湖南省常德市2023-2024學(xué)年中考數(shù)學(xué)四模試卷含解析_第1頁
湖南省常德市2023-2024學(xué)年中考數(shù)學(xué)四模試卷含解析_第2頁
湖南省常德市2023-2024學(xué)年中考數(shù)學(xué)四模試卷含解析_第3頁
湖南省常德市2023-2024學(xué)年中考數(shù)學(xué)四模試卷含解析_第4頁
湖南省常德市2023-2024學(xué)年中考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

湖南省常德市2023-2024學(xué)年中考數(shù)學(xué)四模試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.據(jù)《關(guān)于“十三五”期間全面深入推進(jìn)教育信息化工作的指導(dǎo)意見》顯示,全國6000萬名師生已通過“網(wǎng)絡(luò)學(xué)習(xí)空間”探索網(wǎng)絡(luò)條件下的新型教學(xué)、學(xué)習(xí)與教研模式,教育公共服務(wù)平臺(tái)基本覆蓋全國學(xué)生、教職工等信息基礎(chǔ)數(shù)據(jù)庫,實(shí)施全國中小學(xué)教師信息技術(shù)應(yīng)用能力提升工程.則數(shù)字6000萬用科學(xué)記數(shù)法表示為()A.6×105 B.6×106 C.6×107 D.6×1082.下列四張正方形硬紙片,剪去陰影部分后,如果沿虛線折疊,可以圍成一個(gè)封閉的長方體包裝盒的是()A. B. C. D.3.下列運(yùn)算結(jié)果正確的是()A.3a2-a2=2 B.a(chǎn)2·a3=a6 C.(-a2)3=-a6 D.a(chǎn)2÷a2=a4.如圖的幾何體中,主視圖是中心對(duì)稱圖形的是()A. B. C. D.5.某單位若干名職工參加普法知識(shí)競賽,將成績制成如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,根據(jù)圖中提供的信息,這些職工成績的中位數(shù)和平均數(shù)分別是()A.94分,96分 B.96分,96分C.94分,96.4分 D.96分,96.4分6.如圖,在ABCD中,E為CD上一點(diǎn),連接AE、BD,且AE、BD交于點(diǎn)F,,則DE:EC=()A.2:5 B.2:3 C.3:5 D.3:27.的倒數(shù)是()A.﹣ B.2 C.﹣2 D.8.已知x1,x2是關(guān)于x的方程x2+ax-2b=0的兩個(gè)實(shí)數(shù)根,且x1+x2=-2,x1·x2=1,則ba的值是()A.14 B.-19.下列因式分解正確的是A. B.C. D.10.實(shí)數(shù)a,b在數(shù)軸上對(duì)應(yīng)的點(diǎn)的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)+b<0 B.a(chǎn)>|﹣2| C.b>π D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,數(shù)軸上點(diǎn)A表示的數(shù)為a,化簡:a_____.12.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E為線段AB的中點(diǎn),D點(diǎn)是射線AC上的一個(gè)動(dòng)點(diǎn),將△ADE沿線段DE翻折,得到△A′DE,當(dāng)A′D⊥AB時(shí),則線段AD的長為_____.13.一次函數(shù)y=kx+b的圖象如圖所示,當(dāng)y>0時(shí),x的取值范圍是_____.14.現(xiàn)在網(wǎng)購越來越多地成為人們的一種消費(fèi)方式,天貓和淘寶的支付交易額突破67000000000元,將67000000000元用科學(xué)記數(shù)法表示為_____.15.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____.16.若關(guān)于x的二次函數(shù)y=ax2+a2的最小值為4,則a的值為______.三、解答題(共8題,共72分)17.(8分)如圖所示,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,4),B(﹣4,n)兩點(diǎn).分別求出一次函數(shù)與反比例函數(shù)的表達(dá)式;過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C,連接AC,求△ACB的面積.18.(8分)某校九年級(jí)數(shù)學(xué)測(cè)試后,為了解學(xué)生學(xué)習(xí)情況,隨機(jī)抽取了九年級(jí)部分學(xué)生的數(shù)學(xué)成績進(jìn)行統(tǒng)計(jì),得到相關(guān)的統(tǒng)計(jì)圖表如下.成績/分120﹣111110﹣101100﹣9190以下成績等級(jí)ABCD請(qǐng)根據(jù)以上信息解答下列問題:(1)這次統(tǒng)計(jì)共抽取了名學(xué)生的數(shù)學(xué)成績,補(bǔ)全頻數(shù)分布直方圖;(2)若該校九年級(jí)有1000名學(xué)生,請(qǐng)據(jù)此估計(jì)該校九年級(jí)此次數(shù)學(xué)成績?cè)贐等級(jí)以上(含B等級(jí))的學(xué)生有多少人?(3)根據(jù)學(xué)習(xí)中存在的問題,通過一段時(shí)間的針對(duì)性復(fù)習(xí)與訓(xùn)練,若A等級(jí)學(xué)生數(shù)可提高40%,B等級(jí)學(xué)生數(shù)可提高10%,請(qǐng)估計(jì)經(jīng)過訓(xùn)練后九年級(jí)數(shù)學(xué)成績?cè)贐等級(jí)以上(含B等級(jí))的學(xué)生可達(dá)多少人?19.(8分)如圖,在平面直角坐標(biāo)xOy中,正比例函數(shù)y=kx的圖象與反比例函數(shù)y=的圖象都經(jīng)過點(diǎn)A(2,﹣2).(1)分別求這兩個(gè)函數(shù)的表達(dá)式;(2)將直線OA向上平移3個(gè)單位長度后與y軸交于點(diǎn)B,與反比例函數(shù)圖象在第四象限內(nèi)的交點(diǎn)為C,連接AB,AC,求點(diǎn)C的坐標(biāo)及△ABC的面積.20.(8分)某公司對(duì)用戶滿意度進(jìn)行問卷調(diào)查,將連續(xù)6天內(nèi)每天收回的問卷數(shù)進(jìn)行統(tǒng)計(jì),繪制成如圖所示的統(tǒng)計(jì)圖.已知從左到右各矩形的高度比為2:3:4:6:4:1.第3天的頻數(shù)是2.請(qǐng)你回答:(1)收回問卷最多的一天共收到問卷_________份;(2)本次活動(dòng)共收回問卷共_________份;(3)市場(chǎng)部對(duì)收回的問卷統(tǒng)一進(jìn)行了編號(hào),通過電腦程序隨機(jī)抽選一個(gè)編號(hào),抽到問卷是第4天收回的概率是多少?(4)按照(3)中的模式隨機(jī)抽選若干編號(hào),確定幸運(yùn)用戶發(fā)放紀(jì)念獎(jiǎng),第4天和第6天分別有10份和2份獲獎(jiǎng),那么你認(rèn)為這兩組中哪個(gè)組獲獎(jiǎng)率較高?為什么?21.(8分)計(jì)算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣122.(10分)如圖甲,直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,經(jīng)過B、C兩點(diǎn)的拋物線y=x2+bx+c與x軸的另一個(gè)交點(diǎn)為A,頂點(diǎn)為P.(1)求該拋物線的解析式;(2)在該拋物線的對(duì)稱軸上是否存在點(diǎn)M,使以C,P,M為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫出所符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由;(3)當(dāng)0<x<3時(shí),在拋物線上求一點(diǎn)E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).23.(12分)如圖,建筑物BC上有一旗桿AB,從與BC相距40m的D處觀測(cè)旗桿頂部A的仰角為50°,觀測(cè)旗桿底部B的仰角為45°,求旗桿AB的高度.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)24.已知,四邊形ABCD中,E是對(duì)角線AC上一點(diǎn),DE=EC,以AE為直徑的⊙O與邊CD相切于點(diǎn)D,點(diǎn)B在⊙O上,連接OB.求證:DE=OE;若CD∥AB,求證:BC是⊙O的切線;在(2)的條件下,求證:四邊形ABCD是菱形.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

將一個(gè)數(shù)寫成的形式,其中,n是正數(shù),這種記數(shù)的方法叫做科學(xué)記數(shù)法,根據(jù)定義解答即可.【詳解】解:6000萬=6×1.故選:C.【點(diǎn)睛】此題考查科學(xué)記數(shù)法,當(dāng)所表示的數(shù)的絕對(duì)值大于1時(shí),n為正整數(shù),其值等于原數(shù)中整數(shù)部分的數(shù)位減去1,當(dāng)要表示的數(shù)的絕對(duì)值小于1時(shí),n為負(fù)整數(shù),其值等于原數(shù)中第一個(gè)非零數(shù)字前面所有零的個(gè)數(shù)的相反數(shù),正確掌握科學(xué)記數(shù)法中n的值的確定是解題的關(guān)鍵.2、C【解析】A、剪去陰影部分后,組成無蓋的正方體,故此選項(xiàng)不合題意;B、剪去陰影部分后,無法組成長方體,故此選項(xiàng)不合題意;C、剪去陰影部分后,能組成長方體,故此選項(xiàng)正確;D、剪去陰影部分后,組成無蓋的正方體,故此選項(xiàng)不合題意;故選C.3、C【解析】選項(xiàng)A,3a2-a2=2a2;選項(xiàng)B,a2·a3=a5;選項(xiàng)C,(-a2)3=-a6;選項(xiàng)D,a2÷a2=1.正確的只有選項(xiàng)C,故選C.4、C【解析】解:球是主視圖是圓,圓是中心對(duì)稱圖形,故選C.5、D【解析】

解:總?cè)藬?shù)為6÷10%=60(人),則91分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30與31個(gè)數(shù)據(jù)都是96分,這些職工成績的中位數(shù)是(96+96)÷2=96;這些職工成績的平均數(shù)是(92×6+91×12+96×15+98×18+100×9)÷60=(552+1128+1110+1761+900)÷60=5781÷60=96.1.故選D.【點(diǎn)睛】本題考查1.中位數(shù);2.扇形統(tǒng)計(jì)圖;3.條形統(tǒng)計(jì)圖;1.算術(shù)平均數(shù),掌握概念正確計(jì)算是關(guān)鍵.6、B【解析】

∵四邊形ABCD是平行四邊形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF∽△BAF∴∵,∴DE:AB=2:5∵AB=CD,∴DE:EC=2:3故選B7、B【解析】

根據(jù)乘積是1的兩個(gè)數(shù)叫做互為倒數(shù)解答.【詳解】解:∵×1=1∴的倒數(shù)是1.故選B.【點(diǎn)睛】本題考查了倒數(shù)的定義,是基礎(chǔ)題,熟記概念是解題的關(guān)鍵.8、A【解析】

根據(jù)根與系數(shù)的關(guān)系和已知x1+x2和x1?x2的值,可求a、b的值,再代入求值即可.【詳解】解:∵x1,x2是關(guān)于x的方程x2+ax﹣2b=0的兩實(shí)數(shù)根,∴x1+x2=﹣a=﹣2,x1?x2=﹣2b=1,解得a=2,b=-1∴ba=(-12)2=故選A.9、D【解析】

直接利用提取公因式法以及公式法分解因式,進(jìn)而判斷即可.【詳解】解:A、,無法直接分解因式,故此選項(xiàng)錯(cuò)誤;B、,無法直接分解因式,故此選項(xiàng)錯(cuò)誤;C、,無法直接分解因式,故此選項(xiàng)錯(cuò)誤;D、,正確.故選:D.【點(diǎn)睛】此題主要考查了提取公因式法以及公式法分解因式,正確應(yīng)用公式是解題關(guān)鍵.10、D【解析】

根據(jù)數(shù)軸上點(diǎn)的位置,可得a,b,根據(jù)有理數(shù)的運(yùn)算,可得答案.【詳解】a=﹣2,2<b<1.A.a+b<0,故A不符合題意;B.a<|﹣2|,故B不符合題意;C.b<1<π,故C不符合題意;D.<0,故D符合題意;故選D.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸,利用有理數(shù)的運(yùn)算是解題關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1.【解析】

直接利用二次根式的性質(zhì)以及結(jié)合數(shù)軸得出a的取值范圍進(jìn)而化簡即可.【詳解】由數(shù)軸可得:0<a<1,則a+=a+=a+(1﹣a)=1.故答案為1.【點(diǎn)睛】本題主要考查了二次根式的性質(zhì)與化簡,正確得出a的取值范圍是解題的關(guān)鍵.12、或.【解析】

①延長A'D交AB于H,則A'H⊥AB,然后根據(jù)勾股定理算出AB,推斷出△ADH∽△ABC,即可解答此題②同①的解題思路一樣【詳解】解:分兩種情況:①如圖1所示:設(shè)AD=x,延長A'D交AB于H,則A'H⊥AB,∴∠AHD=∠C=90°,由勾股定理得:AB==13,∵∠A=∠A,∴△ADH∽△ABC,∴,即,解得:DH=x,AH=x,∵E是AB的中點(diǎn),∴AE=AB=,∴HE=AE﹣AH=﹣x,由折疊的性質(zhì)得:A'D=AD=x,A'E=AE=,∴sin∠A=sin∠A'=,解得:x=;②如圖2所示:設(shè)AD=A'D=x,∵A'D⊥AB,∴∠A'HE=90°,同①得:A'E=AE=,DH=x,∴A'H=A'D﹣DH=x﹣=x,∴cos∠A=cos∠A'=,解得:x=;綜上所述,AD的長為或.故答案為或.【點(diǎn)睛】此題考查了勾股定理,三角形相似,關(guān)鍵在于做輔助線13、【解析】試題解析:根據(jù)圖象和數(shù)據(jù)可知,當(dāng)y>0即圖象在x軸的上方,x>1.

故答案為x>1.14、【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】67000000000的小數(shù)點(diǎn)向左移動(dòng)10位得到6.7,所以67000000000用科學(xué)記數(shù)法表示為,故答案為:.【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.15、【解析】

連接BD,易證△DAB是等邊三角形,即可求得△ABD的高為,再證明△ABG≌△DBH,即可得四邊形GBHD的面積等于△ABD的面積,由圖中陰影部分的面積為S扇形EBF﹣S△ABD即可求解.【詳解】如圖,連接BD.∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設(shè)AD、BE相交于點(diǎn)G,設(shè)BF、DC相交于點(diǎn)H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF﹣S△ABD=﹣×2×=.故答案是:.【點(diǎn)睛】本題考查了扇形的面積計(jì)算以及全等三角形的判定與性質(zhì)等知識(shí),根據(jù)已知得出四邊形GBHD的面積等于△ABD的面積是解題關(guān)鍵.16、1.【解析】

根據(jù)二次函數(shù)的性質(zhì)列出不等式和等式,計(jì)算即可.【詳解】解:∵關(guān)于x的二次函數(shù)y=ax1+a1的最小值為4,

∴a1=4,a>0,

解得,a=1,

故答案為1.【點(diǎn)睛】本題考查的是二次函數(shù)的最值問題,掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)反比例函數(shù)解析式為y=,一次函數(shù)解析式為y=x+2;(2)△ACB的面積為1.【解析】

(1)將點(diǎn)A坐標(biāo)代入y=可得反比例函數(shù)解析式,據(jù)此求得點(diǎn)B坐標(biāo),根據(jù)A、B兩點(diǎn)坐標(biāo)可得直線解析式;(2)根據(jù)點(diǎn)B坐標(biāo)可得底邊BC=2,由A、B兩點(diǎn)的橫坐標(biāo)可得BC邊上的高,據(jù)此可得.【詳解】解:(1)將點(diǎn)A(2,4)代入y=,得:m=8,則反比例函數(shù)解析式為y=,當(dāng)x=﹣4時(shí),y=﹣2,則點(diǎn)B(﹣4,﹣2),將點(diǎn)A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,解得:,則一次函數(shù)解析式為y=x+2;(2)由題意知BC=2,則△ACB的面積=×2×1=1.【點(diǎn)睛】本題主要考查一次函數(shù)與反比例函數(shù)的交點(diǎn)問題,熟練掌握待定系數(shù)法求函數(shù)解析式及三角形的面積求法是解題的關(guān)鍵.18、(1)1人;補(bǔ)圖見解析;(2)10人;(3)610名.【解析】

(1)用總?cè)藬?shù)乘以A所占的百分比,即可得到總?cè)藬?shù);再用總?cè)藬?shù)乘以A等級(jí)人數(shù)所占比例可得其人數(shù),繼而根據(jù)各等級(jí)人數(shù)之和等于總?cè)藬?shù)可得D等級(jí)人數(shù),據(jù)此可補(bǔ)全條形圖;

(2)用總?cè)藬?shù)乘以(A的百分比+B的百分比),即可解答;

(3)先計(jì)算出提高后A,B所占的百分比,再乘以總?cè)藬?shù),即可解答.【詳解】解:(1)本次調(diào)查抽取的總?cè)藬?shù)為15÷=1(人),則A等級(jí)人數(shù)為1×=10(人),D等級(jí)人數(shù)為1﹣(10+15+5)=20(人),補(bǔ)全直方圖如下:故答案為1.(2)估計(jì)該校九年級(jí)此次數(shù)學(xué)成績?cè)贐等級(jí)以上(含B等級(jí))的學(xué)生有1000×=10(人);(3)∵A級(jí)學(xué)生數(shù)可提高40%,B級(jí)學(xué)生數(shù)可提高10%,∴B級(jí)學(xué)生所占的百分比為:30%×(1+10%)=33%,A級(jí)學(xué)生所占的百分比為:20%×(1+40%)=28%,∴1000×(33%+28%)=610(人),∴估計(jì)經(jīng)過訓(xùn)練后九年級(jí)數(shù)學(xué)成績?cè)贐以上(含B級(jí))的學(xué)生可達(dá)610名.【點(diǎn)睛】考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?9、(1)反比例函數(shù)表達(dá)式為,正比例函數(shù)表達(dá)式為;(2),.【解析】試題分析:(1)將點(diǎn)A坐標(biāo)(2,-2)分別代入y=kx、y=求得k、m的值即可;(2)由題意得平移后直線解析式,即可知點(diǎn)B坐標(biāo),聯(lián)立方程組求解可得第四象限內(nèi)的交點(diǎn)C得坐標(biāo),可將△ABC的面積轉(zhuǎn)化為△OBC的面積.試題解析:()把代入反比例函數(shù)表達(dá)式,得,解得,∴反比例函數(shù)表達(dá)式為,把代入正比例函數(shù),得,解得,∴正比例函數(shù)表達(dá)式為.()直線由直線向上平移個(gè)單位所得,∴直線的表達(dá)式為,由,解得或,∵在第四象限,∴,連接,∵,,,.20、1860分【解析】分析:(1)觀察圖形可知,第4天收到問卷最多,用矩形的高度比=頻數(shù)之比即可得出結(jié)論;(2)由于組距相同,各矩形的高度比即為頻數(shù)的比,可由數(shù)據(jù)總數(shù)=某組的頻數(shù)÷頻率計(jì)算;(3)根據(jù)概率公式計(jì)算即可;(4)分別計(jì)算第4天,第6天的獲獎(jiǎng)率后比較即可.詳解:(1)由圖可知:第4天收到問卷最多,設(shè)份數(shù)為x,則:4:6=2:x,解得:x=18;(2)2÷[4÷(2+3+4+6+4+1)]=60份;(3)抽到第4天回收問卷的概率是;(4)第4天收回問卷獲獎(jiǎng)率,第6天收回問卷獲獎(jiǎng)率.∵,∴第6天收回問卷獲獎(jiǎng)率高.點(diǎn)睛:本題考查了對(duì)頻數(shù)分布直方圖的掌握情況,根據(jù)圖中信息,求出頻率,用來估計(jì)概率.用到的知識(shí)點(diǎn)為:總體數(shù)目=部分?jǐn)?shù)目÷相應(yīng)頻率.部分的具體數(shù)目=總體數(shù)目×相應(yīng)頻率.概率=所求情況數(shù)與總情況數(shù)之比.21、1【解析】

根據(jù)特殊角的三角函數(shù)值、零指數(shù)冪的運(yùn)算法則、負(fù)整數(shù)指數(shù)冪的運(yùn)算法則、絕對(duì)值的性質(zhì)進(jìn)行化簡,計(jì)算即可.【詳解】原式=1×+3﹣+1﹣1=1.【點(diǎn)睛】此題主要考查了實(shí)數(shù)的運(yùn)算,要熟練掌握,解答此題的關(guān)鍵是要明確:在進(jìn)行實(shí)數(shù)運(yùn)算時(shí),和有理數(shù)運(yùn)算一樣,要從高級(jí)到低級(jí),即先算乘方、開方,再算乘除,最后算加減,有括號(hào)的要先算括號(hào)里面的,同級(jí)運(yùn)算要按照從左到右的順序進(jìn)行.另外,有理數(shù)的運(yùn)算律在實(shí)數(shù)范圍內(nèi)仍然適用.22、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點(diǎn)坐標(biāo)為(,)時(shí),△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點(diǎn)坐標(biāo)及對(duì)稱軸,可設(shè)出M點(diǎn)坐標(biāo),表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關(guān)于M點(diǎn)坐標(biāo)的方程,可求得M點(diǎn)的坐標(biāo);(3)過E作EF⊥x軸,交直線BC于點(diǎn)F,交x軸于點(diǎn)D,可設(shè)出E點(diǎn)坐標(biāo),表示出F點(diǎn)的坐標(biāo),表示出EF的長,進(jìn)一步可表示出△CBE的面積,利用二次函數(shù)的性質(zhì)可求得其取得最大值時(shí)E點(diǎn)的坐標(biāo).試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,∴B(3,0),C(0,3),把B、C坐標(biāo)代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線對(duì)稱軸為x=2,P(2,﹣1),設(shè)M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM為等腰三角形,∴有MC=MP、MC=PC和MP=PC三種情況,①當(dāng)MC=MP時(shí),則有=|t+1|,解得t=,此時(shí)M(2,);②當(dāng)MC=PC時(shí),則有=2,解得t=﹣1(與P點(diǎn)重合,舍去)或t=7,此時(shí)M(2,7);③當(dāng)MP=PC時(shí),則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時(shí)M(2,﹣1+2)或(2,﹣1﹣2);綜上可知存在滿足條件的點(diǎn)M,其坐標(biāo)為(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如圖,過E作EF⊥x軸,交BC于點(diǎn)F,交x軸于點(diǎn)D,設(shè)E(x,x2﹣4x+3),則F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF?OD+EF?BD=EF?OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴當(dāng)x=時(shí),△CBE的面積最大,此時(shí)E點(diǎn)坐標(biāo)為(,),即當(dāng)E點(diǎn)坐標(biāo)為(,)時(shí),△CBE的面積最大.考點(diǎn):二次函數(shù)綜合題.23、7.6m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論