湖南省長沙市一中學教育集團2024年中考數(shù)學模擬試題含解析_第1頁
湖南省長沙市一中學教育集團2024年中考數(shù)學模擬試題含解析_第2頁
湖南省長沙市一中學教育集團2024年中考數(shù)學模擬試題含解析_第3頁
湖南省長沙市一中學教育集團2024年中考數(shù)學模擬試題含解析_第4頁
湖南省長沙市一中學教育集團2024年中考數(shù)學模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省長沙市一中學教育集團2024年中考數(shù)學模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,點D在BC上,DE∥AC,DF∥AB,下列四個判斷中不正確的是()A.四邊形AEDF是平行四邊形B.若∠BAC=90°,則四邊形AEDF是矩形C.若AD平分∠BAC,則四邊形AEDF是矩形D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形2.據(jù)國家統(tǒng)計局2018年1月18日公布,2017年我國GDP總量為827122億元,首次登上80萬億元的門檻,數(shù)據(jù)827122億元用科學記數(shù)法表示為()A.8.27122×1012 B.8.27122×1013 C.0.827122×1014 D.8.27122×10143.在直角坐標系中,我們把橫、縱坐標都為整數(shù)的點叫做整點.對于一條直線,當它與一個圓的公共點都是整點時,我們把這條直線稱為這個圓的“整點直線”.已知⊙O是以原點為圓心,半徑為圓,則⊙O的“整點直線”共有()條A.7 B.8 C.9 D.104.今年3月5日,十三屆全國人大一次會議在人民大會堂開幕,會議聽取了國務(wù)院總理李克強關(guān)于政府工作的報告,其中表示,五年來,人民生活持續(xù)改善,脫貧攻堅取得決定性進展,貧困人口減少6800多萬,易地扶貧搬遷830萬人,貧困發(fā)生率由10.2%下降到3.1%,將830萬用科學記數(shù)法表示為()A.83×105 B.0.83×106 C.8.3×106 D.8.3×1075.下列各數(shù)中是有理數(shù)的是()A.π B.0 C. D.6.如圖,點A所表示的數(shù)的絕對值是()A.3 B.﹣3 C. D.7.超市店慶促銷,某種書包原價每個x元,第一次降價打“八折”,第二次降價每個又減10元,經(jīng)兩次降價后售價為90元,則得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=908.如圖,平行四邊形ABCD的周長為12,∠A=60°,設(shè)邊AB的長為x,四邊形ABCD的面積為y,則下列圖象中,能表示y與x函數(shù)關(guān)系的圖象大致是()A. B. C. D.9.若關(guān)于的一元二次方程x(x+1)+ax=0有兩個相等的實數(shù)根,則實數(shù)a的值為()A. B.1 C. D.10.如圖,AB切⊙O于點B,OA=2,AB=3,弦BC∥OA,則劣弧BC的弧長為()A. B. C.π D.二、填空題(本大題共6個小題,每小題3分,共18分)11.若關(guān)于的不等式組無解,則的取值范圍是________.12.如圖,將邊長為3的正六邊形鐵絲框ABCDEF變形為以點A為圓心,AB為半徑的扇形(忽略鐵絲的粗細).則所得扇形AFB(陰影部分)的面積為_____.13.化簡:=_____.14.設(shè)△ABC的面積為1,如圖①,將邊BC、AC分別2等分,BE1、AD1相交于點O,△AOB的面積記為S1;如圖②將邊BC、AC分別3等分,BE1、AD1相交于點O,△AOB的面積記為S2;…,依此類推,則Sn可表示為________.(用含n的代數(shù)式表示,其中n為正整數(shù))15.化簡:=.16.空氣質(zhì)量指數(shù),簡稱AQI,如果AQI在0~50空氣質(zhì)量類別為優(yōu),在51~100空氣質(zhì)量類別為良,在101~150空氣質(zhì)量類別為輕度污染,按照某市最近一段時間的AQI畫出的頻數(shù)分布直方圖如圖所示.已知每天的AQI都是整數(shù),那么空氣質(zhì)量類別為優(yōu)和良的天數(shù)共占總天數(shù)的百分比為______%.三、解答題(共8題,共72分)17.(8分)問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD=∠BAC=60°,于是==遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.(1)求證:△ADB≌△AEC;(2)若AD=2,BD=3,請計算線段CD的長;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點C關(guān)于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.(3)證明:△CEF是等邊三角形;(4)若AE=4,CE=1,求BF的長.18.(8分)如圖,一次函數(shù)y1=kx+b(k≠0)和反比例函數(shù)y2=(m≠0)的圖象交于點A(-1,6),B(a,-2).求一次函數(shù)與反比例函數(shù)的解析式;根據(jù)圖象直接寫出y1>y2時,x的取值范圍.19.(8分)如圖,點A、B、C、D在同一條直線上,CE∥DF,EC=BD,AC=FD,求證:AE=FB.20.(8分)在△ABC中,∠A,∠B都是銳角,且sinA=,tanB=,AB=10,求△ABC的面積.21.(8分)如圖,在直角三角形ABC中,(1)過點A作AB的垂線與∠B的平分線相交于點D(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)若∠A=30°,AB=2,則△ABD的面積為.22.(10分)已知AC,EC分別是四邊形ABCD和EFCG的對角線,直線AE與直線BF交于點H(1)觀察猜想如圖1,當四邊形ABCD和EFCG均為正方形時,線段AE和BF的數(shù)量關(guān)系是;∠AHB=.(2)探究證明如圖2,當四邊形ABCD和FFCG均為矩形,且∠ACB=∠ECF=30°時,(1)中的結(jié)論是否仍然成立,并說明理由.(3)拓展延伸在(2)的條件下,若BC=9,F(xiàn)C=6,將矩形EFCG繞點C旋轉(zhuǎn),在整個旋轉(zhuǎn)過程中,當A、E、F三點共線時,請直接寫出點B到直線AE的距離.23.(12分)化簡:(x+7)(x-6)-(x-2)(x+1)24.如圖,在△ABC中,∠C=90°,E是BC上一點,ED⊥AB,垂足為D.求證:△ABC∽△EBD.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】A選項,∵在△ABC中,點D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四邊形AEDF是平行四邊形;即A正確;B選項,∵四邊形AEDF是平行四邊形,∠BAC=90°,∴四邊形AEDF是矩形;即B正確;C選項,因為添加條件“AD平分∠BAC”結(jié)合四邊形AEDF是平行四邊形只能證明四邊形AEDF是菱形,而不能證明四邊形AEDF是矩形;所以C錯誤;D選項,因為由添加的條件“AB=AC,AD⊥BC”可證明AD平分∠BAC,從而可通過證∠EAD=∠CAD=∠EDA證得AE=DE,結(jié)合四邊形AEDF是平行四邊形即可得到四邊形AEDF是菱形,所以D正確.故選C.2、B【解析】

由科學記數(shù)法的定義可得答案.【詳解】解:827122億即82712200000000,用科學記數(shù)法表示為8.27122×1013,故選B.【點睛】科學記數(shù)法表示數(shù)的標準形式為(<10且n為整數(shù)).3、D【解析】試題分析:根據(jù)圓的半徑可知:在圓上的整數(shù)點為(2,2)、(2,-2),(-2,-2),(-2,2)這四個點,經(jīng)過任意兩點的“整點直線”有6條,經(jīng)過其中的任意一點且圓相切的“整點直線”有4條,則合計共有10條.4、C【解析】

科學記數(shù)法,是指把一個大于10(或者小于1)的整數(shù)記為a×10n的形式(其中1≤|a|<10|)的記數(shù)法.【詳解】830萬=8300000=8.3×106.故選C【點睛】本題考核知識點:科學記數(shù)法.解題關(guān)鍵點:理解科學記數(shù)法的意義.5、B【解析】【分析】根據(jù)有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),結(jié)合無理數(shù)的定義進行判斷即可得答案.【詳解】A、π是無限不循環(huán)小數(shù),屬于無理數(shù),故本選項錯誤;B、0是有理數(shù),故本選項正確;C、是無理數(shù),故本選項錯誤;D、是無理數(shù),故本選項錯誤,故選B.【點睛】本題考查了實數(shù)的分類,熟知有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù)是解題的關(guān)鍵.6、A【解析】

根據(jù)負數(shù)的絕對值是其相反數(shù)解答即可.【詳解】|-3|=3,故選A.【點睛】此題考查絕對值問題,關(guān)鍵是根據(jù)負數(shù)的絕對值是其相反數(shù)解答.7、A【解析】試題分析:設(shè)某種書包原價每個x元,根據(jù)題意列出方程解答即可.設(shè)某種書包原價每個x元,可得:0.8x﹣10=90考點:由實際問題抽象出一元一次方程.8、C【解析】

過點B作BE⊥AD于E,構(gòu)建直角△ABE,通過解該直角三角形求得BE的長度,然后利用平行四邊形的面積公式列出函數(shù)關(guān)系式,結(jié)合函數(shù)關(guān)系式找到對應(yīng)的圖像.【詳解】如圖,過點B作BE⊥AD于E.∵∠A=60°,設(shè)AB邊的長為x,∴BE=AB?sin60°=x.∵平行四邊形ABCD的周長為12,∴AB=(12-2x)=6-x,∴y=AD?BE=(6-x)×x=﹣(0≤x≤6).則該函數(shù)圖像是一開口向下的拋物線的一部分,觀察選項,C符合題意.故選C.【點睛】本題考查了二次函數(shù)的圖像,根據(jù)題意求出正確的函數(shù)關(guān)系式是解題的關(guān)鍵.9、A【解析】【分析】整理成一般式后,根據(jù)方程有兩個相等的實數(shù)根,可得△=0,得到關(guān)于a的方程,解方程即可得.【詳解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有兩個相等的實數(shù)根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故選A.【點睛】本題考查一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.10、A【解析】試題分析:連接OB,OC,∵AB為圓O的切線,∴∠ABO=90°,在Rt△ABO中,OA=,∠A=30°,∴OB=,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC為等邊三角形,∴∠BOC=60°,則劣弧長為.故選A.考點:1.切線的性質(zhì);2.含30度角的直角三角形;3.弧長的計算.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

首先解每個不等式,然后根據(jù)不等式無解,即兩個不等式的解集沒有公共解即可求得.【詳解】,

解①得:x>a+3,

解②得:x<1.

根據(jù)題意得:a+3≥1,

解得:a≥-2.

故答案是:a≥-2.【點睛】本題考查了一元一次不等式組的解,解題的關(guān)鍵是熟練掌握解一元一次不等式組的步驟..12、1【解析】

解:∵正六邊形ABCDEF的邊長為3,∴AB=BC=CD=DE=EF=FA=3,∴弧BAF的長=3×6﹣3﹣3═12,∴扇形AFB(陰影部分)的面積=×12×3=1.故答案為1.【點睛】本題考查正多邊形和圓;扇形面積的計算.13、【解析】

直接利用二次根式的性質(zhì)化簡求出答案.【詳解】,故答案為.【點睛】本題考查了二次根式的性質(zhì)與化簡,正確掌握二次根式的性質(zhì)是解題的關(guān)鍵.14、【解析】試題解析:如圖,連接D1E1,設(shè)AD1、BE1交于點M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=,∵,∴,∴S△ABM:S△ABE1=(n+1):(2n+1),∴S△ABM:=(n+1):(2n+1),∴Sn=.故答案為.15、2【解析】

根據(jù)算術(shù)平方根的定義,求數(shù)a的算術(shù)平方根,也就是求一個正數(shù)x,使得x2=a,則x就是a的算術(shù)平方根,特別地,規(guī)定0的算術(shù)平方根是0.【詳解】∵22=4,∴=2.【點睛】本題考查求算術(shù)平方根,熟記定義是關(guān)鍵.16、80【解析】【分析】先求出AQI在0~50的頻數(shù),再根據(jù)%,求出百分比.【詳解】由圖可知AQI在0~50的頻數(shù)為10,所以,空氣質(zhì)量類別為優(yōu)和良的天數(shù)共占總天數(shù)的百分比為:%=80%..故答案為80【點睛】本題考核知識點:數(shù)據(jù)的分析.解題關(guān)鍵點:從統(tǒng)計圖獲取信息,熟記百分比計算方法.三、解答題(共8題,共72分)17、(1)見解析;(2)CD=;(3)見解析;(4)【解析】試題分析:遷移應(yīng)用:(1)如圖2中,只要證明∠DAB=∠CAE,即可根據(jù)SAS解決問題;

(2)結(jié)論:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD?cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解決問題;

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.由BC=BE=BD=BA,F(xiàn)E=FC,推出A、D、E、C四點共圓,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等邊三角形;

(4)由AE=4,EC=EF=1,推出AH=HE=2,F(xiàn)H=3,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解決問題.試題解析:遷移應(yīng)用:(1)證明:如圖2,

∵∠BAC=∠DAE=120°,

∴∠DAB=∠CAE,

在△DAE和△EAC中,

DA=EA,∠DAB=∠EAC,AB=AC,

∴△DAB≌△EAC,

(2)結(jié)論:CD=AD+BD.

理由:如圖2-1中,作AH⊥CD于H.

∵△DAB≌△EAC,

∴BD=CE,

在Rt△ADH中,DH=AD?cos30°=AD,

∵AD=AE,AH⊥DE,

∴DH=HE,

∵CD=DE+EC=2DH+BD=AD+BD=.

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.

∵四邊形ABCD是菱形,∠ABC=120°,

∴△ABD,△BDC是等邊三角形,

∴BA=BD=BC,

∵E、C關(guān)于BM對稱,

∴BC=BE=BD=BA,F(xiàn)E=FC,

∴A、D、E、C四點共圓,

∴∠ADC=∠AEC=120°,

∴∠FEC=60°,

∴△EFC是等邊三角形,

(4)∵AE=4,EC=EF=1,

∴AH=HE=2,F(xiàn)H=3,

在Rt△BHF中,∵∠BFH=30°,

∴=cos30°,

∴BF=.18、(1)y1=-2x+4,y2=-;(2)x<-1或0<x<1.【解析】

(1)把點A坐標代入反比例函數(shù)求出k的值,也就求出了反比例函數(shù)解析式,再把點B的坐標代入反比例函數(shù)解析式求出a的值,得到點B的坐標,然后利用待定系數(shù)法即可求出一次函數(shù)解析式;(2)找出直線在一次函數(shù)圖形的上方的自變量x的取值即可.【詳解】解:(1)把點A(﹣1,6)代入反比例函數(shù)(m≠0)得:m=﹣1×6=﹣6,∴.將B(a,﹣2)代入得:,a=1,∴B(1,﹣2),將A(﹣1,6),B(1,﹣2)代入一次函數(shù)y1=kx+b得:,∴,∴;(2)由函數(shù)圖象可得:x<﹣1或0<x<1.【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題,利用數(shù)形結(jié)合思想解題是本題的關(guān)鍵.19、見解析【解析】

根據(jù)CE∥DF,可得∠ECA=∠FDB,再利用SAS證明△ACE≌△FDB,得出對應(yīng)邊相等即可.【詳解】解:∵CE∥DF

∴∠ECA=∠FDB,在△ECA和△FDB中∴△ECA≌△FDB,

∴AE=FB.【點睛】本題主要考查全等三角形的判定與性質(zhì)和平行線的性質(zhì);熟練掌握平行線的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.20、【解析】

根據(jù)已知得該三角形為直角三角形,利用三角函數(shù)公式求出各邊的值,再利用三角形的面積公式求解.【詳解】如圖:由已知可得:∠A=30°,∠B=60°,∴△ABC為直角三角形,且∠C=90°,AB=10,∴BC=AB·sin30°=10=5,AC=AB·cos30°=10=,∴S△ABC=.【點睛】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.21、(1)見解析(2)【解析】

(1)分別作∠ABC的平分線和過點A作AB的垂線,它們的交點為D點;(2)利用角平分線定義得到∠ABD=30°,利用含30度的直角三角形三邊的關(guān)系得到AD=AB=,然后利用三角形面積公式求解.【詳解】解:(1)如圖,點D為所作;(2)∵∠CAB=30°,∴∠ABC=60°.∵BD為角平分線,∴∠ABD=30°.∵DA⊥AB,∴∠DAB=90°.在Rt△ABD中,AD=AB=,∴△ABD的面積=×2×=.故答案為.【點睛】本題考查了作圖﹣復雜作圖:復雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復雜作圖拆解成基本作圖,逐步操作.也考查了三角形面積公式.22、(1),45°;(2)不成立,理由見解析;(3).【解析】

(1)由正方形的性質(zhì),可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性質(zhì)得到,∠CAB==45°,又因為∠CBA=90°,所以∠AHB=45°.(2)由矩形的性質(zhì),及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性質(zhì)可得∠CAE=∠CBF,,則∠CAB=60°,又因為∠CBA=90°,求得∠AHB=30°,故不成立.(3)分兩種情況討論:①作BM⊥AE于M,因為A、E、F三點共線,及∠AFB=30°,∠AFC=90°,進而求得AC和EF,根據(jù)勾股定理求得AF,則AE=AF﹣EF,再由(2)得:,所以BF=3﹣3,故BM=.②如圖3所示:作BM⊥AE于M,由A、E、F三點共線,得:AE=6+2,BF=3+3,則BM=.【詳解】解:(1)如圖1所示:∵四邊形ABCD和EFCG均為正方形,∴,∠ACB=∠GEC=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論