湖北省隨州市隨縣達(dá)標(biāo)名校2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第1頁
湖北省隨州市隨縣達(dá)標(biāo)名校2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第2頁
湖北省隨州市隨縣達(dá)標(biāo)名校2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第3頁
湖北省隨州市隨縣達(dá)標(biāo)名校2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第4頁
湖北省隨州市隨縣達(dá)標(biāo)名校2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省隨州市隨縣達(dá)標(biāo)名校2024屆中考適應(yīng)性考試數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在矩形ABCD中,AB=5,AD=3,動點(diǎn)P滿足S△PAB=S矩形ABCD,則點(diǎn)P到A、B兩點(diǎn)距離之和PA+PB的最小值為()A. B. C.5 D.2.反比例函數(shù)y=1-6txA.t<16B.t>16C.t≤13.某市從今年1月1日起調(diào)整居民用水價格,每立方米水費(fèi)上漲.小麗家去年12月份的水費(fèi)是15元,而今年5月的水費(fèi)則是10元.已知小麗家今年5月的用水量比去年12月的用水量多5m1.求該市今年居民用水的價格.設(shè)去年居民用水價格為x元/m1,根據(jù)題意列方程,正確的是()A. B.C. D.4.下列計算正確的是()A.x2+x3=x5 B.x2?x3=x5 C.(﹣x2)3=x8 D.x6÷x2=x35.如圖,△ABC中,∠B=70°,則∠BAC=30°,將△ABC繞點(diǎn)C順時針旋轉(zhuǎn)得△EDC.當(dāng)點(diǎn)B的對應(yīng)點(diǎn)D恰好落在AC上時,∠CAE的度數(shù)是()A.30° B.40° C.50° D.60°6.下列圖形中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.7.下列因式分解正確的是()A. B.C. D.8.如圖所示,a∥b,直線a與直線b之間的距離是()A.線段PA的長度 B.線段PB的長度C.線段PC的長度 D.線段CD的長度9.下列實數(shù)中,最小的數(shù)是()A. B. C.0 D.10.下列圖形中,不是中心對稱圖形的是()A.平行四邊形 B.圓 C.等邊三角形 D.正六邊形11.已知反比例函數(shù),下列結(jié)論不正確的是()A.圖象經(jīng)過點(diǎn)(﹣2,1) B.圖象在第二、四象限C.當(dāng)x<0時,y隨著x的增大而增大 D.當(dāng)x>﹣1時,y>212.下列立體圖形中,主視圖是三角形的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,直線,點(diǎn)A1坐標(biāo)為(1,0),過點(diǎn)A1作x軸的垂線交直線于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長為半徑畫弧交x軸于點(diǎn)A2;再過點(diǎn)A2作x軸的垂線交直線于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長為半徑畫弧交x軸于點(diǎn)A3,…,按照此做法進(jìn)行下去,點(diǎn)A8的坐標(biāo)為__________.14.圖中是兩個全等的正五邊形,則∠α=______.15.如圖,△ABC的兩條高AD,BE相交于點(diǎn)F,請?zhí)砑右粋€條件,使得△ADC≌△BEC(不添加其他字母及輔助線),你添加的條件是_____.16.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____.17.關(guān)于x的一元二次方程x2﹣2kx+k2﹣k=0的兩個實數(shù)根分別是x1、x2,且x12+x22=4,則x12﹣x1x2+x22的值是_____.18.如圖,在平面直角坐標(biāo)系中,Rt△ABO的頂點(diǎn)O與原點(diǎn)重合,頂點(diǎn)B在x軸上,∠ABO=90°,OA與反比例函數(shù)y=的圖象交于點(diǎn)D,且OD=2AD,過點(diǎn)D作x軸的垂線交x軸于點(diǎn)C.若S四邊形ABCD=10,則k的值為.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在中,,,點(diǎn)D是BC上任意一點(diǎn),將線段AD繞點(diǎn)A逆時針方向旋轉(zhuǎn),得到線段AE,連結(jié)EC.依題意補(bǔ)全圖形;求的度數(shù);若,,將射線DA繞點(diǎn)D順時針旋轉(zhuǎn)交EC的延長線于點(diǎn)F,請寫出求AF長的思路.20.(6分)如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,(1)求k的值;(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍;(3)過原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為224,求點(diǎn)P的坐標(biāo).21.(6分)如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,BC的延長線于過點(diǎn)A的直線相交于點(diǎn)E,且∠B=∠EAC.(1)求證:AE是⊙O的切線;(2)過點(diǎn)C作CG⊥AD,垂足為F,與AB交于點(diǎn)G,若AG?AB=36,tanB=,求DF的值22.(8分)如圖,某數(shù)學(xué)活動小組為測量學(xué)校旗桿AB的高度,沿旗桿正前方米處的點(diǎn)C出發(fā),沿斜面坡度的斜坡CD前進(jìn)4米到達(dá)點(diǎn)D,在點(diǎn)D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈.計算結(jié)果保留根號)23.(8分)如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過點(diǎn)C的切線互相垂直,垂足為D,AB,DC的延長線交于點(diǎn)E.(1)求證:AC平分∠DAB;(2)若BE=3,CE=3,求圖中陰影部分的面積.24.(10分)如圖,點(diǎn),在上,直線是的切線,.連接交于.(1)求證:(2)若,的半徑為,求的長.25.(10分)如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點(diǎn)O沿x軸向左平移2個單位長度得到點(diǎn)A,過點(diǎn)A作y軸的平行線交反比例函數(shù)的圖象于點(diǎn)B,AB=.求反比例函數(shù)的解析式;若P(,)、Q(,)是該反比例函數(shù)圖象上的兩點(diǎn),且時,,指出點(diǎn)P、Q各位于哪個象限?并簡要說明理由.26.(12分)興發(fā)服裝店老板用4500元購進(jìn)一批某款T恤衫,由于深受顧客喜愛,很快售完,老板又用4950元購進(jìn)第二批該款式T恤衫,所購數(shù)量與第一批相同,但每件進(jìn)價比第一批多了9元.第一批該款式T恤衫每件進(jìn)價是多少元?老板以每件120元的價格銷售該款式T恤衫,當(dāng)?shù)诙鶷恤衫售出時,出現(xiàn)了滯銷,于是決定降價促銷,若要使第二批的銷售利潤不低于650元,剩余的T恤衫每件售價至少要多少元?(利潤=售價﹣進(jìn)價)27.(12分)如圖,某校教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22o時,教學(xué)樓在建筑物的墻上留下高2m的影子CE;而當(dāng)光線與地面的夾角是45o時,教學(xué)樓頂A在地面上的影子F與墻角C有13m的距離(B、F、C在一條直線上).求教學(xué)樓AB的高度;學(xué)校要在A、E之間掛一些彩旗,請你求出A、E之間的距離(結(jié)果保留整數(shù)).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】解:設(shè)△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點(diǎn)P在與AB平行且與AB的距離是2的直線l上,如圖,作A關(guān)于直線l的對稱點(diǎn)E,連接AE,連接BE,則BE就是所求的最短距離.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值為.故選D.2、B【解析】

將一次函數(shù)解析式代入到反比例函數(shù)解析式中,整理得出x2﹣2x+1﹣6t=0,又因兩函數(shù)圖象有兩個交點(diǎn),且兩交點(diǎn)橫坐標(biāo)的積為負(fù)數(shù),根據(jù)根的判別式以及根與系數(shù)的關(guān)系可求解.【詳解】由題意可得:﹣x+2=1-6tx所以x2﹣2x+1﹣6t=0,∵兩函數(shù)圖象有兩個交點(diǎn),且兩交點(diǎn)橫坐標(biāo)的積為負(fù)數(shù),∴(-解不等式組,得t>16故選:B.點(diǎn)睛:此題主要考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,關(guān)鍵是利用兩個函數(shù)的解析式構(gòu)成方程,再利用一元二次方程的根與系數(shù)的關(guān)系求解.3、A【解析】解:設(shè)去年居民用水價格為x元/cm1,根據(jù)題意列方程:,故選A.4、B【解析】分析:直接利用合并同類項法則以及同底數(shù)冪的乘除運(yùn)算法則和積的乘方運(yùn)算法則分別計算得出答案.詳解:A、不是同類項,無法計算,故此選項錯誤;B、正確;C、故此選項錯誤;D、故此選項錯誤;故選:B.點(diǎn)睛:此題主要考查了合并同類項以及同底數(shù)冪的乘除運(yùn)算和積的乘方運(yùn)算,正確掌握運(yùn)算法則是解題關(guān)鍵.5、C【解析】

由三角形內(nèi)角和定理可得∠ACB=80°,由旋轉(zhuǎn)的性質(zhì)可得AC=CE,∠ACE=∠ACB=80°,由等腰的性質(zhì)可得∠CAE=∠AEC=50°.【詳解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵將△ABC繞點(diǎn)C順時針旋轉(zhuǎn)得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故選C.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),熟練運(yùn)用旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.6、C【解析】

根據(jù)中心對稱圖形和軸對稱圖形對各選項分析判斷即可得解.【詳解】A、不是軸對稱圖形,是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;C、既是中心對稱圖形,又是軸對稱圖形,故本選項正確;D、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.【點(diǎn)睛】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.7、C【解析】

依據(jù)因式分解的定義以及提公因式法和公式法,即可得到正確結(jié)論.【詳解】解:D選項中,多項式x2-x+2在實數(shù)范圍內(nèi)不能因式分解;

選項B,A中的等式不成立;

選項C中,2x2-2=2(x2-1)=2(x+1)(x-1),正確.

故選C.【點(diǎn)睛】本題考查因式分解,解決問題的關(guān)鍵是掌握提公因式法和公式法的方法.8、A【解析】分析:從一條平行線上的任意一點(diǎn)到另一條直線作垂線,垂線段的長度叫兩條平行線之間的距離,由此可得出答案.詳解:∵a∥b,AP⊥BC∴兩平行直線a、b之間的距離是AP的長度∴根據(jù)平行線間的距離相等∴直線a與直線b之間的距離AP的長度故選A.點(diǎn)睛:本題考查了平行線之間的距離,屬于基礎(chǔ)題,關(guān)鍵是掌握平行線之間距離的定義.9、B【解析】

根據(jù)正實數(shù)都大于0,負(fù)實數(shù)都小于0,正實數(shù)大于一切負(fù)實數(shù),兩個負(fù)實數(shù)絕對值大的反而小,進(jìn)行比較.【詳解】∵<-2<0<,∴最小的數(shù)是-π,故選B.【點(diǎn)睛】此題主要考查了比較實數(shù)的大小,要熟練掌握任意兩個實數(shù)比較大小的方法.(1)正實數(shù)都大于0,負(fù)實數(shù)都小于0,正實數(shù)大于一切負(fù)實數(shù),兩個負(fù)實數(shù)絕對值大的反而?。?)利用數(shù)軸也可以比較任意兩個實數(shù)的大小,即在數(shù)軸上表示的兩個實數(shù),右邊的總比左邊的大,在原點(diǎn)左側(cè),絕對值大的反而小.10、C【解析】

根據(jù)中心對稱圖形的定義依次判斷各項即可解答.【詳解】選項A、平行四邊形是中心對稱圖形;選項B、圓是中心對稱圖形;選項C、等邊三角形不是中心對稱圖形;選項D、正六邊形是中心對稱圖形;故選C.【點(diǎn)睛】本題考查了中心對稱圖形的判定,熟知中心對稱圖形的定義是解決問題的關(guān)鍵.11、D【解析】

A選項:把(-2,1)代入解析式得:左邊=右邊,故本選項正確;

B選項:因為-2<0,圖象在第二、四象限,故本選項正確;

C選項:當(dāng)x<0,且k<0,y隨x的增大而增大,故本選項正確;

D選項:當(dāng)x>0時,y<0,故本選項錯誤.

故選D.12、A【解析】

考查簡單幾何體的三視圖.根據(jù)從正面看得到的圖形是主視圖,可得圖形的主視圖【詳解】A、圓錐的主視圖是三角形,符合題意;B、球的主視圖是圓,不符合題意;C、圓柱的主視圖是矩形,不符合題意;D、正方體的主視圖是正方形,不符合題意.故選A.【點(diǎn)睛】主視圖是從前往后看,左視圖是從左往右看,俯視圖是從上往下看二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(128,0)【解析】

∵點(diǎn)A1坐標(biāo)為(1,0),且B1A1⊥x軸,∴B1的橫坐標(biāo)為1,將其橫坐標(biāo)代入直線解析式就可以求出B1的坐標(biāo),就可以求出A1B1的值,OA1的值,根據(jù)銳角三角函數(shù)值就可以求出∠xOB3的度數(shù),從而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3…,從而尋找出點(diǎn)A2、A3…的坐標(biāo)規(guī)律,最后求出A8的坐標(biāo).【詳解】點(diǎn)坐標(biāo)為(1,0),

點(diǎn)的橫坐標(biāo)為1,且點(diǎn)在直線上

在中由勾股定理,得

,

在中,

.

.

.

.

故答案為.【點(diǎn)睛】本題是一道一次函數(shù)的綜合試題,也是一道規(guī)律試題,考查了直角三角形的性質(zhì),特別是所對的直角邊等于斜邊的一半的運(yùn)用,點(diǎn)的坐標(biāo)與函數(shù)圖象的關(guān)系.14、108°【解析】

先求出正五邊形各個內(nèi)角的度數(shù),再求出∠BCD和∠BDC的度數(shù),求出∠CBD,即可求出答案.【詳解】如圖:∵圖中是兩個全等的正五邊形,∴BC=BD,∴∠BCD=∠BDC,∵圖中是兩個全等的正五邊形,∴正五邊形每個內(nèi)角的度數(shù)是=108°,∴∠BCD=∠BDC=180°-108°=72°,∴∠CBD=180°-72°-72°=36°,∴∠α=360°-36°-108°-108°=108°,故答案為108°.【點(diǎn)睛】本題考查了正多邊形和多邊形的內(nèi)角和外角,能求出各個角的度數(shù)是解此題的關(guān)鍵.15、AC=BC.【解析】分析:添加AC=BC,根據(jù)三角形高的定義可得∠ADC=∠BEC=90°,再證明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.詳解:添加AC=BC,∵△ABC的兩條高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中∠BEC=∴△ADC≌△BEC(AAS),故答案為:AC=BC.點(diǎn)睛:此題主要考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.16、【解析】

連接BD,易證△DAB是等邊三角形,即可求得△ABD的高為,再證明△ABG≌△DBH,即可得四邊形GBHD的面積等于△ABD的面積,由圖中陰影部分的面積為S扇形EBF﹣S△ABD即可求解.【詳解】如圖,連接BD.∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設(shè)AD、BE相交于點(diǎn)G,設(shè)BF、DC相交于點(diǎn)H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF﹣S△ABD=﹣×2×=.故答案是:.【點(diǎn)睛】本題考查了扇形的面積計算以及全等三角形的判定與性質(zhì)等知識,根據(jù)已知得出四邊形GBHD的面積等于△ABD的面積是解題關(guān)鍵.17、1【解析】【分析】根據(jù)根與系數(shù)的關(guān)系結(jié)合x1+x2=x1?x2可得出關(guān)于k的一元二次方程,解之即可得出k的值,再根據(jù)方程有實數(shù)根結(jié)合根的判別式即可得出關(guān)于k的一元二次不等式,解之即可得出k的取值范圍,從而可確定k的值.【詳解】∵x2﹣2kx+k2﹣k=0的兩個實數(shù)根分別是x1、x2,∴x1+x2=2k,x1?x2=k2﹣k,∵x12+x22=1,∴(x1+x2)2-2x1x2=1,(2k)2﹣2(k2﹣k)=1,2k2+2k﹣1=0,k2+k﹣2=0,k=﹣2或1,∵△=(﹣2k)2﹣1×1×(k2﹣k)≥0,k≥0,∴k=1,∴x1?x2=k2﹣k=0,∴x12﹣x1x2+x22=1﹣0=1,故答案為:1.【點(diǎn)睛】本題考查了根的判別式以及根與系數(shù)的關(guān)系,熟練掌握“當(dāng)一元二次方程有實數(shù)根時,根的判別式△≥0”是解題的關(guān)鍵.18、﹣1【解析】

∵OD=2AD,∴,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴,∴,∵S四邊形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案為﹣1.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)90°;(3)解題思路見解析.【解析】

(1)將線段AD繞點(diǎn)A逆時針方向旋轉(zhuǎn)90°,得到線段AE,連結(jié)EC.(2)先判定△ABD≌△ACE,即可得到,再根據(jù),即可得出;(3)連接DE,由于△ADE為等腰直角三角形,所以可求;由,,可求的度數(shù)和的度數(shù),從而可知DF的長;過點(diǎn)A作于點(diǎn)H,在Rt△ADH中,由,AD=1可求AH、DH的長;由DF、DH的長可求HF的長;在Rt△AHF中,由AH和HF,利用勾股定理可求AF的長.【詳解】解:如圖,線段AD繞點(diǎn)A逆時針方向旋轉(zhuǎn),得到線段AE.,,.,.,在和中,≌.,中,,,.;Ⅰ連接DE,由于為等腰直角三角形,所以可求;Ⅱ由,,可求的度數(shù)和的度數(shù),從而可知DF的長;Ⅲ過點(diǎn)A作于點(diǎn)H,在中,由,可求AH、DH的長;Ⅳ由DF、DH的長可求HF的長;Ⅴ在中,由AH和HF,利用勾股定理可求AF的長.故答案為(1)見解析;(2)90°;(3)解題思路見解析.【點(diǎn)睛】本題主要考查旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì)的運(yùn)用,解題的關(guān)鍵是要注意對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.20、(1)32;(2)x<﹣4或0<x<4;(3)點(diǎn)P的坐標(biāo)是P(﹣7+,14+2);或P(7+,﹣14+2).【解析】分析:(1)先將x=4代入正比例函數(shù)y=2x,可得出y=8,求得點(diǎn)A(4,8),再根據(jù)點(diǎn)A與B關(guān)于原點(diǎn)對稱,得出B點(diǎn)坐標(biāo),即可得出k的值;(2)正比例函數(shù)的值小于反比例函數(shù)的值即正比例函數(shù)的圖象在反比例函數(shù)的圖象下方,根據(jù)圖形可知在交點(diǎn)的右邊正比例函數(shù)的值小于反比例函數(shù)的值.(3)由于雙曲線是關(guān)于原點(diǎn)的中心對稱圖形,因此以A、B、P、Q為頂點(diǎn)的四邊形應(yīng)該是平行四邊形,那么△POA的面積就應(yīng)該是四邊形面積的四分之一即1.可根據(jù)雙曲線的解析式設(shè)出P點(diǎn)的坐標(biāo),然后表示出△POA的面積,由于△POA的面積為1,由此可得出關(guān)于P點(diǎn)橫坐標(biāo)的方程,即可求出P點(diǎn)的坐標(biāo).詳解:(1)∵點(diǎn)A在正比例函數(shù)y=2x上,∴把x=4代入正比例函數(shù)y=2x,解得y=8,∴點(diǎn)A(4,8),把點(diǎn)A(4,8)代入反比例函數(shù)y=,得k=32,(2)∵點(diǎn)A與B關(guān)于原點(diǎn)對稱,∴B點(diǎn)坐標(biāo)為(﹣4,﹣8),由交點(diǎn)坐標(biāo),根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍,x<﹣8或0<x<8;(3)∵反比例函數(shù)圖象是關(guān)于原點(diǎn)O的中心對稱圖形,∴OP=OQ,OA=OB,∴四邊形APBQ是平行四邊形,∴S△POA=S平行四邊形APBQ×=×224=1,設(shè)點(diǎn)P的橫坐標(biāo)為m(m>0且m≠4),得P(m,),過點(diǎn)P、A分別做x軸的垂線,垂足為E、F,∵點(diǎn)P、A在雙曲線上,∴S△POE=S△AOF=16,若0<m<4,如圖,∵S△POE+S梯形PEFA=S△POA+S△AOF,∴S梯形PEFA=S△POA=1.∴(8+)?(4﹣m)=1.∴m1=﹣7+3,m2=﹣7﹣3(舍去),∴P(﹣7+3,16+);若m>4,如圖,∵S△AOF+S梯形AFEP=S△AOP+S△POE,∴S梯形PEFA=S△POA=1.∴×(8+)?(m﹣4)=1,解得m1=7+3,m2=7﹣3(舍去),∴P(7+3,﹣16+).∴點(diǎn)P的坐標(biāo)是P(﹣7+3,16+);或P(7+3,﹣16+).點(diǎn)睛:本題考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和反比例函數(shù)y=中k的幾何意義.這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.利用數(shù)形結(jié)合的思想,求得三角形的面積.21、(1)見解析;(2)4【解析】分析:(1)欲證明AE是⊙O切線,只要證明OA⊥AE即可;(2)由△ACD∽△CFD,可得,想辦法求出CD、AD即可解決問題.詳解:(1)證明:連接CD.∵∠B=∠D,AD是直徑,∴∠ACD=90°,∠D+∠1=90°,∠B+∠1=90°,∵∠B=∠EAC,∴∠EAC+∠1=90°,∴OA⊥AE,∴AE是⊙O的切線.(2)∵CG⊥AD.OA⊥AE,∴CG∥AE,∴∠2=∠3,∵∠2=∠B,∴∠3=∠B,∵∠CAG=∠CAB,∴△ABC∽△ACG,∴,∴AC2=AG?AB=36,∴AC=6,∵tanD=tanB=,在Rt△ACD中,tanD==CD==6,AD==6,∵∠D=∠D,∠ACD=∠CFD=90°,∴△ACD∽△CFD,∴,∴DF=4,點(diǎn)睛:本題考查切線的性質(zhì)、圓周角定理、垂徑定理、相似三角形的判定和性質(zhì)、解直角三角形等知識,解題關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考常考題型.22、3+3.5【解析】

延長ED交BC延長線于點(diǎn)F,則∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4?tan37°可得答案.【詳解】如圖,延長ED交BC延長線于點(diǎn)F,則∠CFD=90°,∵tan∠DCF=i=,∴∠DCF=30°,∵CD=4,∴DF=CD=2,CF=CDcos∠DCF=4×=2,∴BF=BC+CF=2+2=4,過點(diǎn)E作EG⊥AB于點(diǎn)G,則GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=4?tan37°,則AB=AG+BG=4?tan37°+3.5=3+3.5,故旗桿AB的高度為(3+3.5)米.考點(diǎn):1、解直角三角形的應(yīng)用﹣仰角俯角問題;2、解直角三角形的應(yīng)用﹣坡度坡角問題23、(1)證明見解析;(2)【解析】

(1)連接OC,如圖,利用切線的性質(zhì)得CO⊥CD,則AD∥CO,所以∠DAC=∠ACO,加上∠ACO=∠CAO,從而得到∠DAC=∠CAO;(2)設(shè)⊙O半徑為r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用銳角三角函數(shù)的定義計算出∠COE=60°,然后根據(jù)扇形的面積公式,利用S陰影=S△COE﹣S扇形COB進(jìn)行計算即可.【詳解】解:(1)連接OC,如圖,∵CD與⊙O相切于點(diǎn)E,∴CO⊥CD,∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)設(shè)⊙O半徑為r,在Rt△OEC中,∵OE2+EC2=OC2,∴r2+27=(r+3)2,解得r=3,∴OC=3,OE=6,∴cos∠COE=,∴∠COE=60°,∴S陰影=S△COE﹣S扇形COB=?3?3﹣.【點(diǎn)睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.簡記作:見切點(diǎn),連半徑,見垂直.也考查了圓周角定理和扇形的面積公式.24、(1)證明見解析;(2)1.【解析】

(1)連結(jié)OA,由AC為圓的切線,利用切線的性質(zhì)得到∠OAC為直角,再由,得到∠BOC為直角,由OA=OB得到,再利用對頂角相等及等角的余角相等得到,利用等角對等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論