黑龍江省哈爾濱156中學2025屆九上數學期末調研試題含解析_第1頁
黑龍江省哈爾濱156中學2025屆九上數學期末調研試題含解析_第2頁
黑龍江省哈爾濱156中學2025屆九上數學期末調研試題含解析_第3頁
黑龍江省哈爾濱156中學2025屆九上數學期末調研試題含解析_第4頁
黑龍江省哈爾濱156中學2025屆九上數學期末調研試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省哈爾濱156中學2025屆九上數學期末調研試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.二次函數y=x2﹣2x+2的頂點坐標是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)2.袋子中有4個黑球和3個白球,這些球的形狀、大小、質地等完全相同.在看不到球的條件下,隨機從袋中摸出一個球,摸到白球的概率為()A. B. C. D.3.在△ABC中,∠C=90°,AC=8,BC=6,則sinB的值是()A. B. C. D.4.如圖,∠AOB=90°,∠B=30°,△A′OB′可以看作是由△AOB繞點O順時針旋轉角度得到的.若點A′在AB上,則旋轉角的度數是()A.30° B.45° C.60° D.90°5.如果將拋物線y=x2向上平移1個單位,那么所得拋物線對應的函數關系式是()A.y=x2+1 B.y=x2﹣1 C.y=(x+1)2 D.y=(x﹣1)26.用配方法解方程配方正確的是()A. B. C. D.7.已知⊙O的直徑為12cm,如果圓心O到一條直線的距離為7cm,那么這條直線與這個圓的位置關系是()A.相離 B.相切 C.相交 D.相交或相切8.在平面直角坐標系中,點,,過第四象限內一動點作軸的垂線,垂足為,且,點、分別在線段和軸上運動,則的最小值是()A. B. C. D.9.一次函數y=(k﹣1)x+3的圖象經過點(﹣2,1),則k的值是()A.﹣1 B.2 C.1 D.010.下列四個銀行標志中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,四邊形OABC是矩形,ADEF是正方形,點A、D在x軸的正半軸上,點C在y軸的正半軸上,點F在AB上,點B、E在反比例函數的圖像上,OA=1,OC=6,則正方形ADEF的邊長為.12.如圖,矩形ABCD中,AB=1,AD=.以A為圓心,AD的長為半徑做弧交BC邊于點E,則圖中的弧長是_______.13.如圖,已知在矩形ABCD中,AB=2,BC=3,P是線段AD上的一動點,連接PC,過點P作PE⊥PC交AB于點E.以CE為直徑作⊙O,當點P從點A移動到點D時,對應點O也隨之運動,則點O運動的路程長度為_____.14.九年級學生在畢業(yè)前夕,某班每名同學都為其他同學寫一段畢業(yè)感言,全班共寫了2256段畢業(yè)感言,如果該班有x名同學,根據題意列出方程為____.15.我軍偵察員在距敵方120m的地方發(fā)現敵方的一座建筑物,但不知其高度又不能靠近建筑物物測量,機靈的偵察員將自己的食指豎直舉在右眼前,閉上左眼,并將食指前后移動,使食指恰好將該建筑物遮住,如圖所示.若此時眼睛到食指的距離約為40cm,食指的長約為8cm,則敵方建筑物的高度約是_______m.16.函數y=x2﹣4x+3的圖象與y軸交點的坐標為_____.17.用配方法解方程時,原方程可變形為_________.18.如圖,過軸上的一點作軸的平行線,與反比例函數的圖象交于點,與反比例函數,的圖象交于點,若的面積為3,則的值為__________.三、解答題(共66分)19.(10分)如圖1,在中,∠B=90°,,點D,E分別是邊BC,AC的中點,連接將繞點C按順時針方向旋轉,記旋轉角為.問題發(fā)現:當時,_____;當時,_____.拓展探究:試判斷:當時,的大小有無變化?請僅就圖2的情況給出證明.問題解決:當旋轉至A、D、E三點共線時,直接寫出線段BD的長.20.(6分)在初中階段的函數學習中,我們經歷了“確定函數的表達式——利用函數圖象研其性質——運用函數解決問題”的學習過程.如圖,在平面直角坐標系中己經繪制了一條直線.另一函數與的函數關系如下表:…-6-5-4-3-2-10123456……-2-0.2511.7521.751-0.25-2-4.25-7-10.25-14…(1)求直線的解析式;(2)請根據列表中的數據,繪制出函數的近似圖像;(3)請根據所學知識并結合上述信息擬合出函數的解折式,并求出與的交點坐標.21.(6分)若拋物線(a、b、c是常數,)與直線都經過軸上的一點P,且拋物線L的頂點Q在直線上,則稱此直線與該拋物線L具有“一帶一路”關系,此時,直線叫做拋物線L的“帶線”,拋物線L叫做直線的“路線”.(1)若直線與拋物線具有“一帶一路”關系,求m、n的值.(2)若某“路線”L的頂點在反比例函數的圖象上,它的“帶線”的解析式為,求此路的解析式.22.(8分)如圖所示,在中,點在邊上,聯結,,交邊于點,交延長線于點,且.(1)求證:;(2)求證:.23.(8分)(1)(問題發(fā)現)如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點D為BC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,則線段BE與AF的數量關系為(2)(拓展研究)在(1)的條件下,如果正方形CDEF繞點C旋轉,連接BE,CE,AF,線段BE與AF的數量關系有無變化?請僅就圖2的情形給出證明;(3)(問題發(fā)現)當正方形CDEF旋轉到B,E,F三點共線時候,直接寫出線段AF的長.24.(8分)如圖,直線與雙曲線在第一象限內交于兩點,已知.求的值及直線的解析式;根據函數圖象,直接寫出不等式的解集.25.(10分)如圖,在中,點在斜邊上,以為圓心,為半徑作圓,分別與、相交于點、,連接,已知.(1)求證:是的切線;(2)若,,求劣弧與弦所圍陰影圖形的面積;(3)若,,求的長.26.(10分)某校舉行田徑運動會,學校準備了某種氣球,這些全球內充滿了一定質量的氣體,當溫度不變時,氣球內氣體的氣壓p(kPa)是氣體體積V()的反比例函數,其圖象如圖所示:(1)求這個函數的表達式;(2)當氣球內的氣壓大于150kPa時,氣球將會爆炸,為了安全起見,氣體的體積應至少是多少?

參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據頂點坐標公式,可得答案.【詳解】解:的頂點橫坐標是,縱坐標是,的頂點坐標是.故選A.【點睛】本題考查了二次函數的性質,二次函數的頂點坐標是2、A【分析】根據題意,讓白球的個數除以球的總數即為摸到白球的概率.【詳解】解:根據題意,袋子中有4個黑球和3個白球,∴摸到白球的概率為:;故選:A.【點睛】本題考查了概率的基本計算,摸到白球的概率是白球數比總的球數.3、A【分析】先根據勾股定理計算出斜邊AB的長,然后根據正弦的定義求解.【詳解】如圖,∵∠C=90°,AC=8,BC=6,∴AB==10,∴sinB=.故選:A.【點睛】本題考查了正弦的定義:在直角三角形中,一銳角的正弦等于它的對邊與斜邊的比值.也考查了勾股定理.4、C【分析】根據旋轉的性質得出AO=A′O,得出等邊三角形AOA′,根據等邊三角形的性質推出即可.【詳解】解:∵∠AOB=90°,∠B=30°,∴∠A=60°,∵△A′OB′可以看作是△AOB繞點O順時針旋轉α角度得到的,點A′在AB上,

∴AO=A′O,∴△AOA′是等邊三角形,

∴∠AOA′=60°,

即旋轉角α的度數是60°,

故選:C【點睛】本題考查了等邊三角形的性質和判定,旋轉的性質等知識點,關鍵是得出△AOA′是等邊三角形,題目比較典型,難度不大.5、A【分析】根據向上平移縱坐標加求出平移后的拋物線的頂點坐標,然后利用頂點式解析式寫出即可.【詳解】解:∵拋物線y=x2向上平移1個單位后的頂點坐標為(0,1),∴所得拋物線對應的函數關系式是y=x2+1.故選:A.【點睛】本題考查二次函數的平移,利用數形結合思想解題是本題的解題關鍵.6、A【分析】本題可以用配方法解一元二次方程,首先將常數項移到等號的右側,將等號左右兩邊同時加上一次項系數一半的平方,即可將等號左邊的代數式寫成完全平方形式.【詳解】解:,,∴,.故選:.【點睛】此題考查配方法的一般步驟:①把常數項移到等號的右邊;②把二次項的系數化為1;③等式兩邊同時加上一次項系數一半的平方.選擇用配方法解一元二次方程時,最好使方程的二次項的系數為1,一次項的系數是2的倍數.7、A【分析】這條直線與這個圓的位置關系只要比較圓心到直線的距離與半徑的大小關系即可.【詳解】∵⊙O的直徑為12cm,∴⊙O的半徑r為6cm,如果圓心O到一條直線的距離d為7cm,d>r,這條直線與這個圓的位置關系是相離.故選擇:A.【點睛】本題考查直線與圓的位置關系問題,掌握點到直線的距離與半徑的關系是關鍵.8、B【分析】先求出直線AB的解析式,再根據已知條件求出點C的運動軌跡,由一次函數的圖像及性質可知:點C的運動軌跡和直線AB平行,過點C作CE⊥AB交x軸于P,交AB于E,過點M(0,-3)作MN⊥AB于N根據垂線段最短和平行線之間的距離處處相等,可得此時CE即為的最小值,且MN=CE,然后利用銳角三角函數求MN即可求出CE.【詳解】解:設直線AB的解析式為y=ax+b(a≠0)將點,代入解析式,得解得:∴直線AB的解析式為設C點坐標為(x,y)∴CD=x,OD=-y∵∴整理可得:,即點C的運動軌跡為直線的一部分由一次函數的性質可知:直線和直線平行,過點C作CE⊥AB交x軸于P,交AB于E,過點M(0,-3)作MN⊥AB于N根據垂線段最短和平行線之間的距離處處相等,可得此時CE即為的最小值,且MN=CE,如圖所示在Rt△AOB中,AB=,sin∠BAO=在Rt△AMN中,AM=6,sin∠MAN=∴CE=MN=,即的最小值是.故選:B.【點睛】此題考查的是一次函數的圖像及性質、動點問題和解直角三角形,掌握用待定系數法求一次函數的解析式、一次函數的圖像及性質、垂線段最短和平行線之間的距離處處相等是解決此題的關鍵.9、B【分析】函數經過點(﹣1,1),把點的坐標代入解析式,即可求得k的值.【詳解】解:根據題意得:﹣1(k﹣1)+3=1,解得:k=1.故選B.【點睛】本題主要考查了函數的解析式與圖象的關系,滿足解析式的點一定在圖象上,圖象上的點一定滿足函數解析式.10、C【分析】根據軸對稱圖形和中心對稱圖形的概念逐一進行判斷即可得.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故不符合題意;B、是軸對稱圖形,不是中心對稱圖形,故不符合題意;C、是軸對稱圖形,也是中心對稱圖形,故符合題意;D、是軸對稱圖形,不是中心對稱圖形,故不符合題意,故選C.【點睛】本題主要考查軸對稱圖形和中心對稱圖形,在平面內,如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內,如果把一個圖形繞某個點旋轉180°后,能與原圖形重合,那么就說這個圖形是中心對稱圖形.二、填空題(每小題3分,共24分)11、2【解析】試題分析:由OA=1,OC=6,可得矩形OABC的面積為6;再根據反比例函數系數k的幾何意義,可知k=6,∴反比例函數的解析式為;設正方形ADEF的邊長為a,則點E的坐標為(a+1,a),∵點E在拋物線上,∴,整理得,解得或(舍去),故正方形ADEF的邊長是2.考點:反比例函數系數k的幾何意義.12、π【分析】根據題意可得AD=AE=,則可以求出sin∠AEB,可以判斷出可判斷出∠AEB=45°,進一步求解∠DAE=∠AEB=45°,代入弧長得到計算公式可得出弧DE的長度.【詳解】解:∵AD半徑畫弧交BC邊于點E,AD=

∴AD=AE=,

又∵AB=1,

∴∴∠AEB=45°,∵四邊形ABCD是矩形∴AD∥BC∴∠DAE=∠AEB=45°,

故可得弧DC的長度為==π,

故答案為:π.【點睛】此題考查了弧長的計算公式,解答本題的關鍵是求出∠DAE的度數,要求我們熟練掌握弧長的計算公式及解直角三角形的知識.13、.【分析】連接AC,取AC的中點K,連接OK.設AP=x,AE=y(tǒng),求出AE的最大值,求出OK的最大值,由題意點O的運動路徑的長為2OK,由此即可解決問題.【詳解】解:連接AC,取AC的中點K,連接OK.設AP=x,AE=y(tǒng),∵PE⊥CP∴∠APE+∠CPD=90°,且∠AEP+∠APE=90°∴∠AEP=∠CPD,且∠EAP=∠CDP=90°∵△APE∽△DCP∴,即x(3﹣x)=2y,∴y=x(3﹣x)=﹣x2+x=﹣GXdjs4436236(x﹣)2+,∴當x=時,y的最大值為,∴AE的最大值=,∵AK=KC,EO=OC,∴OK=AE=,∴OK的最大值為,由題意點O的運動路徑的長為2OK=,故答案為:.【點睛】考查了軌跡、矩形的性質、三角形的中位線定理和二次函數的應用等知識,解題的關鍵是學會構建二次函數解決最值問題.14、(x﹣1)x=2256【分析】根據題意得:每人要寫(x-1)條畢業(yè)感言,有x個人,然后根據題意可列出方程.【詳解】根據題意得:每人要寫(x?1)條畢業(yè)感言,有x個人,∴全班共寫:(x?1)x=2256,故答案為:(x?1)x=2256.【點睛】此題考查一元二次方程,解題關鍵在于結合實際列一元二次方程即可.15、1【分析】如圖(見解析),過點A作,交BC于點F,利用平行線分線段成比例定理推論求解即可.【詳解】如圖,過點A作,交BC于點F由題意得則(平行線分線段成比例定理推論)即解得故答案為:1.【點睛】本題考查了平行線分線段成比例定理推論,讀懂題意,將所求問題轉化為利用平行線分線段成比例定理推論的問題是解題關鍵.16、(0,3).【分析】令x=0,求出y的值,然后寫出與y軸的交點坐標即可.【詳解】解:x=0時,y=3,所以.圖象與y軸交點的坐標是(0,3).故答案為(0,3).【點睛】本題考查了求拋物線與坐標軸交點的坐標,掌握二次函數與一元二次方程的聯系是解答本題的關鍵.17、【分析】將常數項移到方程的右邊,將二次項系數化成1,再兩邊都加上一次項系數一半的平方配成完全平方式后即可得.【詳解】∵,

方程整理得:,

配方得:,即.故答案為:.【點睛】本題主要考查了解一元二次方程-配方法,熟練掌握完全平方公式的結構特點是解本題的關鍵.18、-6.【分析】由AB∥x軸,得到S△AOP=,S△BOP=,根據的面積為3得到,即可求得答案.【詳解】∵AB∥x軸,∴S△AOP=,S△BOP=,∵S△AOB=S△AOP+S△BOP=3,∴,∴-m+n=6,∴m-n=-6,故答案為:-6.【點睛】此題考查反比例函數中k的幾何意義,由反比例函數圖象上的一點作x軸(或y軸)的垂線,再連接此點與原點,所得三角形的面積為,解題中注意k的符號.三、解答題(共66分)19、(1)①;②;(2)的大小沒有變化;(3)BD的長為:.【分析】(1)①當α=0°時,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根據點D、E分別是邊BC、AC的中點,分別求出AE、BD的大小,即可求出的值是多少.②α=180°時,可得AB∥DE,然后根據,求出的值是多少即可.(2)首先判斷出∠ECA=∠DCB,再根據,判斷出△ECA∽△DCB,然后由相似三角形的對應邊成比例,求得答案.(3)分兩種情況分析,A、D、E三點所在直線與BC不相交和與BC相交,然后利用勾股定理分別求解即可求得答案.【詳解】解:(1)①當α=0°時,∵Rt△ABC中,∠B=90°,∴AC=,∵點D、E分別是邊BC、AC的中點,∴AE=AC=5,BD=BC=4,∴.②如圖1,當α=180°時,可得AB∥DE,∵,∴.故答案為:①;②.(2)如圖2,當0°≤α<360°時,的大小沒有變化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如圖3,連接BD,∵AC=10,CD=4,CD⊥AD,∴AD=,∵點D、E分別是邊BC、AC的中點,∴DE=AB=3,∴AE=AD+DE=,由(2),可得:,∴BD=;②如圖4,連接BD,∵AC=10,CD=4,CD⊥AD,∴AD=,∵點D、E分別是邊BC、AC的中點,∴DE=AB=3,∴AE=AD-DE=,由(2),可得:,∴BD=AE=.綜上所述,BD的長為:.【點睛】此題屬于旋轉的綜合題.考查了、旋轉的性質、相似三角形的判定與性質以及勾股定理等知識.注意掌握分類討論思想的應用是解此題的關鍵.20、(1);(2)見解析;(3)交點為和【分析】(1)根據待定系數法即可求出直線的解析式;(2)描點連線即可;(3)根據圖象得出函數為二次函數,頂點坐標為(-2,2),用待定系數法即可求出拋物線的解析式,解方程組即可得出與交點坐標.【詳解】(1)設直線的解析式為y=kx+m.由圖象可知,直線過點(6,0),(0,-3),∴,解得:,∴;(2)圖象如圖:(3)由圖象可知:函數為拋物線,頂點為.設其解析式為:從表中選一點代入得:1=4a+2,解出:,∴,即.聯立兩個解析式:,解得:或,∴交點為和.【點睛】本題考查了二次函數的圖象和性質.根據圖象求出一次函數和二次函數的解析式是解答本題的關鍵.21、(1)-1;(2)路線L的解析式為或【解析】試題分析:(1)令直線y=mx+1中x=0,則y=1,所以該直線與y軸的交點為(0,1),將(0,1)代入拋物線y=x2-2x+n中,得n=1,可求出拋物線的解析式為y=x2-2x+1=(x-1)2,所以拋物線的頂點坐標為(1,0).將點(1,0)代入到直線y=mx+1中,得0=m+1,解得m=-1,(2)將y=2x-4和y=聯立方程可得2x-4=,即2x2-4x-6=0,解得x1=-1,x2=3,所以該“路線”L的頂點坐標為(-1,-6)或(3,2),令“帶線”l:y=2x-4中x=0,則y=-4,所以“路線”L的圖象過點(0,-4),設該“路線”L的解析式為y=m(x+1)2-6或y=n(x-3)2+2,由題意得:-4=m(0+1)2-6或-4=n(0-3)2+2,解得m=2,n=,所以此“路線”L的解析式為y=2(x+1)2-6或y=(x-3)2+2.試題解析:(1)令直線y=mx+1中x=0,則y=1,即該直線與y軸的交點為(0,1),將(0,1)代入拋物線y=x2-2x+n中,得n=1,∴拋物線的解析式為y=x2-2x+1=(x-1)2,∴拋物線的頂點坐標為(1,0).將點(1,0)代入到直線y=mx+1中,得0=m+1,解得m=-1,(2)將y=2x-4代入到y(tǒng)=中,得2x-4=,即2x2-4x-6=0,解得x1=-1,x2=3,∴該“路線”L的頂點坐標為(-1,-6)或(3,2),令“帶線”l:y=2x-4中x=0,則y=-4,∴“路線”L的圖象過點(0,-4),設該“路線”L的解析式為y=m(x+1)2-6或y=n(x-3)2+2,由題意得:-4=m(0+1)2-6或-4=n(0-3)2+2,解得m=2,n=,∴此“路線”L的解析式為y=2(x+1)2-6或y=(x-3)2+2.22、(1)見解析;(2)見解析.【分析】(1)先根據已知證明,從而得出,再通過等量代換得出,從而結論可證;(2)由得出,再由得出,從而有,再加上則可證明,從而結論可證.【詳解】(1)證明:,,,,,又,,即,.(2),,,,,,,,.【點睛】本題主要考查相似三角形的判定及性質,掌握相似三角形的判定方法及性質是解題的關鍵.23、(1)BE=AF;(2)無變化;(3)﹣1或+1.【解析】(1)先利用等腰直角三角形的性質得出AD=,再得出BE=AB=2,即可得出結論;(2)先利用三角函數得出,同理得出,夾角相等即可得出△ACF∽△BCE,進而得出結論;(3)分兩種情況計算,當點E在線段BF上時,如圖2,先利用勾股定理求出EF=CF=AD=,BF=,即可得出BE=﹣,借助(2)得出的結論,當點E在線段BF的延長線上,同前一種情況一樣即可得出結論.【詳解】解:(1)在Rt△ABC中,AB=AC=2,根據勾股定理得,BC=AB=2,點D為BC的中點,∴AD=BC=,∵四邊形CDEF是正方形,∴AF=EF=AD=,∵BE=AB=2,∴BE=AF,故答案為BE=AF;(2)無變化;如圖2,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC=,∴,∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴=,∴BE=AF,∴線段BE與AF的數量關系無變化;(3)當點E在線段AF上時,如圖2,由(1)知,CF=EF=CD=,在Rt△BCF中,CF=,BC=2,根據勾股定理得,BF=,∴BE=BF﹣EF=﹣,由(2)知,BE=AF,∴AF=﹣1,當點E在線段BF的延長線上時,如圖3,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC=,∴,∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB,∴△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論