松原市重點中學2025屆九上數(shù)學期末復習檢測模擬試題含解析_第1頁
松原市重點中學2025屆九上數(shù)學期末復習檢測模擬試題含解析_第2頁
松原市重點中學2025屆九上數(shù)學期末復習檢測模擬試題含解析_第3頁
松原市重點中學2025屆九上數(shù)學期末復習檢測模擬試題含解析_第4頁
松原市重點中學2025屆九上數(shù)學期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

松原市重點中學2025屆九上數(shù)學期末復習檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.拋物線的對稱軸為直線,與軸的一個交點坐標為,其部分圖象如圖所示.下列敘述中:①;②關于的方程的兩個根是;③;④;⑤當時,隨增大而增大.正確的個數(shù)是()A.4 B.3 C.2 D.12.在下列命題中,正確的是A.對角線相等的四邊形是平行四邊形B.有一個角是直角的四邊形是矩形C.有一組鄰邊相等的平行四邊形是菱形D.對角線互相垂直平分的四邊形是正方形3.從這九個自然數(shù)中任取一個,是的倍數(shù)的概率是().A. B. C. D.4.下列4×4的正方形網格中,小正方形的邊長均為1,三角形的頂點都在格點上,則與△ABC相似的三角形所在的網格圖形是()A.B.C.D.5.如圖,在高2m,坡角為30°的樓梯表面鋪地毯,地毯的長度至少需要()A.2m B.(2+2)m C.4m D.(4+2)m6.下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A.等腰梯形 B.矩形 C.正三角形 D.平行四邊形7.若是方程的兩根,則的值是()A. B. C. D.8.一個不透明的盒子中裝有5個紅球和1個白球,它們除顏色外都相同.若從中任意摸出一個球,則下列敘述正確的是()A.摸到紅球是必然事件B.摸到白球是不可能事件C.摸到紅球與摸到白球的可能性相等D.摸到紅球比摸到白球的可能性大9.如圖,在直角坐標系中,⊙A的半徑為2,圓心坐標為(4,0),y軸上有點B(0,3),點C是⊙A上的動點,點P是BC的中點,則OP的范圍是()A. B.2≤OP≤4 C.≤OP≤ D.3≤OP≤410.如圖,在□ABCD中,E、F分別是邊BC、CD的中點,AE、AF分別交BD于點G、H,則圖中陰影部分圖形的面積與□ABCD的面積之比為()A.7:12 B.7:24 C.13:36 D.13:7211.若反比例函數(shù)y=(k≠0)的圖象經過(2,3),則k的值為()A.5 B.﹣5 C.6 D.﹣612.圓錐的母線長為4,底面半徑為2,則它的側面積為()A.4π B.6π C.8π D.16π二、填空題(每題4分,共24分)13.如圖,在網格中,小正方形的邊長均為1,點,,都在格點上,則______.14.如圖,平行四邊形中,,如果,則___________.15.如圖,三個頂點的坐標分別為,以原點O為位似中心,把這個三角形縮小為原來的,可以得到,已知點的坐標是,則點的坐標是______.16.某學生想把放置在水平桌面上的一塊三角板(,),繞點按順時針方向旋轉角,轉到的位置,其中、分別是、的對應點,在上(如圖所示),則角的度數(shù)為______.17.數(shù)據8,8,10,6,7的眾數(shù)是__________.18.若,則化簡成最簡二次根式為__________.三、解答題(共78分)19.(8分)如圖1,拋物線與x軸交于A,B兩點(點A位于點B的左側),與y軸負半軸交于點C,若AB=1.(1)求拋物線的解析式;(2)如圖2,E是第三象限內拋物線上的動點,過點E作EF∥AC交拋物線于點F,過E作EG⊥x軸交AC于點M,過F作FH⊥x軸交AC于點N,當四邊形EMNF的周長最大值時,求點E的橫坐標;(3)在x軸下方的拋物線上是否存在一點Q,使得以Q、C、B、O為頂點的四邊形被對角線分成面積相等的兩部分?如果存在,求點Q的坐標;如果不存在,請說明理由.20.(8分)如圖,已知直線與x軸、y軸分別交于點A,B,與雙曲線分別交于點C,D,且點C的坐標為.(1)分別求出直線、雙曲線的函數(shù)表達式.(2)求出點D的坐標.(3)利用圖象直接寫出:當x在什么范圍內取值時?21.(8分)如圖,拋物線y=﹣x2+2x+6交x軸于A,B兩點(點A在點B的右側),交y軸于點C,頂點為D,對稱軸分別交x軸、線段AC于點E、F.(1)求拋物線的對稱軸及點A的坐標;(2)連結AD,CD,求△ACD的面積;(3)設動點P從點D出發(fā),沿線段DE勻速向終點E運動,取△ACD一邊的兩端點和點P,若以這三點為頂點的三角形是等腰三角形,且P為頂角頂點,求所有滿足條件的點P的坐標.22.(10分)如圖,是□ABCD的邊延長線上一點,連接,交于點.求證:△∽△CDF.23.(10分)如圖,在平面直角坐標系中,直線與函數(shù)的圖象交于,兩點,且點的坐標為.(1)求的值;(2)已知點,過點作平行于軸的直線,交直線于點,交函數(shù)的圖象于點.①當時,求線段的長;②若,結合函數(shù)的圖象,直接寫出的取值范圍.24.(10分)鎮(zhèn)江某特產專賣店銷售某種特產,其進價為每千克40元,若按每千克60元出售,則平均每天可售出100千克,后來經過市場調查發(fā)現(xiàn),單價每降低1元,平均每天的銷售量增加10千克,若專賣店銷售這種特產想要平均每天獲利2240元,且銷量盡可能大,則每千克特產應定價多少元?25.(12分)如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.(1)請直接寫出D點的坐標.(2)求二次函數(shù)的解析式.(3)根據圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.26.如圖,已知△ABC.(1)尺規(guī)作圖,畫出線段AB的垂直平分線(不寫作法,保留作圖痕跡);(2)設AB的垂直平分線與BA交于點D,與BC交于點E,連結AE.若∠B=40°,求∠BEA的度數(shù).

參考答案一、選擇題(每題4分,共48分)1、B【分析】由拋物線的對稱軸是,可知系數(shù)之間的關系,由題意,與軸的一個交點坐標為,根據拋物線的對稱性,求得拋物線與軸的一個交點坐標為,從而可判斷拋物線與軸有兩個不同的交點,進而可轉化求一元二次方程根的判別式,當時,代入解析式,可求得函數(shù)值,即可判斷其的值是正數(shù)或負數(shù).【詳解】拋物線的對稱軸是;③正確,與軸的一個交點坐標為拋物線與與軸的另一個交點坐標為關于的方程的兩個根是;②正確,當x=1時,y=;④正確拋物線與軸有兩個不同的交點,則①錯誤;當時,隨增大而減小當時,隨增大而增大,⑤錯誤;②③④正確,①⑤錯誤故選:B.【點睛】本題考查二次函數(shù)圖象的基本性質:對稱性、增減性、函數(shù)值的特殊性、二次函數(shù)與一元二次方程的綜合運用,是常見考點,難度適中,熟練掌握二次函數(shù)圖象基本性質是解題關鍵.2、C【分析】根據平行四邊形、矩形、菱形、正方形的判定方法逐項分析解答即可.【詳解】解:A、∵等腰梯形的對角線相等,但不是平行四邊形,∴應對角線相等的四邊形不一定是平行四邊形,故不正確;B、∵有一個角是直角的四邊形可能是矩形、直角梯形,∴有一個角是直角的四邊形不一定是矩形,故不正確;C、∵有一組鄰邊相等的平行四邊形是菱形,故正確;D、對角線互相垂直平分的四邊形是菱形,故不正確.故選:C.【點睛】本題考查了平行四邊形、矩形、菱形、正方形的判定方法的理解,熟練掌握平行四邊形、矩形、菱形、正方形的判定方法的判定方法是解答本題的關鍵.3、B【解析】試題分析:根據概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.因此,∵1~9這九個自然數(shù)中,是偶數(shù)的數(shù)有:2、4、6、8,共4個,∴從1~9這九個自然數(shù)中任取一個,是偶數(shù)的概率是:.故選B.4、B【解析】根據勾股定理,AB==2,BC==,AC==,所以△ABC的三邊之比為:2:=1:2:,A、三角形的三邊分別為2,=,=3,三邊之比為2::3=::3,故本選項錯誤;B、三角形的三邊分別為2,4,=2,三邊之比為2:4:2=1:2:,故本選項正確;C、三角形的三邊分別為2,3,=,三邊之比為2:3:,故本選項錯誤;D、三角形的三邊分別為=,=,4,三邊之比為::4,故本選項錯誤.故選B.5、B【解析】如圖,由平移的性質可知,樓梯表面所鋪地毯的長度為:AC+BC,∵在△ABC中,∠ACB=90°,∠BAC=30°,BC=2m,∴AB=2BC=4m,∴AC=,∴AC+BC=(m).故選B.點睛:本題的解題的要點是:每階樓梯的水平面向下平移后剛好與AC重合,每階樓梯的豎直面向右平移后剛好可以與BC重合,由此可得樓梯表面所鋪地毯的總長度為AC+BC.6、B【分析】中心對稱圖形的定義:在同一平面內,如果把一個圖形繞某一點旋轉180°,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形;軸對稱圖形的定義:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:等腰梯形、正三角形只是軸對稱圖形,矩形既是中心對稱圖形又是軸對稱圖形,平行四邊形只是中心對稱圖形,故選B【點睛】本題考查中心對稱圖形和軸對稱圖形,本題屬于基礎應用題,只需學生熟練掌握中心對稱圖形和軸對稱圖形的定義,即可完成.7、D【解析】試題分析:x1+x2=-=6,故選D考點:根與系數(shù)的關系8、D【解析】根據可能性的大小,以及隨機事件的判斷方法,逐項判斷即可.【詳解】∵摸到紅球是隨機事件,∴選項A不符合題意;∵摸到白球是隨機事件,∴選項B不符合題意;

∵紅球比白球多,∴摸到紅球比摸到白球的可能性大,∴選項C不符合題意,D符合題意.故選:D.【點睛】此題主要考查了可能性的大小,以及隨機事件的判斷,要熟練掌握,解答此題的關鍵是要明確:在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機事件.9、A【分析】如圖,在y軸上取點B'(0,﹣3),連接B'C,B'A,由勾股定理可求B'A=5,由三角形中位線定理可求B'C=2OP,當點C在線段B'A上時,B'C的長度最小值=5﹣2=3,當點C在線段B'A的延長線上時,B'C的長度最大值=5+2=7,即可求解.【詳解】解:如圖,在y軸上取點B'(0,﹣3),連接B'C,B'A,∵點B(0,3),B'(0,﹣3),點A(4,0),∴OB=OB'=3,OA=4,∴,∵點P是BC的中點,∴BP=PC,∵OB=OB',BP=PC,∴B'C=2OP,當點C在線段B'A上時,B'C的長度最小值=5﹣2=3,當點C在線段B'A的延長線上時,B'C的長度最大值=5+2=7,∴,故選:A.【點睛】本題考查了三角形中位線定理,勾股定理,平面直角坐標系,解決本題的關鍵是正確理解題意,熟練掌握三角形中位線定理的相關內容,能夠得到線段之間的數(shù)量關系.10、B【分析】根據已知條件想辦法證明BG=GH=DH,即可解決問題;【詳解】解:∵四邊形ABCD是平行四邊形,

∴AB∥CD,AD∥BC,AB=CD,AD=BC,

∵DF=CF,BE=CE,

∴,,

∴,

∴BG=GH=DH,∴S△ABG=S△AGH=S△ADH,∴S平行四邊形ABCD=6S△AGH,

∴S△AGH:=1:6,∵E、F分別是邊BC、CD的中點,∴,∴,∴,∴=7∶24,故選B.【點睛】本題考查了平行四邊形的性質、平行線分線段成比例定理、等底同高的三角形面積性質,題目的綜合性很強,難度中等.11、C【分析】反比例函數(shù)圖象上的點(x,y)的橫縱坐標的積是定值k,依據xy=k即可得出結論.【詳解】解:∵反比例函數(shù)y=(k≠0)的圖象經過(2,3),∴k=2×3=6,故選:C.【點睛】本題主要考查了反比例函數(shù)圖象上點的坐標特征,熟練掌握是解題的關鍵.12、C【分析】求出圓錐的底面圓周長,利用公式即可求出圓錐的側面積.【詳解】解:圓錐的地面圓周長為2π×2=4π,

則圓錐的側面積為×4π×4=8π.

故選:C.【點睛】本題考查了圓錐的計算,能將圓錐側面展開是解題的關鍵,并熟悉相應的計算公式.二、填空題(每題4分,共24分)13、【分析】連接AC,根據網格特點和正方形的性質得到∠BAC=90°,根據勾股定理求出AC、AB,根據正切的定義計算即可.【詳解】連接AC,由網格特點和正方形的性質可知,∠BAC=90°,根據勾股定理得,AC=,AB=2,則tan∠ABC=,故答案為:.【點睛】本題考查的是銳角三角函數(shù)的定義、勾股定理及其逆定理的應用,在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.14、【分析】由平行四邊形的性質可知△AEF∽△CDF,再利用條件可求得相似比,利用面積比等于相似比的平方可求得△CDF的面積.【詳解】∵四邊形ABCD為平行四邊形,∴AB∥CD,∴∠EAF=∠DCF,且∠AFE=∠CFD,∴△AEF∽△CDF,∵AE:EB=1:2∴,∴,∵,∴S△CDF=.故答案為:.【點睛】本題主要考查相似三角形的判定和性質,掌握相似三角形的周長比等于相似比、面積比等于相似比的平方是解題的關鍵.15、(1,2)【解析】解:∵點A的坐標為(2,4),以原點O為位似中心,把這個三角形縮小為原來的,∴點A′的坐標是(2×,4×),即(1,2).故答案為(1,2).16、60°【分析】根據題意有∠ACB=90,∠A=30,進而可得∠ABC=60,又有∠ACA′=BCB′=∠ABA′=,可得∠CBB′=(180?),代入數(shù)據可得答案.【詳解】∵∠ACB=90,∠A=30,∴∠ABC=60,∴∠ACA′=BCB′=∠ABA′=,∠CBB′=(180?),∴=∠ABC=60.故答案為:60.【點睛】本題考查旋轉的性質:旋轉變化前后,對應點到旋轉中心的距離相等以及每一對對應點與旋轉中心連線所構成的旋轉角相等.要注意旋轉的三要素:①定點是旋轉中心;②旋轉方向;③旋轉角度.17、1【分析】根據眾數(shù)的概念即可得出答案.【詳解】眾數(shù)是指一組數(shù)據中出現(xiàn)次數(shù)最多的數(shù),題中的1出現(xiàn)次數(shù)最多,所以眾數(shù)是1故答案為:1.【點睛】本題主要考查眾數(shù),掌握眾數(shù)的概念是解題的關鍵.18、【分析】根據二次根式的性質,進行化簡,即可.【詳解】===∵∴原式=,故答案是:.【點睛】本題主要考查二次根式的性質,掌握二次根式的性質,是解題的關鍵.三、解答題(共78分)19、(1);見解析;(2);見解析;(3)存在,點Q的坐標為:(﹣1,﹣1)或(﹣,﹣)或(,);詳解解析.【分析】(1)=0,則根據根與系數(shù)的關系有AB=,即可求解;(2)設點E,點F,四邊形EMNF的周長C=ME+MN+EF+FN,即可求解;(3)分當點Q在第三象限、點Q在第四象限兩種情況,分別求解即可.【詳解】解:(1)依題意得:=0,則,則AB=,解得:a=5或﹣3,拋物線與y軸負半軸交于點C,故a=5舍去,則a=﹣3,則拋物線的表達式為:…①;(2)由得:點A、B、C的坐標分別為:、,設點E,OA=OC,故直線AC的傾斜角為15°,EF∥AC,直線AC的表達式為:y=﹣x﹣3,則設直線EF的表達式為:y=﹣x+b,將點E的坐標代入上式并解得:直線EF的表達式為:y=﹣x+…②,聯(lián)立①②并解得:x=m或﹣3﹣m,故點F,點M、N的坐標分別為:、,則EF=,四邊形EMNF的周長C=ME+MN+EF+FN=,∵﹣2<0,故S有最大值,此時m=,故點E的橫坐標為:;(3)①當點Q在第三象限時,當QC平分四邊形面積時,則,故點Q;當BQ平分四邊形面積時,則,則,解得:,故點Q;②當點Q在第四象限時,同理可得:點Q;綜上,點Q的坐標為:或或.【點睛】本題考查的是二次函數(shù)的綜合運用,涉及到一次函數(shù)、圖形的面積計算等,其中(1)(3)都要注意分類求解,避免遺漏.20、(1),;(2)點D的坐標是;(3)【解析】(1)把C(-1,2)代入y1=x+m得到m的值,把C(-1,2)代入雙曲線得到k的值;(2)解由兩個函數(shù)的解析式組成的方程組,即可得交點坐標D;

(3)觀察圖象得到當-3<x<-2時一次函數(shù)的函數(shù)值比反比例函數(shù)的函數(shù)值要大.【詳解】解:(1)∵點在的圖象上;∴,解得,則.∵在的圖象上,∴,解得,∴.(2)聯(lián)立得,解得,或,∵點C的坐標是,∴點D的坐標是.(3)由圖象可知,當時,【點睛】本題考查了用待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式即反比例函數(shù)與一次函數(shù)的交點問題.解題的關鍵是:(1)代入點C的坐標求出m、k的值;(2)把兩函數(shù)的解析式聯(lián)立起來組成方程組,解方程組即可得到它們的交點坐標.(3)根據兩函數(shù)圖象的上下位置關系找出不等式的解集.本題考查的是反比例函數(shù)與一次函數(shù)的交點問題及也考查了數(shù)形結合的思想.21、(1)拋物線的對稱軸x=1,A(6,0);(1)△ACD的面積為11;(3)點P的坐標為(1,1)或(1,6)或(1,3).【分析】(1)令y=0,求出x,即可求出點A、B的坐標,令x=0,求出y即可求出點C的坐標,再根據對稱軸公式即可求出拋物線的對稱軸;(1)先將二次函數(shù)的一般式化成頂點式,即可求出點D的坐標,利用待定系數(shù)法求出直線AC的解析式,從而求出點F的坐標,根據“鉛垂高,水平寬”求面積即可;(3)根據等腰三角形的底分類討論,①過點O作OM⊥AC交DE于點P,交AC于點M,根據等腰三角形的性質和垂直平分線的性質即可得出此時AC為等腰三角形ACP的底邊,且△OEP為等腰直角三角形,從而求出點P坐標;②過點C作CP⊥DE于點P,求出PD,可得此時△PCD是以CD為底邊的等腰直角三角形,從而求出點P坐標;③作AD的垂直平分線交DE于點P,根據垂直平分線的性質可得PD=PA,設PD=x,根據勾股定理列出方程即可求出x,從而求出點P的坐標.【詳解】(1)對于拋物線y=﹣x1+1x+6令y=0,得到﹣x1+1x+6=0,解得x=﹣1或6,∴B(﹣1,0),A(6,0),令x=0,得到y(tǒng)=6,∴C(0,6),∴拋物線的對稱軸x=﹣=1,A(6,0).(1)∵y=﹣x1+1x+6=,∴拋物線的頂點坐標D(1,8),設直線AC的解析式為y=kx+b,將A(6,0)和C(0,6)代入解析式,得解得:,∴直線AC的解析式為y=﹣x+6,將x=1代入y=﹣x+6中,解得y=4∴F(1,4),∴DF=4,∴==11;(3)①如圖1,過點O作OM⊥AC交DE于點P,交AC于點M,∵A(6,0),C(0,6),∴OA=OC=6,∴CM=AM,∠MOA=∠COA=45°∴CP=AP,△OEP為等腰直角三角形,∴此時AC為等腰三角形ACP的底邊,OE=PE=1.∴P(1,1),②如圖1,過點C作CP⊥DE于點P,∵OC=6,DE=8,∴PD=DE﹣PE=1,∴PD=PC,此時△PCD是以CD為底邊的等腰直角三角形,∴P(1,6),③如圖3,作AD的垂直平分線交DE于點P,則PD=PA,設PD=x,則PE=8﹣x,在Rt△PAE中,PE1+AE1=PA1,∴(8﹣x)1+41=x1,解得x=5,∴PE=8﹣5=3,∴P(1,3),綜上所述:點P的坐標為(1,1)或(1,6)或(1,3).【點睛】此題考查的是二次函數(shù)與圖形的綜合大題,掌握將二次函數(shù)的一般式化為頂點式、二次函數(shù)圖象與坐標軸的交點坐標的求法、利用“鉛垂高,水平寬”求三角形的面積和分類討論的數(shù)學思想是解決此題的關鍵.22、詳見解析【分析】利用平行四邊形的性質即可證明.【詳解】證明:∵四邊形ABCD是平行四邊形,∴∠∠,∥,∴∠∠.∴△∽△【點睛】本題主要考查相似三角形的判定,掌握平行四邊形的性質是解題的關鍵.23、(1);(2)①;②或【分析】(1)先把點A代入一次函數(shù)得到a的值,再把點A代入反比例函數(shù),即可求出k;(2)①根據題意,先求出m的值,然后求出點C、D的坐標,即可求出CD的長度;②根據題意,當PC=PD時,點C、D恰好與點A、B重合,然后求出點B的坐標,結合函數(shù)圖像,即可得到m的取值范圍.【詳解】解:(1)把代入,得,∴點A為(1,3),把代入,得;(2)當時,點P為(2,0),如圖:把代入直線,得:,∴點C坐標為(2,4),把代入,得:,∴;②根據題意,當PC=PD時,點C、D恰好與點A、B重合,如圖,∵,解得:或(即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論