湖北省黃石市陽新一中卓越聯(lián)盟重點(diǎn)名校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第1頁
湖北省黃石市陽新一中卓越聯(lián)盟重點(diǎn)名校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第2頁
湖北省黃石市陽新一中卓越聯(lián)盟重點(diǎn)名校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第3頁
湖北省黃石市陽新一中卓越聯(lián)盟重點(diǎn)名校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第4頁
湖北省黃石市陽新一中卓越聯(lián)盟重點(diǎn)名校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省黃石市陽新一中卓越聯(lián)盟重點(diǎn)名校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若一個正多邊形的每個內(nèi)角為150°,則這個正多邊形的邊數(shù)是()A.12 B.11 C.10 D.92.下列條件中不能判定三角形全等的是()A.兩角和其中一角的對邊對應(yīng)相等 B.三條邊對應(yīng)相等C.兩邊和它們的夾角對應(yīng)相等 D.三個角對應(yīng)相等3.如果關(guān)于x的一元二次方程k2x2-(2k+1)x+1=0有兩個不相等的實(shí)數(shù)根,那么k的取值范圍是()A.k>- B.k>-且 C.k<- D.k-且4.如圖,在已知的△ABC中,按以下步驟作圖:①分別以B、C為圓心,以大于BC的長為半徑作弧,兩弧相交于點(diǎn)M、N;②作直線MN交AB于點(diǎn)D,連接CD,則下列結(jié)論正確的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB5.我們從不同的方向觀察同一物體時,可能看到不同的圖形,則從正面、左面、上面觀察都不可能看到矩形的是()A. B. C. D.6.小紅上學(xué)要經(jīng)過三個十字路口,每個路口遇到紅、綠燈的機(jī)會都相同,小紅希望小學(xué)時經(jīng)過每個路口都是綠燈,但實(shí)際這樣的機(jī)會是()A. B. C. D.7.計算的結(jié)果是(

)A. B. C. D.28.一元二次方程x2﹣8x﹣2=0,配方的結(jié)果是()A.(x+4)2=18 B.(x+4)2=14 C.(x﹣4)2=18 D.(x﹣4)2=149.已知,兩數(shù)在數(shù)軸上對應(yīng)的點(diǎn)如圖所示,下列結(jié)論正確的是()A. B. C. D.10.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正確的是()A.a(chǎn)=b?cosA B.c=a?sinA C.a(chǎn)?cotA=b D.a(chǎn)?tanA=b二、填空題(共7小題,每小題3分,滿分21分)11.如圖,點(diǎn)G是的重心,AG的延長線交BC于點(diǎn)D,過點(diǎn)G作交AC于點(diǎn)E,如果,那么線段GE的長為______.12.布袋中裝有2個紅球和5個白球,它們除顏色外其它都相同.如果從這個布袋里隨機(jī)摸出一個球,那么所摸到的球恰好為紅球的概率是

________.13.已知圖中的兩個三角形全等,則∠1等于____________.14.若a,b互為相反數(shù),則a2﹣b2=_____.15.如圖,在平面直角坐標(biāo)系中,Rt△ABO的頂點(diǎn)O與原點(diǎn)重合,頂點(diǎn)B在x軸上,∠ABO=90°,OA與反比例函數(shù)y=的圖象交于點(diǎn)D,且OD=2AD,過點(diǎn)D作x軸的垂線交x軸于點(diǎn)C.若S四邊形ABCD=10,則k的值為.16.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,點(diǎn)D是邊AB上的動點(diǎn),將△ACD沿CD所在的直線折疊至△CDA的位置,CA'交AB于點(diǎn)E.若△A'ED為直角三角形,則AD的長為_____.17.已知關(guān)于x的二次函數(shù)y=x2-2x-2,當(dāng)a≤x≤a+2時,函數(shù)有最大值1,則a的值為________.三、解答題(共7小題,滿分69分)18.(10分)某數(shù)學(xué)興趣小組為測量如圖(①所示的一段古城墻的高度,設(shè)計用平面鏡測量的示意圖如圖②所示,點(diǎn)P處放一水平的平面鏡,光線從點(diǎn)A出發(fā)經(jīng)過平面鏡反射后剛好射到古城墻CD的頂端C處.已知AB⊥BD、CD⊥BD,且測得AB=1.2m,BP=1.8m.PD=12m,求該城墻的高度(平面鏡的原度忽略不計):請你設(shè)計一個測量這段古城墻高度的方案.要求:①面出示意圖(不要求寫畫法);②寫出方案,給出簡要的計算過程:③給出的方案不能用到圖②的方法.19.(5分)某商場服裝部為了調(diào)動營業(yè)員的積極性,決定實(shí)行目標(biāo)管理,根據(jù)目標(biāo)完成的情況對營業(yè)員進(jìn)行適當(dāng)?shù)莫剟睿疄榱舜_定一個適當(dāng)?shù)脑落N售目標(biāo),商場服裝部統(tǒng)計了每位營業(yè)員在某月的銷售額(單位:萬元),數(shù)據(jù)如下:171816132415282618192217161932301614152615322317151528281619對這30個數(shù)據(jù)按組距3進(jìn)行分組,并整理、描述和分析如下.頻數(shù)分布表組別一二三四五六七銷售額頻數(shù)79322數(shù)據(jù)分析表平均數(shù)眾數(shù)中位數(shù)20.318請根據(jù)以上信息解答下列問題:填空:a=,b=,c=;若將月銷售額不低于25萬元確定為銷售目標(biāo),則有位營業(yè)員獲得獎勵;若想讓一半左右的營業(yè)員都能達(dá)到銷售目標(biāo),你認(rèn)為月銷售額定為多少合適?說明理由.20.(8分)定義:若某拋物線上有兩點(diǎn)A、B關(guān)于原點(diǎn)對稱,則稱該拋物線為“完美拋物線”.已知二次函數(shù)y=ax2-2mx+c(a,m,c均為常數(shù)且ac≠0)是“完美拋物線”:(1)試判斷ac的符號;(2)若c=-1,該二次函數(shù)圖象與y軸交于點(diǎn)C,且S△ABC=1.①求a的值;②當(dāng)該二次函數(shù)圖象與端點(diǎn)為M(-1,1)、N(3,4)的線段有且只有一個交點(diǎn)時,求m的取值范圍.21.(10分)如圖,在△ABC中,∠ABC=90°,BD⊥AC,垂足為D,E為BC邊上一動點(diǎn)(不與B、C重合),AE、BD交于點(diǎn)F.(1)當(dāng)AE平分∠BAC時,求證:∠BEF=∠BFE;(2)當(dāng)E運(yùn)動到BC中點(diǎn)時,若BE=2,BD=2.4,AC=5,求AB的長.22.(10分)某中學(xué)為開拓學(xué)生視野,開展“課外讀書周”活動,活動后期隨機(jī)調(diào)查了九年級部分學(xué)生一周的課外閱讀時間,并將結(jié)果繪制成兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖的信息回答下列問題:(1)本次調(diào)查的學(xué)生總數(shù)為_____人,被調(diào)查學(xué)生的課外閱讀時間的中位數(shù)是_____小時,眾數(shù)是_____小時;并補(bǔ)全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,課外閱讀時間為5小時的扇形的圓心角度數(shù)是_____;(3)若全校九年級共有學(xué)生800人,估計九年級一周課外閱讀時間為6小時的學(xué)生有多少人?23.(12分)如圖,矩形ABCD中,E是AD的中點(diǎn),延長CE,BA交于點(diǎn)F,連接AC,DF.(1)求證:四邊形ACDF是平行四邊形;(2)當(dāng)CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.24.(14分)如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B求證:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

根據(jù)正多邊形的外角與它對應(yīng)的內(nèi)角互補(bǔ),得到這個正多邊形的每個外角=180°﹣150°=30°,再根據(jù)多邊形外角和為360度即可求出邊數(shù).【詳解】∵一個正多邊形的每個內(nèi)角為150°,∴這個正多邊形的每個外角=180°﹣150°=30°,∴這個正多邊形的邊數(shù)==1.故選:A.【點(diǎn)睛】本題考查了正多邊形的外角與它對應(yīng)的內(nèi)角互補(bǔ)的性質(zhì);也考查了多邊形外角和為360度以及正多邊形的性質(zhì).2、D【解析】

解:A、符合AAS,能判定三角形全等;B、符合SSS,能判定三角形全等;;C、符合SAS,能判定三角形全等;D、滿足AAA,沒有相對應(yīng)的判定方法,不能由此判定三角形全等;故選D.3、B【解析】

在與一元二次方程有關(guān)的求值問題中,必須滿足下列條件:(1)二次項(xiàng)系數(shù)不為零;(2)在有兩個實(shí)數(shù)根下必須滿足△=b2-4ac≥1.【詳解】由題意知,k≠1,方程有兩個不相等的實(shí)數(shù)根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>且k≠1.故選B.【點(diǎn)睛】本題考查根據(jù)根的情況求參數(shù),熟記判別式與根的關(guān)系是解題的關(guān)鍵.4、B【解析】

作弧后可知MN⊥CB,且CD=DB.【詳解】由題意性質(zhì)可知MN是BC的垂直平分線,則MN⊥CB,且CD=DB,則CD+AD=AB.【點(diǎn)睛】了解中垂線的作圖規(guī)則是解題的關(guān)鍵.5、C【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.依此找到從正面、左面、上面觀察都不可能看到矩形的圖形.【詳解】A、主視圖為長方形,左視圖為長方形,俯視圖為圓,故本選項(xiàng)錯誤;B、主視圖為長方形,左視圖為長方形,俯視圖為長方形,故本選項(xiàng)錯誤;C、主視圖為等腰梯形,左視圖為等腰梯形,俯視圖為圓環(huán),從正面、左面、上面觀察都不可能看到長方形,故本選項(xiàng)正確;D、主視圖為三角形,左視圖為三角形,俯視圖為有對角線的矩形,故本選項(xiàng)錯誤.故選C.【點(diǎn)睛】本題重點(diǎn)考查了三視圖的定義考查學(xué)生的空間想象能力,關(guān)鍵是根據(jù)主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形解答.6、B【解析】分析:列舉出所有情況,看各路口都是綠燈的情況占總情況的多少即可.詳解:畫樹狀圖,得∴共有8種情況,經(jīng)過每個路口都是綠燈的有一種,∴實(shí)際這樣的機(jī)會是.故選B.點(diǎn)睛:此題考查了樹狀圖法求概率,樹狀圖法適用于三步或三步以上完成的事件,解題時要注意列出所有的情形.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.7、C【解析】

化簡二次根式,并進(jìn)行二次根式的乘法運(yùn)算,最后合并同類二次根式即可.【詳解】原式=3﹣2·=3﹣=.故選C.【點(diǎn)睛】本題主要考查二次根式的化簡以及二次根式的混合運(yùn)算.8、C【解析】x2-8x=2,

x2-8x+16=1,

(x-4)2=1.

故選C.【點(diǎn)睛】本題考查了解一元二次方程-配方法:將一元二次方程配成(x+m)2=n的形式,再利用直接開平方法求解,這種解一元二次方程的方法叫配方法.9、C【解析】

根據(jù)各點(diǎn)在數(shù)軸上位置即可得出結(jié)論.【詳解】由圖可知,b<a<0,A.

∵b<a<0,∴a+b<0,故本選項(xiàng)錯誤;B.

∵b<a<0,∴ab>0,故本選項(xiàng)錯誤;C.

∵b<a<0,∴a>b,故本選項(xiàng)正確;D.

∵b<a<0,∴b?a<0,故本選項(xiàng)錯誤.故選C.10、C【解析】∵∠C=90°,∴cosA=,sinA=,tanA=,cotA=,∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,∴只有選項(xiàng)C正確,故選C.【點(diǎn)睛】本題考查了三角函數(shù)的定義,熟練掌握三角函數(shù)的定義并且靈活運(yùn)用是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】分析:由點(diǎn)G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可證得△AEG∽△ACD,然后由相似三角形的對應(yīng)邊成比例,即可求得線段GE的長.詳解:∵點(diǎn)G是△ABC重心,BC=6,∴CD=BC=3,AG:AD=2:3,∵GE∥BC,∴△AEG∽△ADC,∴GE:CD=AG:AD=2:3,∴GE=2.故答案為2.點(diǎn)睛:本題考查了三角形重心的定義和性質(zhì)、相似三角形的判定和性質(zhì).利用三角形重心的性質(zhì)得出AG:AD=2:3是解題的關(guān)鍵.12、2【解析】試題解析:∵一個布袋里裝有2個紅球和5個白球,∴摸出一個球摸到紅球的概率為:22+5考點(diǎn):概率公式.13、58°【解析】如圖,∠2=180°?50°?72°=58°,∵兩個三角形全等,∴∠1=∠2=58°.故答案為58°.14、1【解析】【分析】直接利用平方差公式分解因式進(jìn)而結(jié)合相反數(shù)的定義分析得出答案.【詳解】∵a,b互為相反數(shù),∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案為1.【點(diǎn)睛】本題考查了公式法分解因式以及相反數(shù)的定義,正確分解因式是解題關(guān)鍵.15、﹣1【解析】

∵OD=2AD,∴,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴,∴,∵S四邊形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案為﹣1.16、3﹣或1【解析】

分兩種情況:情況一:如圖一所示,當(dāng)∠A'DE=90°時;情況二:如圖二所示,當(dāng)∠A'ED=90°時.【詳解】解:如圖,當(dāng)∠A'DE=90°時,△A'ED為直角三角形,∵∠A'=∠A=30°,∴∠A'ED=60°=∠BEC=∠B,∴△BEC是等邊三角形,∴BE=BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=1,設(shè)AD=A'D=x,則DE=1﹣x,∵Rt△A'DE中,A'D=DE,∴x=(1﹣x),解得x=3﹣,即AD的長為3﹣;如圖,當(dāng)∠A'ED=90°時,△A'ED為直角三角形,此時∠BEC=90°,∠B=60°,∴∠BCE=30°,∴BE=BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=4﹣1=3,∴DE=3﹣x,設(shè)AD=A'D=x,則Rt△A'DE中,A'D=1DE,即x=1(3﹣x),解得x=1,即AD的長為1;綜上所述,即AD的長為3﹣或1.故答案為3﹣或1.【點(diǎn)睛】本題考查了翻折變換,勾股定理,等腰直角三角形的判定和性質(zhì)等知識,添加輔助線,構(gòu)造直角三角形,學(xué)會運(yùn)用分類討論是解題的關(guān)鍵.17、-1或1【解析】

利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征找出當(dāng)y=1時x的值,結(jié)合當(dāng)a≤x≤a+2時函數(shù)有最大值1,即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論.【詳解】解:當(dāng)y=1時,x2-2x-2=1,

解得:x1=-1,x2=3,

∵當(dāng)a≤x≤a+2時,函數(shù)有最大值1,

∴a=-1或a+2=3,即a=1.

故答案為-1或1.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及二次函數(shù)的最值,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征找出當(dāng)y=1時x的值是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)8m;(2)答案不唯一【解析】

(1)根據(jù)入射角等于反射角可得∠APB=∠CPD,由AB⊥BD、CD⊥BD可得到∠ABP=∠CDP=90°,從而可證得三角形相似,根據(jù)相似三角形的性質(zhì)列出比例式,即可求出CD的長.(2)設(shè)計成視角問題求古城墻的高度.【詳解】(1)解:由題意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴,∴CD==8.答:該古城墻的高度為8m(2)解:答案不唯一,如:如圖,在距這段古城墻底部am的E處,用高h(yuǎn)(m)的測角儀DE測得這段古城墻頂端A的仰角為α.即可測量這段古城墻AB的高度,過點(diǎn)D作DCAB于點(diǎn)C.在Rt△ACD中,∠ACD=90°,tanα=,∴AC=αtanα,∴AB=AC+BC=αtanα+h【點(diǎn)睛】本題考查相似三角形性質(zhì)的應(yīng)用.解題時關(guān)鍵是找出相似的三角形,然后根據(jù)對應(yīng)邊成比例列出方程,建立適當(dāng)?shù)臄?shù)學(xué)模型來解決問題.19、(1)眾數(shù)為15;(2)3,4,15;8;(3)月銷售額定為18萬,有一半左右的營業(yè)員能達(dá)到銷售目標(biāo).【解析】

根據(jù)數(shù)據(jù)可得到落在第四組、第六組的個數(shù)分別為3個、4個,所以a=3,b=4,再根據(jù)數(shù)據(jù)可得15出現(xiàn)了5次,出現(xiàn)次數(shù)最多,所以眾數(shù)c=15;從頻數(shù)分布表中可以看出月銷售額不低于25萬元的營業(yè)員有8個,所以本小題答案為:8;本題是考查中位數(shù)的知識,根據(jù)中位數(shù)可以讓一半左右的營業(yè)員達(dá)到銷售目標(biāo).【詳解】解:(1)在范圍內(nèi)的數(shù)據(jù)有3個,在范圍內(nèi)的數(shù)據(jù)有4個,15出現(xiàn)的次數(shù)最大,則眾數(shù)為15;(2)月銷售額不低于25萬元為后面三組數(shù)據(jù),即有8位營業(yè)員獲得獎勵;故答案為3,4,15;8;(3)想讓一半左右的營業(yè)員都能達(dá)到銷售目標(biāo),我認(rèn)為月銷售額定為18萬合適.因?yàn)橹形粩?shù)為18,即大于18與小于18的人數(shù)一樣多,所以月銷售額定為18萬,有一半左右的營業(yè)員能達(dá)到銷售目標(biāo).【點(diǎn)睛】本題考査了對樣本數(shù)據(jù)進(jìn)行分析的相關(guān)知識,考查了頻數(shù)分布表、平均數(shù)、眾數(shù)和中位數(shù)的知識,解題關(guān)鍵是根據(jù)數(shù)據(jù)整理成頻數(shù)分布表,會求數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù).并利用中位數(shù)的意義解決實(shí)際問題.20、(1)ac<3;(3)①a=1;②m>或m<.【解析】

(1)設(shè)A

(p,q).則B

(-p,-q),把A、B坐標(biāo)代入解析式可得方程組即可得到結(jié)論;

(3)由c=-1,得到p3=,a>3,且C(3,-1),求得p=±,①根據(jù)三角形的面積公式列方程即可得到結(jié)果;②由①可知:拋物線解析式為y=x3-3mx-1,根據(jù)M(-1,1)、N(3,4).得到這些MN的解析式y(tǒng)=x+(-1≤x≤3),聯(lián)立方程組得到x3-3mx-1=x+,故問題轉(zhuǎn)化為:方程x3-(3m+)x-=3在-1≤x≤3內(nèi)只有一個解,建立新的二次函數(shù):y=x3-(3m+)x-,根據(jù)題意得到(Ⅰ)若-1≤x1<3且x3>3,(Ⅱ)若x1<-1且-1<x3≤3:列方程組即可得到結(jié)論.【詳解】(1)設(shè)A

(p,q).則B

(-p,-q),

把A、B坐標(biāo)代入解析式可得:,

∴3ap3+3c=3.即p3=?,

∴?≥3,

∵ac≠3,

∴?>3,

∴ac<3;

(3)∵c=-1,

∴p3=,a>3,且C(3,-1),

∴p=±,

①S△ABC=×3×1=1,

∴a=1;

②由①可知:拋物線解析式為y=x3-3mx-1,

∵M(jìn)(-1,1)、N(3,4).

∴MN:y=x+(-1≤x≤3),

依題,只需聯(lián)立在-1≤x≤3內(nèi)只有一個解即可,

∴x3-3mx-1=x+,

故問題轉(zhuǎn)化為:方程x3-(3m+)x-=3在-1≤x≤3內(nèi)只有一個解,

建立新的二次函數(shù):y=x3-(3m+)x-,

∵△=(3m+)3+11>3且c=-<3,

∴拋物線y=x3?(3m+)x?與x軸有兩個交點(diǎn),且交y軸于負(fù)半軸.

不妨設(shè)方程x3?(3m+)x?=3的兩根分別為x1,x3.(x1<x3)

則x1+x3=3m+,x1x3=?

∵方程x3?(3m+)x?=3在-1≤x≤3內(nèi)只有一個解.

故分兩種情況討論:

(Ⅰ)若-1≤x1<3且x3>3:則.即:,

可得:m>.

(Ⅱ)若x1<-1且-1<x3≤3:則.即:,

可得:m<,

綜上所述,m>或m<.【點(diǎn)睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,一元二次方程根與系數(shù)的關(guān)系,三角形面積公式,正確的理解題意是解題的關(guān)鍵.21、(1)證明見解析;(1)2【解析】分析:(1)根據(jù)角平分線的定義可得∠1=∠1,再根據(jù)等角的余角相等求出∠BEF=∠AFD,然后根據(jù)對頂角相等可得∠BFE=∠AFD,等量代換即可得解;(1)根據(jù)中點(diǎn)定義求出BC,利用勾股定理列式求出AB即可.詳解:(1)如圖,∵AE平分∠BAC,∴∠1=∠1.∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.∵∠BFE=∠AFD(對頂角相等),∴∠BEF=∠BFE;(1)∵BE=1,∴BC=4,由勾股定理得:AB===2.點(diǎn)睛:本題考查了直角三角形的性質(zhì),勾股定理的應(yīng)用,等角的余角相等的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.22、(1)50;4;5;畫圖見解析;(2)144°;(3)64【解析】

(1)根據(jù)統(tǒng)計圖可知,課外閱讀達(dá)3小時的共10人,占總?cè)藬?shù)的20%,由此可得出總?cè)藬?shù);求出課外閱讀時間4小時與6小時男生的人數(shù),再根據(jù)中位數(shù)與眾數(shù)的定義即可得出結(jié)論;根據(jù)求出的人數(shù)補(bǔ)全條形統(tǒng)計圖即可;

(2)求出課外閱讀時間為5小時的人數(shù),再求出其人數(shù)與總?cè)藬?shù)的比值即可得出扇形的圓心角度數(shù);

(3)求出總?cè)藬?shù)與課外閱讀時間為6小時的學(xué)生人數(shù)的百分比的積即可.【詳解】解:(1)∵課外閱讀達(dá)3小時的共10人,占總?cè)藬?shù)的20%,∴=50(人).∵課外閱讀4小時的人數(shù)是32%,∴50×32%=16(人),∴男生人數(shù)=16﹣8=8(人);∴課外閱讀6小時的人數(shù)=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),∴課外閱讀3小時的是10人,4小時的是16人,5小時的是20人,6小時的是4人,∴中位數(shù)是4小時,眾數(shù)是5小時.補(bǔ)全圖形如圖所示.故答案為50,4,5;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論