別交于A、B兩點,與反比例函數(shù)在第一象限內(nèi)的圖象交于點C,且A為BC的中點,則k=________.13.如圖,一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,任意轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止時,指針落在紅色區(qū)域的概率為____.14.如圖,矩形ABCD中,AD=2,AB=5,P為CD邊上的動點,當△ADP與△BCP相似時,DP=__.15.如圖,E,F(xiàn)分別為矩形ABCD的邊AD,BC的中點,且矩形ABCD與矩形EABF相似,AB=1,則BC的長為_____.16.如圖,某商店營業(yè)大廳自動扶梯AB的傾斜角為31°,AB的長為12米,則大廳兩層之間的高度為______米.(結(jié)果保留兩個有效數(shù)字)(參考數(shù)據(jù);sin31°=0.515,cos31°=0.857,tan31°=0.601)17.如圖,點G是△ABC的重心,過點G作GE//BC,交AC于點E,連結(jié)GC.若△ABC的面積為1,則△GEC的面積為____________.18.已知反比例函數(shù),當_______時,其圖象在每個象限內(nèi)隨的增大而增大.三、解答題(共66分)19.(10分)如圖是數(shù)值轉(zhuǎn)換機的示意圖,小明按照其對應關(guān)系畫出了y與x的函數(shù)圖象(如圖):(1)分別寫出當0≤x≤4與x>4時,y與x的函數(shù)關(guān)系式:(2)求出所輸出的y的值中最小一個數(shù)值;(3)寫出當x滿足什么范圍時,輸出的y的值滿足3≤y≤1.20.(6分)已知,如圖,AB是⊙O的直徑,AD平分∠BAC交⊙O于點D,過點D的切線交AC的延長線于E.求證:DE⊥AE.21.(6分)如圖,∠MAN=90°,,分別為射線,上的兩個動點,將線段繞點逆時針旋轉(zhuǎn)到,連接交于點.(1)當∠ACB=30°時,依題意補全圖形,并直接寫出的值;(2)寫出一個∠ACB的度數(shù),使得,并證明.22.(8分)在Rt△ABC中,∠ACB=90°,AC=BC=3,點D是斜邊AB上一動點(點D與點A、B不重合),連接CD,將CD繞點C順時針旋轉(zhuǎn)90°得到CE,連接AE,DE.(1)求△ADE的周長的最小值;(2)若CD=4,求AE的長度.23.(8分)先化簡,再求值:,其中x是方程的根.24.(8分)如圖,在平面直角坐標系xOy中,直線和拋物線W交于A,B兩點,其中點A是拋物線W的頂點.當點A在直線上運動時,拋物線W隨點A作平移運動.在拋物線平移的過程中,線段AB的長度保持不變.應用上面的結(jié)論,解決下列問題:在平面直角坐標系xOy中,已知直線.點A是直線上的一個動點,且點A的橫坐標為.以A為頂點的拋物線與直線的另一個交點為點B.(1)當時,求拋物線的解析式和AB的長;(2)當點B到直線OA的距離達到最大時,直接寫出此時點A的坐標;(3)過點A作垂直于軸的直線交直線于點C.以C為頂點的拋物線與直線的另一個交點為點D.①當AC⊥BD時,求的值;②若以A,B,C,D為頂點構(gòu)成的圖形是凸四邊形(各個內(nèi)角度數(shù)都小于180°)時,直接寫出滿足條件的的取值范圍.25.(10分)如圖已知直線與拋物線y=ax2+bx+c相交于A(﹣1,0),B(4,m)兩點,拋物線y=ax2+bx+c交y軸于點C(0,﹣),交x軸正半軸于D點,拋物線的頂點為M.(1)求拋物線的解析式;(2)設(shè)點P為直線AB下方的拋物線上一動點,當△PAB的面積最大時,求△PAB的面積及點P的坐標;(3)若點Q為x軸上一動點,點N在拋物線上且位于其對稱軸右側(cè),當△QMN與△MAD相似時,求N點的坐標.26.(10分)根據(jù)2019年莆田市初中畢業(yè)升學體育考試內(nèi)容要求,甲、乙、丙在某節(jié)體育課他們各自隨機分別到籃球場A處進行籃球運球繞桿往返訓練或到足球場B處進行足球運球繞桿訓練,三名學生隨機選擇其中的一場地進行訓練.(1)用列表法或樹形圖表示出的所用可能出現(xiàn)的結(jié)果;(2)求甲、乙、丙三名學生在同一場地進行訓練的概率;(3)求甲、乙、丙三名學生中至少有兩人在B處場地進行訓練的概率.

參考答案一、選擇題(每小題3分,共30分)1、D【解析】根據(jù)冪的乘方、同底數(shù)冪的乘法的運算法則計算后利用排除法求解.【詳解】解:A、a2+a4≠a6,不符合;B、a2?a3=a5,不符合;C、a12÷a2=a10,不符合;D、(a2)3=a6,符合.故選D.【點睛】本題考查了合并同類項、同底數(shù)冪的乘法、冪的乘方.需熟練掌握且區(qū)分清楚,才不容易出錯.2、B【解析】試題解析:∴對稱軸為x=-3,∵點M在對稱軸上,∴M點的橫坐標為-3,故選B.3、A【分析】根據(jù)必然事件就是一定發(fā)生的事件,即發(fā)生的概率是1的事件即可得出答案.【詳解】解:A、方程2x2+3=0的判別式△=0﹣4×2×3=﹣24<0,因此方差2x2+3=0無實數(shù)解是必然事件,故本選項正確;B、在某交通燈路口,遇到紅燈是隨機事件,故本選項錯誤;C、若任取一個實數(shù)a,則(a+1)2>0是隨機事件,故本選項錯誤;D、買一注福利彩票,沒有中獎是隨機事件,故本選項錯誤;故選:A.【點睛】本題主要考察隨機事件,解題關(guān)鍵是熟練掌握隨機事件的定義.4、B【分析】先將,代入一元二次方程得出與的關(guān)系,再將用含的式子表示并代入一元二次方程求解即得.【詳解】∵關(guān)于的一元二次方程的兩根為,∴或∴整理方程即得:∴將代入化簡即得:解得:,故選:B.【點睛】本題考查了含參數(shù)的一元二次方程求解,解題關(guān)鍵是根據(jù)已知條件找出參數(shù)關(guān)系,并代入要求的方程化簡為不含參數(shù)的一元二次方程.5、A【分析】將x=0和x=1代入表達式分別求y1,y2,根據(jù)計算結(jié)果作比較.【詳解】當x=0時,y1=-1+3=2,當x=1時,y2=-4+3=-1,∴.故選:A.【點睛】本題考查二次函數(shù)圖象性質(zhì),對圖象的理解是解答此題的關(guān)鍵.6、A【分析】根據(jù)三角函數(shù)的定義解決問題即可.【詳解】解:如圖,在Rt△ABC中,∵∠C=90°,BC=3,AC=4,∴AB=,∴sinB==故選:A.【點睛】本題考查解直角三角形的應用,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.7、D【解析】概率是反映事件發(fā)生機會的大小的概念,只是表示發(fā)生的機會的大小,機會大也不一定發(fā)生.【詳解】A.

是隨機事件,錯誤;

B.

中獎的概率是1%,買100張該種彩票不一定會中獎,錯誤;

C.

明天下雨的概率是50%,是說明天下雨的可能性是50%,而不是明天將有一半時間在下雨,錯誤;

D.

正確。

故選D.【點睛】本題考查概率的意義,解題的關(guān)鍵是掌握概率的意義.8、D【分析】過點M作MP⊥CD垂足為P,過點O作OQ⊥CD垂足為Q,根據(jù)正方形的性質(zhì)得到AB=AD=BC=CD=,∠DCB=∠COD=∠BOC=90°,根據(jù)折疊的性質(zhì)得到∠EDF=∠CDF,設(shè)OM=PM=x,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】過點M作MP⊥CD垂足為P,過點O作OQ⊥CD垂足為Q,∵正方形的邊長為,∴OD=1,OC=1,OQ=DQ=,由折疊可知,∠EDF=∠CDF.又∵AC⊥BD,∴OM=PM,設(shè)OM=PM=x∵OQ⊥CD,MP⊥CD∴∠OQC=∠MPC=900,∠PCM=∠QCO,∴△CMP∽△COQ∴,即,解得x=-1∴OM=PM=-1.故選D【點睛】此題考查正方形的性質(zhì),折疊的性質(zhì),相似三角形的性質(zhì)與判定,角平分線的性質(zhì),解題關(guān)鍵在于作輔助線9、A【分析】設(shè)該產(chǎn)品的質(zhì)量檔次是x檔,則每天的產(chǎn)量為[95﹣5(x﹣1)]件,每件的利潤是[6+2(x﹣1)]元,根據(jù)總利潤=單件利潤×銷售數(shù)量,即可得出關(guān)于x的一元二次方程,解之取其小于等于10的值即可得出結(jié)論.【詳解】設(shè)該產(chǎn)品的質(zhì)量檔次是x檔,則每天的產(chǎn)量為[95﹣5(x﹣1)]件,每件的利潤是[6+2(x﹣1)]元,根據(jù)題意得:[6+2(x﹣1)][95﹣5(x﹣1)]=1120,整理得:x2﹣18x+72=0,解得:x1=6,x2=12(舍去).故選A.【點睛】本題考查了一元二次方程的應用,找準等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.10、A【解析】選項A,經(jīng)過不在同一直線上的三個點可以作圓;選項B,經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心,正確;選項C,同圓或等圓中,相等的圓心角所對的弧相等,正確;選項D,三角形的外心到三角形各頂點的距離相等,正確;故選A.二、填空題(每小題3分,共24分)11、y=2(x+3)2+1【解析】由于拋物線平移前后二次項系數(shù)不變,然后根據(jù)頂點式寫出新拋物線解析式.【詳解】拋物線y=2x2平移,使頂點移到點P(﹣3,1)的位置,所得新拋物線的表達式為y=2(x+3)2+1.故答案為:y=2(x+3)2+1【點睛】本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.12、4【詳解】把x=0代入y=kx-4,得y=-4,則B的坐標為(0,-4),∵A為BC的中點,∴C點的縱坐標為4,把y=4代入,得x=2,∴C點的坐標為(2,4),把C(2,4)的坐標代入y=kx-4,得2k-4=4,解得k=4,故答案為4.13、【分析】用紅色區(qū)域的圓心角度數(shù)除以圓的周角的度數(shù)可得到指針落在紅色區(qū)域的概率.【詳解】解:因為藍色區(qū)域的圓心角的度數(shù)為120°,所以指針落在紅色區(qū)域內(nèi)的概率是=,故答案為.【點睛】本題考查了幾何概率:求概率時,已知和未知與幾何有關(guān)的就是幾何概率.計算方法是利用長度比,面積比,體積比等.14、1或4或2.1.【分析】需要分類討論:△APD∽△PBC和△PAD∽△PBC,根據(jù)該相似三角形的對應邊成比例求得DP的長度.【詳解】設(shè)DP=x,則CP=1-x,本題需要分兩種情況情況進行討論,①、當△PAD∽△PBC時,=∴,解得:x=2.1;②、當△APD∽△PBC時,=,即=,解得:x=1或x=4,綜上所述DP=1或4或2.1【點晴】本題主要考查的就是三角形相似的問題和動點問題,首先將各線段用含x的代數(shù)式進行表示,然后看是否有相同的角,根據(jù)對應角的兩邊對應成比例將線段寫成比例式的形式,然后分別進行計算得出答案.在解答這種問題的時候千萬不能出現(xiàn)漏解的現(xiàn)象,每種情況都要考慮到位.15、【分析】根據(jù)相似多邊形的性質(zhì)列出比例式,計算即可.【詳解】∵矩形ABCD與矩形EABF相似,∴=,即=,解得,AD=,∴矩形ABCD的面積=AB?AD=,故答案為:.【點睛】本題考查了相似多邊形的性質(zhì),掌握相似多邊形的對應邊的比相等是解題的關(guān)鍵.16、6.2【分析】根據(jù)題意和銳角三角函數(shù)可以求得BC的長,從而可以解答本題.【詳解】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB?sin∠BAC=12×0.515≈6.2(米),答:大廳兩層之間的距離BC的長約為6.2米.故答案為6.2.【點睛】本題考查解直角三角形的應用,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用銳角三角函數(shù)和數(shù)形結(jié)合的思想解答.17、【分析】如圖,延長AG交BC于D,利用相似三角形的面積比等于相似比的平方解決問題即可.【詳解】解:連接AG并延長交BC于點D,∴D為BC中點∴又∵∴∵G為重心∴∴∴,又∵∴.【點睛】本題考查三角形的重心,三角形的面積,相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.18、【分析】根據(jù)反比例函數(shù)的性質(zhì)求出m的取值范圍即可.【詳解】∵反比例函數(shù)在每個象限內(nèi)隨的增大而增大∴解得故答案為:.【點睛】本題考查了反比例函數(shù)的問題,掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.三、解答題(共66分)19、(1)當時,y=x+3;當時y=(x-1)2+2(2)最小值2(3)0≤x≤5或7≤x≤2【解析】(1)當0≤x≤4時,函數(shù)關(guān)系式為y=x+3;當x>4時,函數(shù)關(guān)系式為y=(x﹣1)2+2;(2)根據(jù)一次函數(shù)與二次函數(shù)的性質(zhì),分別求出自變量在其取值范圍內(nèi)的最小值,然后比較即可;(3)由題意,可得不等式和,解答出x的值即可.【詳解】解:(1)由圖可知,當0≤x≤4時,y=x+3;當x>4時,y=(x﹣1)2+2;(2)當0≤x≤4時,y=x+3,此時y隨x的增大而增大,∴當x=0時,y=x+3有最小值,為y=3;當x>4時,y=(x﹣1)2+2,y在頂點處取最小值,即當x=1時,y=(x﹣1)2+2的最小值為y=2;∴所輸出的y的值中最小一個數(shù)值為2;(3)由題意得,當0≤x≤4時,解得,0≤x≤4;當x>4時,,解得,4≤x≤5或7≤x≤2;綜上,x的取值范圍是:0≤x≤5或7≤x≤2.20、詳見解析.【解析】由切線的性質(zhì)可知∠ODE=90°,證明OD∥AE即可解決問題.【詳解】連接OD.∵DE是⊙O的切線,∴OD⊥DE,∴∠ODE=90°.∵OA=OD,∴∠OAD=∠ODA.∵AD平分∠BAC,∴∠CAD=∠DAB,∴∠CAB=∠ADO,∴OD∥AE,∴∠E+∠ODE=180°,∴∠E=90°,∴DE⊥AE.【點睛】本題考查了切線的性質(zhì),平行線的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.21、(1);(2)∠.【分析】(1)按照題意補全圖形即可,由已知可證△∽△,再由相似三角形的性質(zhì)可知,從而可得答案;(2)過點作于點,由已知可證△∽△,從而有,再利用∠ACB的度數(shù)可求出,從而可得出答案.【詳解】解:(1)正確補全圖形;∵∴△∽△∴∵∴.(2)解:∠.證明:∵,∴.∵,∴.過點作于點,∴∵,∴.∵,∴.∵∠.∴△∽△.∴.【點睛】本題主要考查相似三角形的判定及性質(zhì),掌握旋轉(zhuǎn)的性質(zhì)及相似三角形的判定是解題的關(guān)鍵.22、(1)6+;(2)3﹣或3+【分析】(1)根據(jù)勾股定理得到AB=AC=6,根據(jù)全等三角形的性質(zhì)得到AE=BD,當DE最小時,△ADE的周長最小,過點C作CF⊥AB于點F,于是得到結(jié)論;(2)當點D在CF的右側(cè),當點D在CF的左側(cè),根據(jù)勾股定理即可得到結(jié)論【詳解】解:(1)∵在Rt△ABC中,∠ACB=90°,AC=BC=3∴AB=AC=6,∵∠ECD=∠ACB=90°,∴∠ACE=∠BCD,在△ACE與△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∴△ADE的周長=AE+AD+DE=AB+DE,∴當DE最小時,△ADE的周長最小,過點C作CF⊥AB于點F,當CD⊥AB時,CD最短,等于3,此時DE=3,∴△ADE的周長的最小值是6+3;(2)當點D在CF的右側(cè),∵CF=AB=3,CD=4,∴DF=,∴AE=BD=BF﹣DF=3﹣;當點D在CF的左側(cè),同理可得AE=BD=3+,綜上所述:AE的長度為3﹣或3+.【點睛】本題考查旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是熟練運用旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定與性質(zhì).23、見解析【解析】試題分析:先將原式按分式的相關(guān)運算法則化簡,再解方程求得x的值,最后將使原分式有意義的x的值代入化簡后的式子計算即可.試題解析:原式.解方程得.當時,原式;當時,原式無意義.點睛:求分式的值時,字母的取值需確保原分式有意義,本題中,當時,原分式無意義,此時不能將代入化簡所得的分式中進行計算.24、(1);(2);(3)①;②的取值范圍是或.【分析】(1)根據(jù)t=3時,A的坐標可以求得是(3,-2),利用待定系數(shù)法即可求得拋物線的解析式,則B的坐標可以求得;

(2)△OAB的面積一定,當OA最小時,B到OA的距離即△OAB中OA邊上的高最大,此時OA⊥AB,據(jù)此即可求解;

(3)①方法一:設(shè)AC,BD交于點E,直線l1:y=x-2,與x軸、y軸交于點P和Q(如圖1).由點D在拋物線C2:y=[x-(2t-4)]2+(t-2)上,可得=[(t-1)-(2t-4)]2+(t-2),解方程即可得到t的值;

方法二:設(shè)直線l1:y=x-2與x軸交于點P,過點A作y軸的平行線,過點B作x軸的平行線,交于點N.(如圖2),根據(jù)BD⊥AC,可得t-1=2t-,解方程即可得到t的值;

②設(shè)直線l1與l2交于點M.隨著點A從左向右運動,從點D與點M重合,到點B與點M重合的過程中,可得滿足條件的t的取值范圍.【詳解】解:(1)∵點A在直線l1:y=x-2上,且點A的橫坐標為3,

∴點A的坐標為(3,-2),

∴拋物線C1的解析式為y=-x2-2,

∵點B在直線l1:y=x-2上,

設(shè)點B的坐標為(x,x-2).

∵點B在拋物線C1:y=-x2-2上,

∴x-2=-x2-2,

解得x=3或x=-1.

∵點A與點B不重合,

∴點B的坐標為(-1,-3),

∴由勾股定理得AB=.

(2)當OA⊥AB時,點B到直線OA的距離達到最大,則OA的解析式是y=-x,則

,解得:,

則點A的坐標為(1,-1).(3)①方法一:設(shè),交于點,直線,與軸、軸交于點和(如圖1).則點和點的坐標分別為,.∴.∵.∵軸,∴軸.∴.∵,,∴.∵點在直線上,且點的橫坐標為,∴點的坐標為.∴點的坐標為.∵軸,∴點的縱坐標為.∵點在直線上,∴點的坐標為.∴拋物線的解析式為.∵,∴點的橫坐標為,∵點在直線上,∴點的坐標為.∵點在拋物線上,∴.解得或.∵當時,點與點重合,∴方法二:設(shè)直線l1:y=x-2與x軸交于點P,過點A作y軸的平行線,過點B作x軸的平行線,交于點N.(如圖2)

則∠ANB=93°,∠ABN=∠OPB.

在△ABN中,BN=ABcos∠ABN,AN=ABsin∠ABN.

∵在拋物線C1隨頂點A平移的過程中,

AB的長度不變,∠ABN的大小不變,

∴BN和AN的長度也不變,即點A與點B的橫坐標的差以及縱坐標的差都保持不變.

同理,點C與點D的橫坐標的差以及縱坐標的差也保持不變.

由(1)知當點A的坐標為(3,-2)時,點B的坐標為(-1,-3),

∴當點A的坐標為(t,t-2)時,點B的坐標為(t-1,t-3).

∵AC∥x軸,

∴點C的縱坐標為t-2.

∵點C在直線l2:y=x上,

∴點C的坐標為(2t-4,t-2).

令t=2,則點C的坐標為(3,3).

∴拋物線C2的解析式為y=x2.

∵點D在直線l2:y=x上,

∴設(shè)點D的坐標為(x,).

∵點D在拋物線C2:y=x2上,

∴=x2.

解得x=或x=3.

∵點C與點D不重合,

∴點D的坐標為(,).

∴當點C的坐標為(3,3)時,點D的坐標為(,).

∴當點C的坐標為(2t-4,t-2)時,點D的坐標為(2t?,t?).

∵BD⊥AC,

∴t?1=2t?.

∴t=.

②t的取值范圍是t<或t>4.

設(shè)直線l1與l2交于點M.隨著點A從左向右運動,從點D與點M重合,到點B與點M重合的過程中,以A,B,C,D為頂點構(gòu)成的圖形不是凸四邊形.

【點睛】本題考查了二次函數(shù)綜合題,掌握待定系數(shù)法求得函數(shù)的解析式,點到直線的距離,平行于坐標軸的點的特點,方程思想的運用是解題的關(guān)鍵.25、(1);(2),P(,);(3)N(3,0)或N(2+,1+)或N(5,6)或N(,1﹣).【分析】(1)將點代入,求出,將點代入,即可求函數(shù)解析式;(2)如圖,過作軸,交于,求出的解析式,設(shè),表示點坐標,表示長度,利用,建立二次函數(shù)模型,利用二次函數(shù)的性質(zhì)求最值即可,(3)可證明△MAD是等腰直角三角形,由△QMN與△MAD相似,則△QMN是等腰直角三角形,設(shè)①當MQ⊥QN時,N(3,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論