內(nèi)蒙古師范大第二附中2023-2024學(xué)年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第1頁
內(nèi)蒙古師范大第二附中2023-2024學(xué)年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第2頁
內(nèi)蒙古師范大第二附中2023-2024學(xué)年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第3頁
內(nèi)蒙古師范大第二附中2023-2024學(xué)年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第4頁
內(nèi)蒙古師范大第二附中2023-2024學(xué)年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

內(nèi)蒙古師范大第二附中2023-2024學(xué)年中考數(shù)學(xué)適應(yīng)性模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.正五邊形繞著它的中心旋轉(zhuǎn)后與它本身重合,最小的旋轉(zhuǎn)角度數(shù)是()A.36° B.54° C.72° D.108°2.如圖,在△ABC中,∠ACB=90°,沿CD折疊△CBD,使點B恰好落在AC邊上的點E處.若∠A=24°,則∠BDC的度數(shù)為()A.42° B.66° C.69° D.77°3.下列調(diào)查中,最適合采用全面調(diào)查(普查)方式的是()A.對重慶市初中學(xué)生每天閱讀時間的調(diào)查B.對端午節(jié)期間市場上粽子質(zhì)量情況的調(diào)查C.對某批次手機的防水功能的調(diào)查D.對某校九年級3班學(xué)生肺活量情況的調(diào)查4.如圖,是由幾個相同的小正方形搭成幾何體的左視圖,這幾個幾何體的擺搭方式可能是()A. B. C. D.5.分式有意義,則x的取值范圍是()A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣76.現(xiàn)有三張背面完全相同的卡片,正面分別標有數(shù)字﹣1,﹣2,3,把卡片背面朝上洗勻,然后從中隨機抽取兩張,則這兩張卡片正面數(shù)字之和為正數(shù)的概率是()A. B. C. D.7.下圖是某幾何體的三視圖,則這個幾何體是()A.棱柱 B.圓柱 C.棱錐 D.圓錐8.如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,過點D作⊙O的切線交BC于點M,切點為N,則DM的長為()A. B. C. D.9.不等式組的解集是()A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤210.﹣2的絕對值是()A.2 B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.直線y=﹣x+1分別交x軸,y軸于A、B兩點,則△AOB的面積等于___.12.如圖,直線m∥n,△ABC為等腰直角三角形,∠BAC=90°,則∠1=度.13.如圖,半徑為3的⊙O與Rt△AOB的斜邊AB切于點D,交OB于點C,連接CD交直線OA于點E,若∠B=30°,則線段AE的長為.14.寫出一個平面直角坐標系中第三象限內(nèi)點的坐標:(__________)15.如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=1DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正確結(jié)論的是_____.16.高速公路某收費站出城方向有編號為的五個小客車收費出口,假定各收費出口每20分鐘通過小客車的數(shù)量分別都是不變的.同時開放其中的某兩個收費出口,這兩個出口20分鐘一共通過的小客車數(shù)量記錄如下:收費出口編號通過小客車數(shù)量(輛)260330300360240在五個收費出口中,每20分鐘通過小客車數(shù)量最多的一個出口的編號是___________.三、解答題(共8題,共72分)17.(8分)某種商品每天的銷售利潤元,銷售單價元,間滿足函數(shù)關(guān)系式:,其圖象如圖所示.(1)銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤為多少元?(2)銷售單價在什么范圍時,該種商品每天的銷售利潤不低于21元?18.(8分)解不等式組,請結(jié)合題意填空,完成本題的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在數(shù)軸上表示出來:(4)原不等式的解集為.19.(8分)八年級(1)班研究性學(xué)習(xí)小組為研究全校同學(xué)課外閱讀情況,在全校隨機邀請了部分同學(xué)參與問卷調(diào)查,統(tǒng)計同學(xué)們一個月閱讀課外書的數(shù)量,并繪制了以下統(tǒng)計圖.請根據(jù)圖中信息解決下列問題:(1)共有名同學(xué)參與問卷調(diào)查;(2)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;(3)全校共有學(xué)生1500人,請估計該校學(xué)生一個月閱讀2本課外書的人數(shù)約為多少.20.(8分)如圖,AB是⊙O的直徑,弧CD⊥AB,垂足為H,P為弧AD上一點,連接PA、PB,PB交CD于E.(1)如圖(1)連接PC、CB,求證:∠BCP=∠PED;(2)如圖(2)過點P作⊙O的切線交CD的延長線于點E,過點A向PF引垂線,垂足為G,求證:∠APG=∠F;(3)如圖(3)在圖(2)的條件下,連接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直徑AB.21.(8分)AB為⊙O直徑,C為⊙O上的一點,過點C的切線與AB的延長線相交于點D,CA=CD.(1)連接BC,求證:BC=OB;(2)E是中點,連接CE,BE,若BE=2,求CE的長.22.(10分)旅游公司在景區(qū)內(nèi)配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內(nèi)最多只能出租一次,且每輛車的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營運規(guī)律如下:當(dāng)x不超過100元時,觀光車能全部租出;當(dāng)x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.(1)優(yōu)惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應(yīng)為多少元?(注:凈收入=租車收入﹣管理費)(2)當(dāng)每輛車的日租金為多少元時,每天的凈收入最多?23.(12分)如圖,有長為14m的籬笆,現(xiàn)一面利用墻(墻的最大可用長度a為10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬AB為xm,面積為Sm1.求S與x的函數(shù)關(guān)系式及x值的取值范圍;要圍成面積為45m1的花圃,AB的長是多少米?當(dāng)AB的長是多少米時,圍成的花圃的面積最大?24.如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.求二次函數(shù)y=ax2+2x+c的表達式;連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點P的坐標;當(dāng)點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標和四邊形ACPB的最大面積.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】正五邊形繞著它的中心旋轉(zhuǎn)后與它本身重合,最小的旋轉(zhuǎn)角度數(shù)是=72度,故選C.2、C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折疊的性質(zhì)可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故選C.3、D【解析】

A、對重慶市初中學(xué)生每天閱讀時間的調(diào)查,調(diào)查范圍廣適合抽樣調(diào)查,故A錯誤;B、對端午節(jié)期間市場上粽子質(zhì)量情況的調(diào)查,調(diào)查具有破壞性,適合抽樣調(diào)查,故B錯誤;C、對某批次手機的防水功能的調(diào)查,調(diào)查具有破壞性,適合抽樣調(diào)查,故C錯誤;D、對某校九年級3班學(xué)生肺活量情況的調(diào)查,人數(shù)較少,適合普查,故D正確;故選D.4、A【解析】

根據(jù)左視圖的概念得出各選項幾何體的左視圖即可判斷.【詳解】解:A選項幾何體的左視圖為;

B選項幾何體的左視圖為;

C選項幾何體的左視圖為;

D選項幾何體的左視圖為;

故選:A.【點睛】本題考查由三視圖判斷幾何體,解題的關(guān)鍵是熟練掌握左視圖的概念.5、A【解析】

直接利用分式有意義則分母不為零進而得出答案.【詳解】解:分式有意義,則x﹣1≠0,解得:x≠1.故選:A.【點睛】此題主要考查了分式有意義的條件,正確把握分式的定義是解題關(guān)鍵.當(dāng)分母不等于零時,分式有意義;當(dāng)分母等于零時,分式無意義.分式是否有意義與分子的取值無關(guān).6、D【解析】

先找出全部兩張卡片正面數(shù)字之和情況的總數(shù),再先找出全部兩張卡片正面數(shù)字之和為正數(shù)情況的總數(shù),兩者的比值即為所求概率.【詳解】任取兩張卡片,數(shù)字之和一共有﹣3、2、1三種情況,其中和為正數(shù)的有2、1兩種情況,所以這兩張卡片正面數(shù)字之和為正數(shù)的概率是.故選D.【點睛】本題主要考查概率的求法,熟練掌握概率的求法是解題的關(guān)鍵.7、D【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由俯視圖易得幾何體的底面為圓,還有表示錐頂?shù)膱A心,符合題意的只有圓錐.故選D.【點睛】本題考查由三視圖確定幾何體的形狀,主要考查學(xué)生空間想象能力以及對立體圖形的認識.8、A【解析】試題解析:連接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四邊形AFOE,F(xiàn)BGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切線,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故選B.考點:1.切線的性質(zhì);3.矩形的性質(zhì).9、D【解析】由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式組的解集為﹣1<x≤2,故選D10、A【解析】分析:根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,在數(shù)軸上,點﹣2到原點的距離是2,所以﹣2的絕對值是2,故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】

先求得直線y=﹣x+1與x軸,y軸的交點坐標,再根據(jù)三角形的面積公式求得△AOB的面積即可.【詳解】∵直線y=﹣x+1分別交x軸、y軸于A、B兩點,∴A、B點的坐標分別為(1,0)、(0,1),S△AOB=OA?OB=×1×1=,故答案為.【點睛】本題考查了直線與坐標軸的交點坐標及三角形的面積公式,正確求得直線y=﹣x+1與x軸、y軸的交點坐標是解決問題的關(guān)鍵.12、1.【解析】試題分析:∵△ABC為等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m∥n,∴∠1=1°;故答案為1.考點:等腰直角三角形;平行線的性質(zhì).13、【解析】

要求AE的長,只要求出OA和OE的長即可,要求OA的長可以根據(jù)∠B=30°和OB的長求得,OE可以根據(jù)∠OCE和OC的長求得.【詳解】解:連接OD,如圖所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BOtan30°=6×=2,∵∠COE=90°,OC=3,∴OE=OCtan60°=3×=3,∴AE=OE﹣OA=3-2=,【點晴】切線的性質(zhì)14、答案不唯一,如:(﹣1,﹣1),橫坐標和縱坐標都是負數(shù)即可.【解析】

讓橫坐標、縱坐標為負數(shù)即可.【詳解】在第三象限內(nèi)點的坐標為:(﹣1,﹣1)(答案不唯一).故答案為答案不唯一,如:(﹣1,﹣1),橫坐標和縱坐標都是負數(shù)即可.15、①②③【解析】

根據(jù)翻折變換的性質(zhì)和正方形的性質(zhì)可證Rt△ABG≌Rt△AFG;在直角△ECG中,根據(jù)勾股定理可證BG=GC;通過證明∠AGB=∠AGF=∠GFC=∠GCF,由平行線的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面積比較即可.【詳解】①正確.

理由:

∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正確.理由:EF=DE=CD=2,設(shè)BG=FG=x,則CG=6-x.在直角△ECG中,根據(jù)勾股定理,得(6-x)2+42=(x+2)2,解得x=1.∴BG=1=6-1=GC;③正確.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④錯誤.理由:∵S△GCE=GC?CE=×1×4=6

∵GF=1,EF=2,△GFC和△FCE等高,

∴S△GFC:S△FCE=1:2,

∴S△GFC=×6=≠1.

故④不正確.

∴正確的個數(shù)有1個:①②③.故答案為①②③【點睛】本題綜合性較強,考查了翻折變換的性質(zhì)和正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,平行線的判定,三角形的面積計算,有一定的難度.16、B【解析】

利用同時開放其中的兩個安全出口,20分鐘所通過的小車的數(shù)量分析對比,能求出結(jié)果.【詳解】同時開放A、E兩個安全出口,與同時開放D、E兩個安全出口,20分鐘的通過數(shù)量發(fā)現(xiàn)得到D疏散乘客比A快;同理同時開放BC與CD進行對比,可知B疏散乘客比D快;同理同時開放BC與AB進行對比,可知C疏散乘客比A快;同理同時開放DE與CD進行對比,可知E疏散乘客比C快;同理同時開放AB與AE進行對比,可知B疏散乘客比E快;所以B口的速度最快故答案為B.【點睛】本題考查簡單的合理推理,考查推理論證能力等基礎(chǔ)知識,考查運用求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.三、解答題(共8題,共72分)17、(1)10,1;(2).【解析】

(1)將點代入中,求出函數(shù)解析式,再根據(jù)二次函數(shù)的性質(zhì)求出最大值即可;(2)求出對稱軸為直線,可知點關(guān)于對稱軸的對稱點是,再根據(jù)圖象判斷出x的取值范圍即可.【詳解】解:(1)圖象過點,,解得..的頂點坐標為.,∴當(dāng)時,最大=1.答:該商品的銷售單價為10元時,每天的銷售利潤最大,最大利潤為1元.(2)∵函數(shù)圖象的對稱軸為直線,可知點關(guān)于對稱軸的對稱點是,又∵函數(shù)圖象開口向下,∴當(dāng)時,.答:銷售單價不少于8元且不超過12元時,該種商品每天的銷售利潤不低于21元.【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式以及二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟悉待定系數(shù)法以及二次函數(shù)的性質(zhì).18、(1)x≤1;(1)x≥﹣1;(3)見解析;(4)﹣1≤x≤1.【解析】

先求出不等式的解集,再求出不等式組的解集即可.【詳解】解:(1)解不等式①,得x≤1,(1)解不等式②,得x≥﹣1,(3)把不等式①和②的解集在數(shù)軸上表示出來:;(4)原不等式組的解集為﹣1≤x≤1,故答案為x≤1,x≥﹣1,﹣1≤x≤1.【點睛】本題考查了解一元一次不等式組,能根據(jù)不等式的解集找出不等式組的解集是解此題的關(guān)鍵.19、(1)100;(2)補圖見解析;(3)570人.【解析】

(1)由讀書1本的人數(shù)及其所占百分比可得總?cè)藬?shù);(2)總?cè)藬?shù)乘以讀4本的百分比求得其人數(shù),減去男生人數(shù)即可得出女生人數(shù),用讀2本的人數(shù)除以總?cè)藬?shù)可得對應(yīng)百分比;(3)總?cè)藬?shù)乘以樣本中讀2本人數(shù)所占比例.【詳解】(1)參與問卷調(diào)查的學(xué)生人數(shù)為(8+2)÷10%=100人,故答案為:100;(2)讀4本的女生人數(shù)為100×15%﹣10=5人,讀2本人數(shù)所占百分比為20+補全圖形如下:(3)估計該校學(xué)生一個月閱讀2本課外書的人數(shù)約為1500×38%=570人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?0、(1)見解析;(2)見解析;(3)AB=1【解析】

(1)由垂徑定理得出∠CPB=∠BCD,根據(jù)∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得證;(2)連接OP,知OP=OB,先證∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,據(jù)此可得2∠APG=∠F,據(jù)此即可得證;(3)連接AE,取AE中點N,連接HN、PN,過點E作EM⊥PF,先證∠PAE=∠F,由tan∠PAE=tan∠F得,再證∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,從而得出,即MF=GP,由3PF=5PG即,可設(shè)PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,證∠PEM=∠ABP得BP=3k,繼而可得BE=k=2,據(jù)此求得k=2,從而得出AP、BP的長,利用勾股定理可得答案.【詳解】證明:(1)∵AB是⊙O的直徑且AB⊥CD,∴∠CPB=∠BCD,∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,∴∠BCP=∠PED;(2)連接OP,則OP=OB,∴∠OPB=∠OBP,∵PF是⊙O的切線,∴OP⊥PF,則∠OPF=90°,∠FPE=90°﹣∠OPE,∵∠PEF=∠HEB=90°﹣∠OBP,∴∠FPE=∠FEP,∵AB是⊙O的直徑,∴∠APB=90°,∴∠APG+∠FPE=90°,∴2∠APG+2∠FPE=180°,∵∠F+∠FPE+∠PEF=180°,∵∠F+2∠FPE=180°∴2∠APG=∠F,∴∠APG=∠F;(3)連接AE,取AE中點N,連接HN、PN,過點E作EM⊥PF于M,由(2)知∠APB=∠AHE=90°,∵AN=EN,∴A、H、E、P四點共圓,∴∠PAE=∠PHF,∵PH=PF,∴∠PHF=∠F,∴∠PAE=∠F,tan∠PAE=tan∠F,∴,由(2)知∠APB=∠G=∠PME=90°,∴∠GAP=∠MPE,∴sin∠GAP=sin∠MPE,則,∴,∴MF=GP,∵3PF=5PG,∴,設(shè)PG=3k,則PF=5k,MF=PG=3k,PM=2k由(2)知∠FPE=∠PEF,∴PF=EF=5k,則EM=4k,∴tan∠PEM=,tan∠F=,∴tan∠PAE=,∵PE=,∴AP=k,∵∠APG+∠EPM=∠EPM+∠PEM=90°,∴∠APG=∠PEM,∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,∴∠APG=∠ABP,∴∠PEM=∠ABP,則tan∠ABP=tan∠PEM,即,∴,則BP=3k,∴BE=k=2,則k=2,∴AP=3、BP=6,根據(jù)勾股定理得,AB=1.【點睛】本題主要考查圓的綜合問題,解題的關(guān)鍵是掌握圓周角定理、四點共圓條件、相似三角形的判定與性質(zhì)、三角函數(shù)的應(yīng)用等知識點.21、(2)見解析;(2)2+.【解析】

(2)連接OC,根據(jù)圓周角定理、切線的性質(zhì)得到∠ACO=∠DCB,根據(jù)CA=CD得到∠CAD=∠D,證明∠COB=∠CBO,根據(jù)等角對等邊證明;

(2)連接AE,過點B作BF⊥CE于點F,根據(jù)勾股定理計算即可.【詳解】(2)證明:連接OC,∵AB為⊙O直徑,∴∠ACB=90°,∵CD為⊙O切線∴∠OCD=90°,∴∠ACO=∠DCB=90°﹣∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)連接AE,過點B作BF⊥CE于點F,∵E是AB中點,∴,∴AE=BE=2.∵AB為⊙O直徑,∴∠AEB=90°.∴∠ECB=∠BAE=45°,,∴.∴CF=BF=2.∴.∴.【點睛】本題考查的是切線的性質(zhì)、圓周角定理、勾股定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.22、(1)每輛車的日租金至少應(yīng)為25元;(2)當(dāng)每輛車的日租金為175元時,每天的凈收入最多是5025元.【解析】試題分析:(1)觀光車全部租出每天的凈收入=出租自行車的總收入﹣管理費,由凈收入為正列出不等式求解即可;(2)由函數(shù)解析式是分段函數(shù),在每一段內(nèi)求出函數(shù)最大值,比較得出函數(shù)的最大值.試題解析:(1)由題意知,若觀光車能全部租出,則0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍數(shù),∴每輛車的日租金至少應(yīng)為25元;(2)設(shè)每輛車的凈收入為y元,當(dāng)0<x≤100時,y1=50x﹣1100,∵y1隨x的增大而增大,∴當(dāng)x=100時,y1的最大值為50×100﹣1100=3900;當(dāng)x>100時,y2=(50﹣)x﹣1100=﹣x2+70x﹣1100=﹣(x﹣175)2+5025,當(dāng)x=175時,y2的最大值為5025,5025>3900,故當(dāng)每輛車的日租金為175元時,每天的凈收入最多是5025元.考點:二次函數(shù)的應(yīng)用.23、(1)S=﹣3x1+14x,≤x<8;(1)5m;(3)46.67m1【解析】

(1)設(shè)花圃寬AB為xm,則長為(14-3x),利用長方形的面積公式,可求出S與x關(guān)系式,根據(jù)墻的最大長度求出x的取值范圍;(1)根據(jù)(1)所求的關(guān)系式把S=2代入即可求出x,即AB;(3)根據(jù)二次函數(shù)的性質(zhì)及x的取值范圍求出即可.【詳解】解:(1)根據(jù)題意,得S=x(14﹣3x),即所求的函數(shù)解析式為:S=﹣3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論