四川省成都市雙流黃甲中學(xué)2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考試題含解析_第1頁
四川省成都市雙流黃甲中學(xué)2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考試題含解析_第2頁
四川省成都市雙流黃甲中學(xué)2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考試題含解析_第3頁
四川省成都市雙流黃甲中學(xué)2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考試題含解析_第4頁
四川省成都市雙流黃甲中學(xué)2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.已知點,在雙曲線上.如果,而且,則以下不等式一定成立的是()A. B. C. D.2.一元二次方程的根的情況為()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.只有一個實數(shù)根 D.沒有實數(shù)根3.已知關(guān)于x的方程x2+3x+a=0有一個根為﹣2,則另一個根為()A.5 B.﹣1 C.2 D.﹣54.圖中的兩個梯形成中心對稱,點P的對稱點是()A.點A B.點B C.點C D.點D5.已知點、、在函數(shù)上,則、、的大小關(guān)系是().(用“>”連結(jié)起來)A. B. C. D.6.如圖,已知和是以點為位似中心的位似圖形,且和的周長之比為,點的坐標(biāo)為,則點的坐標(biāo)為().A. B. C. D.7.下列多邊形一定相似的是()A.兩個平行四邊形 B.兩個矩形C.兩個菱形 D.兩個正方形8.下列四個物體的俯視圖與右邊給出視圖一致的是()A. B. C. D.9.二次函數(shù)的圖象如圖所示,下列說法中錯誤的是(

)A.函數(shù)的對稱軸是直線x=1B.當(dāng)x<2時,y隨x的增大而減小C.函數(shù)的開口方向向上D.函數(shù)圖象與y軸的交點坐標(biāo)是(0,-3)10.如果圓錐的底面半徑為3,母線長為6,那么它的側(cè)面積等于()A.9π B.18π C.24π D.36π二、填空題(每小題3分,共24分)11.如圖,與⊙相切于點,,,則⊙的半徑為__________.12.如圖,AB∥CD∥EF,AF與BE相交于點G,且AG=2,GD=1,DF=5,那么的值等于________.13.從地面垂直向上拋出一小球,小球的高度h(米)與小球運動時間t(秒)之間的函數(shù)關(guān)系式是h=12t﹣6t2,則小球運動到的最大高度為________米;14.從,0,,,1.6中隨機取一個數(shù),取到無理數(shù)的概率是__________.15.如圖,AC為圓O的弦,點B在弧AC上,若∠CBO=58°,∠CAO=20°,則∠AOB的度數(shù)為___________16.如圖所示,小明在探究活動“測旗桿高度”中,發(fā)現(xiàn)旗桿的影子恰好落在地面和教室的墻壁上,測得,,而且此時測得高的桿的影子長,則旗桿的高度約為__________.17.如圖,將△ABC繞著點C按順時針方向旋轉(zhuǎn)20°,B點落在B'位置,A點落在A'位置,若AC⊥A'B',則∠BAC的度數(shù)是__.

18.如圖,在四邊形中,,,,.若,則______.三、解答題(共66分)19.(10分)在平面直角坐標(biāo)系中,直線與反比例函數(shù)圖象的一個交點為,求的值.20.(6分)如圖1(注:與圖2完全相同),在直角坐標(biāo)系中,拋物線經(jīng)過點三點,,.(1)求拋物線的解析式和對稱軸;(2)是拋物線對稱軸上的一點,求滿足的值為最小的點坐標(biāo)(請在圖1中探索);(3)在第四象限的拋物線上是否存在點,使四邊形是以為對角線且面積為的平行四邊形?若存在,請求出點坐標(biāo),若不存在請說明理由.(請在圖2中探索)21.(6分)已知,為⊙的直徑,過點的弦∥半徑,若.求的度數(shù).22.(8分)已知二次函數(shù)(是常數(shù)).(1)當(dāng)時,求二次函數(shù)的最小值;(2)當(dāng),函數(shù)值時,以之對應(yīng)的自變量的值只有一個,求的值;(3)當(dāng),自變量時,函數(shù)有最小值為-10,求此時二次函數(shù)的表達(dá)式.23.(8分)某校九年級學(xué)生某科目學(xué)期總評成績是由完成作業(yè)、單元檢測、期末考試三項成績構(gòu)成的,如果學(xué)期總評成績80分以上(含80分),則評定為“優(yōu)秀”,下表是小張和小王兩位同學(xué)的成績記錄:完成作業(yè)單元測試期末考試小張709080小王6075_______若按完成作業(yè)、單元檢測、期末考試三項成績按1:2:7的權(quán)重來確定學(xué)期總評成績.(1)請計算小張的學(xué)期總評成績?yōu)槎嗌俜???)小王在期末(期末成績?yōu)檎麛?shù))應(yīng)該最少考多少分才能達(dá)到優(yōu)秀?24.(8分)如圖所示是某一蓄水池每小時的排水量V(m3/h)與排完水池中的水所用的時間t(h)之間的函數(shù)關(guān)系圖象.(1)請你根據(jù)圖象提供的信息求出此蓄水池的總蓄水量;(2)寫出此函數(shù)的解析式;

(3)若要6h排完水池中的水,那么每小時的排水量應(yīng)該是多少?25.(10分)一個不透明的口袋中裝有紅、白兩種顏色的小球(除顏色外其余都相同),其中紅球3個,白球1個.(1)求任意摸出一球是白球的概率;(2)甲同學(xué)先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用畫樹狀圖或列表的方法求兩次摸出都是紅球的概率.26.(10分)已知:如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過點A作BC的平行線交于BE的延長線于點F,且AF=DC,連接CF.(1)求證:D是BC的中點;(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】根據(jù)反比例函數(shù)的性質(zhì)求解即可.【詳解】解:反比例函數(shù)y=的圖象分布在第一、三象限,在每一象限y隨x的增大而減小,而,而且同號,所以,即,故選B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.也考查了反比例函數(shù)的性質(zhì).2、D【分析】先根據(jù)計算判別式的值,然后根據(jù)判別式的意義判斷方程根的情況.【詳解】因為△=,所以方程無實數(shù)根.故選:D.【點睛】本題考查了根的判別式:一元二次方程的根與有如下關(guān)系:當(dāng)△>0時,方程有兩個不相等的實數(shù)根;當(dāng)△=0時,方程有兩個相等的實數(shù)根;當(dāng)△<0時,方程無實數(shù)根.3、B【分析】根據(jù)關(guān)于x的方程x2+3x+a=0有一個根為-2,可以設(shè)出另一個根,然后根據(jù)根與系數(shù)的關(guān)系可以求得另一個根的值,本題得以解決.【詳解】∵關(guān)于x的方程x2+3x+a=0有一個根為-2,設(shè)另一個根為m,

∴-2+m=?,

解得,m=-1,

故選B.4、C【分析】根據(jù)兩個中心對稱圖形的性質(zhì)即可解答.關(guān)于中心對稱的兩個圖形,對應(yīng)點的連線都經(jīng)過對稱中心,并且被對稱中心平分;關(guān)于中心對稱的兩個圖形能夠完全重合.【詳解】解:根據(jù)中心對稱的性質(zhì):

圖中的兩個梯形成中心對稱,點P的對稱點是點C.故選:C【點睛】本題考查中心對稱的性質(zhì),屬于基礎(chǔ)題,掌握其基本的性質(zhì)是解答此題的關(guān)鍵.5、D【分析】拋物線開口向上,對稱軸為x=-1.根據(jù)三點橫坐標(biāo)離對稱軸的距離遠(yuǎn)近來判斷縱坐標(biāo)的大小.【詳解】解:由函數(shù)可知:該函數(shù)的拋物線開口向上,且對稱軸為x=-1.∵、、在函數(shù)上的三個點,且三點的橫坐標(biāo)距離對稱軸的遠(yuǎn)近為:、、∴.故選:D.【點睛】主要考查二次函數(shù)圖象上點的坐標(biāo)特征.也可求得的對稱點,使三點在對稱軸的同一側(cè).6、A【分析】設(shè)位似比例為k,先根據(jù)周長之比求出k的值,再根據(jù)點B的坐標(biāo)即可得出答案.【詳解】設(shè)位似圖形的位似比例為k則和的周長之比為,即解得又點B的坐標(biāo)為點的橫坐標(biāo)的絕對值為,縱坐標(biāo)的絕對值為點位于第四象限點的坐標(biāo)為故選:A.【點睛】本題考查了位似圖形的坐標(biāo)變換,依據(jù)題意,求出位似比例式解題關(guān)鍵.7、D【分析】利用相似多邊形的定義:對應(yīng)邊成比例,對應(yīng)角相等的兩個多邊形相似,逐一分析各選項可得答案.【詳解】解:兩個平行四邊形,既不滿足對應(yīng)邊成比例,也不滿足對應(yīng)角相等,所以A錯誤,兩個矩形,滿足對應(yīng)角相等,但不滿足對應(yīng)邊成比例,所以B錯誤,兩個菱形,滿足對應(yīng)邊成比例,但不滿足對應(yīng)角相等,所以C錯誤,兩個正方形,既滿足對應(yīng)邊成比例,也滿足對應(yīng)角相等,所以D正確,故選D.【點睛】本題考查的是相似多邊形的定義與判定,掌握定義法判定多邊形相似是解題的關(guān)鍵.8、C【詳解】解:幾何體的俯視圖為,故選C【點睛】本題考查由三視圖判斷幾何體,難度不大.9、B【解析】利用二次函數(shù)的解析式與圖象,判定開口方向,求得對稱軸,與y軸的交點坐標(biāo),進(jìn)一步利用二次函數(shù)的性質(zhì)判定增減性即可.【詳解】解:∵y=x2-2x-3=(x-1)2-4,∴對稱軸為直線x=1,又∵a=1>0,開口向上,∴x<1時,y隨x的增大而減小,令x=0,得出y=-3,∴函數(shù)圖象與y軸的交點坐標(biāo)是(0,-3).因此錯誤的是B.故選:B.【點睛】本題考查了二次函數(shù)的性質(zhì),拋物線與坐標(biāo)軸的交點坐標(biāo),掌握二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵10、B【分析】利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式計算.【詳解】解:圓錐的側(cè)面積=×2π×3×6=18π.故選:B.【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.二、填空題(每小題3分,共24分)11、【解析】與⊙相切于點,得出△ABO為直角三角形,再由勾股定理計算即可.【詳解】解:連接OB,∵與⊙相切于點,∴OB⊥AB,△ABO為直角三角形,又∵,,由勾股定理得故答案為:【點睛】本題考查了切線的性質(zhì),通過切線可得垂直,進(jìn)而可應(yīng)用勾股定理計算,解題的關(guān)鍵是熟知切線的性質(zhì).12、【詳解】∵AB∥CD∥EF,∴,故答案為.13、6【分析】現(xiàn)將函數(shù)解析式配方得,即可得到答案.【詳解】,∴當(dāng)t=1時,h有最大值6.故答案為:6.【點睛】此題考查最值問題,確定最值時需現(xiàn)將函數(shù)解析式配方為頂點式,再根據(jù)開口方向確定最值.14、【分析】由題意可得共有5種等可能的結(jié)果,其中無理數(shù)有:,共2種情況,則可利用概率公式求解.【詳解】∵共有5種等可能的結(jié)果,無理數(shù)有:,共2種情況,∴取到無理數(shù)的概率是:.故答案為:.【點睛】此題考查了概率公式的應(yīng)用與無理數(shù)的定義.此題比較簡單,注意用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.15、76°【分析】如圖,連接OC.根據(jù)∠AOB=2∠ACB,求出∠ACB即可解決問題.【詳解】如圖,連接OC.∵OA=OC=OB,∴∠A=∠OCA=20°,∠B=∠OCB=58°,∴∠ACB=∠OCB?∠OCA=58°?20°=38°,∴∠AOB=2∠ACB=76°,故答案為76°.【點睛】本題考查等腰三角形的性質(zhì),圓周角定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.16、1【分析】作BE⊥AC于E,可得矩形CDBE,利用同一時刻物高與影長的比一定得到AE的長度,加上CE的長度即為旗桿的高度【詳解】解:作BE⊥AC于E,∵BD⊥CD于D,AC⊥CD于C,∴四邊形CDBE為矩形,∴BE=CD=1m,CE=BD=2m,∵同一時刻物高與影長所組成的三角形相似,∴,即,解得AE=2(m),∴AC=AE+EC=2+2=1(m).故答案為:1.【點睛】本題考查相似三角形的應(yīng)用;作出相應(yīng)輔助線得到矩形是解決本題的難點;用到的知識點為:同一時刻物高與影長的比一定.17、70°【解析】由旋轉(zhuǎn)的角度易得∠ACA′=20°,若AC⊥A'B',則∠A′、∠ACA′互余,由此求得∠ACA′的度數(shù),由于旋轉(zhuǎn)過程并不改變角的度數(shù),因此∠BAC=∠A′,即可得解.【詳解】解:由題意知:∠ACA′=20°;

若AC⊥A'B',則∠A′+∠ACA′=90°,

得:∠A′=90°-20°=70°;

由旋轉(zhuǎn)的性質(zhì)知:∠BAC=∠A′=70°;

故∠BAC的度數(shù)是70°.故答案是:70°【點睛】本題考查旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)變化前后,對應(yīng)點到旋轉(zhuǎn)中心的距離相等以及每一對對應(yīng)點與旋轉(zhuǎn)中心連線所構(gòu)成的旋轉(zhuǎn)角相等.要注意旋轉(zhuǎn)的三要素:①定點-旋轉(zhuǎn)中心;②旋轉(zhuǎn)方向;③旋轉(zhuǎn)角度.18、【分析】首先在△ABC中,根據(jù)三角函數(shù)值計算出AC的長,然后根據(jù)正切定義可算出.【詳解】∵,,∴,∵AB=2,∴AC=6,∵AC⊥CD,∴,∴故答案為:.【點睛】本題考查了解直角三角形,熟練掌握正弦,正切的定義是解題的關(guān)鍵.三、解答題(共66分)19、【分析】把點A代入直線解析式求出點A的坐標(biāo),然后再代入反比例函數(shù)解析式求出k值即可.【詳解】解:∵直線與反比例函數(shù)的圖象的一個交點為∴2=-a+4,即a=2∴點A坐標(biāo)為(2,2)∴,即k=4.【點睛】本題考查了反比例函數(shù)和一次函數(shù)的交點問題,即點A即在直線上又在雙曲線上,代入求值即可.20、(1),函數(shù)的對稱軸為:;(2)點;(3)存在,點的坐標(biāo)為或.【分析】根據(jù)點的坐標(biāo)可設(shè)二次函數(shù)表達(dá)式為:,由C點坐標(biāo)即可求解;連接交對稱軸于點,此時的值為最小,即可求解;,則,將該坐標(biāo)代入二次函數(shù)表達(dá)式即可求解.【詳解】解:根據(jù)點,的坐標(biāo)設(shè)二次函數(shù)表達(dá)式為:,∵拋物線經(jīng)過點,則,解得:,拋物線的表達(dá)式為:,函數(shù)的對稱軸為:;連接交對稱軸于點,此時的值為最小,設(shè)BC的解析式為:,將點的坐標(biāo)代入一次函數(shù)表達(dá)式:得:解得:直線的表達(dá)式為:,當(dāng)時,,故點;存在,理由:四邊形是以為對角線且面積為的平行四邊形,則,點在第四象限,故:則,將該坐標(biāo)代入二次函數(shù)表達(dá)式得:,解得:或,故點的坐標(biāo)為或.【點睛】本題考查二次函數(shù)綜合運用,涉及到一次函數(shù)、平行四邊形性質(zhì)、圖形的面積計算等,其中,求線段和的最小值,采取用的是點的對稱性求解,這也是此類題目的一般解法.21、∠C=30°【分析】根據(jù)平行線的性質(zhì)求出∠AOD,根據(jù)圓周角定理解答.【詳解】解:∵OA∥DE,

∴∠AOD=∠D=60°,

由圓周角定理得,∠C=∠AOD=30°【點睛】本題考查的是圓周角定理和平行線的性質(zhì),掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關(guān)鍵.22、(1)當(dāng)x=2時,;(2)b=±3;

(3)或【分析】(1)將代入并化簡,從而求出二次函數(shù)的最小值;(2)根據(jù)自變量的值只有一個,得出根的判別式,從而求出的值;(3)當(dāng),對稱軸為x=b,分b<1、、三種情況進(jìn)行討論,從而得出二次函數(shù)的表達(dá)式.【詳解】(1)當(dāng)b=2,c=5時,∴當(dāng)x=2時,(2)當(dāng)c=3,函數(shù)值時,

∴∵對應(yīng)的自變量的值只有一個,

∴,∴b=±3(3)

當(dāng)c=3b時,∴拋物線對稱軸為:x=b①b<1時,在自變量x的值滿足1≤x≤5的情況下,y隨x的增大而增大,∴當(dāng)x=1時,y最小.∴∴b=﹣11②,當(dāng)x=b時,y最小.∴∴,(舍去)

③時,在自變量x的值滿足1≤x≤5的情況下,y隨x的增大而

減小,∴當(dāng)x=5時,y最小.∴,∴b=5(舍去)綜上可得:b=﹣11或b=5∴二次函數(shù)的表達(dá)式:或【點睛】本題考查了二次函數(shù)的性質(zhì)和應(yīng)用,掌握根的判別式、二次函數(shù)的性質(zhì)和解二次函數(shù)的方法是解題的關(guān)鍵.23、(1)小張的期末評價成績?yōu)?1分.(2)最少考85分才能達(dá)到優(yōu)秀【分析】(1)直接利用加權(quán)平均數(shù)的定義求解可得;(2)設(shè)小王期末考試成績?yōu)閤分,根據(jù)加權(quán)平均數(shù)的定義列出不等式求出最小整數(shù)解即可.【詳解】解:(1)小張的期末評價成績?yōu)椋?1(分);答:小張的期末評價成績?yōu)?1分.(2)設(shè)小王期末考試成績?yōu)閤分,根據(jù)題意,得:,解得x≥84,∴小王在期末(期末成績?yōu)檎麛?shù))應(yīng)該最少考85分才能達(dá)到優(yōu)秀.【點睛】本題主要考查加權(quán)平均數(shù),解題的關(guān)鍵是掌握加權(quán)平均數(shù)的定義.24、(1)48000m3(2)V=(3)8000m3【解析】(1)此題根據(jù)函數(shù)圖象為雙曲線的一支,可設(shè)V=,再把點(12,4000)代入即可求出答案;(2)此題根據(jù)點(12,4000)在此函數(shù)圖象上,利用待定系數(shù)法求出函數(shù)的解析式;(3)此題須把t=6代入函數(shù)的解析式即可求出每小時的排水量;【詳解】(1)設(shè)V=.∵點(12,4000)在此函數(shù)圖象上,∴蓄水量為12×4000=48000m3;(2)∵點(12,4000)在此函數(shù)圖象上,∴4000=,k=48000,∴此函數(shù)的解析式V=;(3)∵當(dāng)t=6時,V==8000m3;∴每小時的排水量應(yīng)該是8000m3.【點睛】主要考查了反比例函數(shù)的應(yīng)用.解題的關(guān)鍵是根據(jù)實際意義列出函數(shù)關(guān)系式,從實

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論