四川省攀枝花市2024屆高考三模數(shù)學(xué)試卷(理)(解析版)_第1頁
四川省攀枝花市2024屆高考三模數(shù)學(xué)試卷(理)(解析版)_第2頁
四川省攀枝花市2024屆高考三模數(shù)學(xué)試卷(理)(解析版)_第3頁
四川省攀枝花市2024屆高考三模數(shù)學(xué)試卷(理)(解析版)_第4頁
四川省攀枝花市2024屆高考三模數(shù)學(xué)試卷(理)(解析版)_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

高級中學(xué)名校試卷PAGEPAGE1四川省攀枝花市2024屆高考數(shù)學(xué)三模試卷(理)一、選擇題1.設(shè)集合,且,則()A. B. C.1 D.2〖答案〗D〖解析〗由題意,集合,,因為,可得,解得.故選:D.2.某地區(qū)共8000人參加數(shù)學(xué)聯(lián)考,考試成績ξ近似服從正態(tài)分布N(100,),若P(100≤ξ≤110)=0.35(90分以下)的學(xué)生人數(shù)為()A1000 B.1200 C.1400 D.2800〖答案〗B〖解析〗考試成績ξ近似服從正態(tài)分布N(100,),若P(100≤ξ≤110)=0.35,則P(90≤ξ≤100)=P(100≤ξ≤110)=0.35,故P(ξ<90)=P(ξ≤100)﹣P(90≤ξ≤100)=0.5﹣0.35=0.15,某地區(qū)共8000人參加數(shù)學(xué)聯(lián)考,則估計成績不及格(90分以下)的學(xué)生人數(shù)為8000×0.15=1200.故選:B.3.已知復(fù)數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件〖答案〗B〖解析〗因為,且,整理得,解得或,即等價于或,且是的真子集,所以“”是“”的必要不充分條件.故選:B.4.函數(shù)的部分圖象大致是()A. B.C. D.〖答案〗D〖解析〗的定義域為,,所以為奇函數(shù),故A錯誤;當(dāng),且趨近時,,,所以,故C錯誤,當(dāng)時,,故B錯誤.故選:D.5.若正項等比數(shù)列滿足,則數(shù)列的前4項的和的值是()A. B. C. D.〖答案〗A〖解析〗設(shè)正項等比數(shù)列的公比為,因為,所以,解得,所以,所以,所以,所以,所以數(shù)列的前4項的和的值為.故選:A.6.如圖,網(wǎng)格紙上的小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.〖答案〗C〖解析〗由三視圖可知,該幾何體是一個正方體截去兩個半圓柱,其表面積為.故選:C7.已知雙曲線的左、右焦點分別為,為雙曲線上位于第二象限內(nèi)的一點,點在軸上運動,若的最小值為,則雙曲線的漸近線方程為()A. B. C. D.〖答案〗C〖解析〗作出雙曲線的示意圖,如圖所示:連接,因為,當(dāng)且僅當(dāng)在同一直線上時取等號,又的最小值為,所以,所以,又因為雙曲線的左、右焦點分別為,所以,所以,所以雙曲線的漸近線方程為.故選:C.8.數(shù)列的前項和為,,,設(shè),則數(shù)列的前51項之和為()A. B. C.49 D.149〖答案〗B〖解析〗因為,當(dāng)時,,即,可得,又,所以是以為首項,為公差的等差數(shù)列,所以,則,當(dāng)時,所以,當(dāng)時也成立,所以,可得數(shù)列的前項之和為.故選:B.9.某公園有如圖所示A至F共6個座位,現(xiàn)有2個男孩2個女孩要坐下休息,要求相同性別的孩子不坐在同一行也不坐在同一列()A.24 B.36 C.72 D.81〖答案〗C〖解析〗第一步:排男生,第一個男生在第一行選一個位置有3個位置可選,另一個男生有兩種排法,由于兩名男生可以互換,故男生的排法有種,第二步:排女生,若男生選AF,CD,兩個女生排在,由于女生可以互換,故女生的排法有種,根據(jù)分步計數(shù)原理,共有種.故選:C.10.將函數(shù)的圖象向右平移m(m>0)個單位長度后得到的圖象與y=ksinxcosx(k>0)的圖象關(guān)于,則m+k的最小值是()A. B. C. D.〖答案〗A〖解析〗因為,由題意可得函數(shù)為,即的圖象與的圖象關(guān)于,設(shè)為上的任意一點,則該點關(guān)于對稱的點在上,所以,由題意可得,兩函數(shù)圖象上的最高點也關(guān)于,所以,則,又,所以,解得,因為m>0,所以m的最小值為,所以.故選:A.11.在一個圓錐中,為圓錐的頂點,為圓錐底面圓的圓心,為線段的中點,為底面圓的直徑,是底面圓的內(nèi)接正三角形,①平面;②平面;③圓錐的側(cè)面積為;④三棱錐的內(nèi)切球表面積為.其中正確的結(jié)論個數(shù)為()A.1 B.2 C.3 D.4〖答案〗C〖解析〗由是底面圓的內(nèi)接正三角形,,設(shè)圓錐的底面半徑為r,則可得,即,解得.因為,故高,所以圓錐的側(cè)面積,故③正確;假設(shè)平面,由于平面,平面平面,故,則,而因為為底面圓的直徑,又,且(矛盾),故、不可能平行,所以與平面不平行;故①錯誤;因為為線段的中點,故,則,,,故,,又,平面,所以平面,故②正確;又,,,設(shè)三棱錐的內(nèi)切球的半徑為,則,即,解得,,所以三棱錐的內(nèi)切球的表面積,故④正確.綜上有②③④正確.故選:C.12.設(shè)a=0.98+sin0.01,b=e﹣0.01,,則()A.b>a>c B.c>b>a C.b>c>a D.c>a>b〖答案〗B〖解析〗令,則,當(dāng)時,,所以在上單調(diào)遞增,所以,所以,所以令,求導(dǎo)得,所以當(dāng)時,,所以在上單調(diào)遞減,所以,所以,可得,所以,,所以.故選:B.二、填空題13.已知實數(shù)x,y滿足約束條件,則的最大值為.〖答案〗6〖解析〗作出實數(shù)x,y滿足約束條件對應(yīng)平面區(qū)域如圖所示:由,得,平移直線,由圖象可知當(dāng)直線經(jīng)過點A時,直線的截距最大,此時z最大.由,得,此時z的最大值為,故〖答案〗為:6.14.若的展開式中的系數(shù)為,則展開式中所有項的二項式系數(shù)之和為_________.(以數(shù)字作答)〖答案〗32〖解析〗根據(jù)的展開式的通項公式為,當(dāng)r=3時,,解得;故所有項的二項式系數(shù)之和為.故〖答案〗為:32.15.已知平面向量,若,則______.〖答案〗〖解析〗因為平面向量,若,所以,所以,所以.故〖答案〗:.16.已知橢圓的左、右焦點分別為,點在上,且,則橢圓的離心率為______.〖答案〗〖解析〗延長交于點,因為,所以,所以點在軸上,因為,所以為等腰直角三角形,所以,過點作交于點,所以,所以,因為點在上,所以,即,則,即,即,所以,因為,所以,所以.故〖答案〗為:.三、解答題17.請在①,②,③三個條件中選擇一個,補充在下面的問題中,所對的邊分別是,已知_____.(1)求角;(2)若,點在邊上,為的平分線,求邊長的值.解:(1)選①,因為,則由余弦定理可得,整理可得,由余弦定理可得,可得,因為,所以;選②,,所以,整理可得:,因為,所以,因為,可得;選③,,可得,可得,因為,所以,可得;(2)在中,,可得,記為①,又,記為②,由①②可得,解得或(舍去),所以邊長.18.為弘揚中華民族優(yōu)秀傳統(tǒng)文化,某校舉行“閱讀經(jīng)典名著,傳承優(yōu)秀文化”闖關(guān)活動.參賽者需要回答三個問題,其中前2個問題回答正確各得5分,回答不正確得0分;第三個問題回答正確得10分,回答不正確得-5分,得分不少于15分即為過關(guān).如果甲同學(xué)回答前兩個問題正確的概率都是,回答第三個問題正確的概率為(1)求甲同學(xué)過關(guān)的概率;(2)求甲同學(xué)回答這三個問題的總得分X的分布列及數(shù)學(xué)期望.解:(1)甲同學(xué)過關(guān)有兩種情況,分別為事件A:前兩個問題一對一錯,事件B:三個問題均答對,其概率分別為,所以甲同學(xué)過關(guān)的概率為;(2)由題意可知,X的所有可能取值為,則,,,,,,所以X的分布列為:X﹣505101520P所以.19.如圖,直三棱柱中,,點在線段上,且,.(1)證明:點為的重心;(2)若,求二面角的余弦值.(1)證明:如圖,延長交于點,連接,因為,,,平面所以平面,因為平面,所以,因為直三棱柱中,平面,平面,所以,因為,平面,所以平面,因為平面,所以,因為,所以,所以為的中點,因為∥,所以,所以點為的重心;(2)解:取中點,連接,因為,所以,因為直三棱柱中,平面,平面,所以,因為,平面,所以平面,因為平面,所以,取中點,連接,,則‖,,因為,所以,因為,平面,所以平面,因為平面,所以,所以為二面角的平面角,因為,所以,因為,所以,因為,所以∽,所以,因為,所以,得,所以,所以,因為,所以,在中,,即二面角的余弦值為.20.已知拋物線上一點Q到焦點F的距離為2,點Q到y(tǒng)軸的距離為.(1)求拋物線C的方程;(2)過F的直線交拋物線C于A,B兩點,過點B作x軸的垂線交直線AO(O是坐標原點)于D,過A作直線DF的垂線與拋物線C的另一交點為E,直線與交于點G.求解:(1)不妨設(shè),因為拋物線C上一點Q到焦點F的距離為4,點Q到y(tǒng)軸的距離為,所以,整理得,解得或(舍去),則拋物線C的方程為;(2)由題意知直線的斜率必存在,,不妨設(shè)直線AB的方程為,,聯(lián)立,消去y并整理得,,由韋達定理得,易知直線OA的方程為,因為軸,所以,即,所以,因為DF⊥AE,所以,則直線AE的方程為,因為,所以,此時,因為,所以,由題意知,則,所以.故的取值范圍為.21.已知函數(shù).(1)求函數(shù)的極值;(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,若(),證明:.(1)解:由函數(shù),可得其定義域為,且,當(dāng)時,,函數(shù)在上單調(diào)遞增,無極值;當(dāng)時,令,可得;令,可得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,當(dāng)時,函數(shù)取得極小值,極小值為,無極大值.(2)證明:由(1)知,,可得,且,所以,所以,因,所以,可得,則,因為,所以,記得,所以,設(shè),可得,當(dāng)時,,在上單調(diào)遞減;當(dāng)時,,在上單調(diào)遞增,所以,當(dāng)時,,所以,所以,即.(二)選考題22.如圖,在平面直角坐標系中,以坐標原點為極點,極軸所在的直線為軸,建立極坐標系,曲線是經(jīng)過極點且圓心在極軸上,半徑為1的圓;曲線是著名的笛卡爾心形曲線,它的極坐標方程為.(1)求曲線的極坐標方程,并求曲線和曲線交點(異于點)的極徑;(2)曲線的參數(shù)方程為(為參數(shù)),若曲線和曲線交于除點以外的兩點,求的面積.解:(1)曲線的直角坐標方程為,即.將代入并化簡得的極坐標方程為.由消去,并整理得,故或(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論