重慶市渝中學(xué)區(qū)實驗校2024年中考猜題數(shù)學(xué)試卷含解析_第1頁
重慶市渝中學(xué)區(qū)實驗校2024年中考猜題數(shù)學(xué)試卷含解析_第2頁
重慶市渝中學(xué)區(qū)實驗校2024年中考猜題數(shù)學(xué)試卷含解析_第3頁
重慶市渝中學(xué)區(qū)實驗校2024年中考猜題數(shù)學(xué)試卷含解析_第4頁
重慶市渝中學(xué)區(qū)實驗校2024年中考猜題數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

重慶市渝中學(xué)區(qū)實驗校2024年中考猜題數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖是某商品的標(biāo)志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點A,B,C,D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為()A. B. C. D.2.如圖是由5個相同的小正方體組成的立體圖形,這個立體圖形的俯視圖是()A. B. C. D.3.一個不透明的布袋里裝有5個紅球,2個白球,3個黃球,它們除顏色外其余都相同,從袋中任意摸出1個球,是黃球的概率為()A. B. C. D.4.如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點,增加下列條件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD5.2022年冬奧會,北京、延慶、張家口三個賽區(qū)共25個場館,北京共12個,其中11個為2008年奧運會遺留場館,唯一一個新建的場館是國家速滑館,可容納12000人觀賽,將12000用科學(xué)記數(shù)法表示應(yīng)為()A.12×10 B.1.2×10 C.1.2×10 D.0.12×106.如圖,A點是半圓上一個三等分點,B點是弧AN的中點,P點是直徑MN上一動點,⊙O的半徑為1,則AP+BP的最小值為A.1 B. C. D.7.隨著“三農(nóng)”問題的解決,某農(nóng)民近兩年的年收入發(fā)生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據(jù)①②③三種農(nóng)作物每種作物每年的收入占該年年收入的比例繪制的扇形統(tǒng)計圖.依據(jù)統(tǒng)計圖得出的以下四個結(jié)論正確的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入為2.8萬D.前年年收入不止①②③三種農(nóng)作物的收入8.已知二次函數(shù)(為常數(shù)),當(dāng)自變量的值滿足時,與其對應(yīng)的函數(shù)值的最大值為-1,則的值為()A.3或6 B.1或6 C.1或3 D.4或69.計算(x-l)(x-2)的結(jié)果為()A.x2+2 B.x2-3x+2 C.x2-3x-3 D.x2-2x+210.如圖,平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別落在x、y軸上,點B坐標(biāo)為(6,4),反比例函數(shù)的圖象與AB邊交于點D,與BC邊交于點E,連結(jié)DE,將△BDE沿DE翻折至△B'DE處,點B'恰好落在正比例函數(shù)y=kx圖象上,則k的值是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AD∥BE∥CF,直線l1,l2與這三條平行線分別交于點A,B,C和點D,E,F(xiàn),,DE=6,則EF=.12.若關(guān)于x的不等式組恰有3個整數(shù)解,則字母a的取值范圍是_____.13.已知二次函數(shù)中,函數(shù)y與x的部分對應(yīng)值如下:...-10123......105212...則當(dāng)時,x的取值范圍是_________.14.如圖是由6個棱長均為1的正方體組成的幾何體,它的主視圖的面積為_____.15.已知一組數(shù)據(jù)1,2,x,2,3,3,5,7的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是.16.如圖,在平面直角坐標(biāo)系中,已知C(1,),△ABC與△DEF位似,原點O是位似中心,要使△DEF的面積是△ABC面積的5倍,則點F的坐標(biāo)為_____.三、解答題(共8題,共72分)17.(8分)如圖,已知拋物線經(jīng)過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關(guān)于x軸對稱,點P是x軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P做x軸的垂線l交拋物線于點Q,交直線BD于點M.(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;(2)已知點F(0,),當(dāng)點P在x軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?(3)點P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.18.(8分)如圖,矩形ABCD中,AB>AD,把矩形沿對角線AC所在直線折疊,使點B落在點E處,AE交CD于點F,連接DE,求證:∠DAE=∠ECD.19.(8分)(2016山東省煙臺市)某中學(xué)廣場上有旗桿如圖1所示,在學(xué)習(xí)解直角三角形以后,數(shù)學(xué)興趣小組測量了旗桿的高度.如圖2,某一時刻,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為4米,落在斜坡上的影長CD為3米,AB⊥BC,同一時刻,光線與水平面的夾角為72°,1米的豎立標(biāo)桿PQ在斜坡上的影長QR為2米,求旗桿的高度(結(jié)果精確到0.1米).(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)20.(8分)如圖,將連續(xù)的奇數(shù)1,3,5,7…按如圖中的方式排成一個數(shù),用一個十字框框住5個數(shù),這樣框出的任意5個數(shù)中,四個分支上的數(shù)分別用a,b,c,d表示,如圖所示.(1)計算:若十字框的中間數(shù)為17,則a+b+c+d=______.(2)發(fā)現(xiàn):移動十字框,比較a+b+c+d與中間的數(shù).猜想:十字框中a、b、c、d的和是中間的數(shù)的______;(3)驗證:設(shè)中間的數(shù)為x,寫出a、b、c、d的和,驗證猜想的正確性;(4)應(yīng)用:設(shè)M=a+b+c+d+x,判斷M的值能否等于2020,請說明理由.21.(8分)對于方程x2解:方程兩邊同乘6,得3x﹣2(x﹣1)=1①去括號,得3x﹣2x﹣2=1②合并同類項,得x﹣2=1③解得x=3④∴原方程的解為x=3⑤上述解答過程中的錯誤步驟有(填序號);請寫出正確的解答過程.22.(10分)解不等式,并把它的解集表示在數(shù)軸上.23.(12分)有一項工作,由甲、乙合作完成,合作一段時間后,乙改進(jìn)了技術(shù),提高了工作效率.圖①表示甲、乙合作完成的工作量y(件)與工作時間t(時)的函數(shù)圖象.圖②分別表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)與工作時間t(時)的函數(shù)圖象.(1)求甲5時完成的工作量;(2)求y甲、y乙與t的函數(shù)關(guān)系式(寫出自變量t的取值范圍);(3)求乙提高工作效率后,再工作幾個小時與甲完成的工作量相等?24.如圖,矩形OABC的頂點A、C分別在x、y軸的正半軸上,點D為BC邊上的點,AB=BD,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過點D(m,2)和AB邊上的點E(n,).(1)求m、n的值和反比例函數(shù)的表達(dá)式.(2)將矩形OABC的一角折疊,使點O與點D重合,折痕分別與x軸,y軸正半軸交于點F,G,求線段FG的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的對角線把矩形分成了四個面積相等的三角形,∴陰影部分的面積=扇形AOD的面積+扇形BOC的面積=2扇形BOC的面積==10π.故選B.2、C【解析】

從上面看共有2行,上面一行有3個正方形,第二行中間有一個正方形,故選C.3、A【解析】

讓黃球的個數(shù)除以球的總個數(shù)即為所求的概率.【詳解】解:因為一共10個球,其中3個黃球,所以從袋中任意摸出1個球是黃球的概率是.

故選:A.【點睛】本題考查概率的基本計算,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.4、B【解析】

由四邊形ABCD是平行四邊形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四邊形BFDE是平行四邊形,則可證得BE//DF,利用排除法即可求得答案.【詳解】四邊形ABCD是平行四邊形,

∴AD//BC,AD=BC,

A、∵AE=CF,∴DE=BF,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF;

B、∵BE=DF,

四邊形BFDE是等腰梯形,

本選項不一定能判定BE//DF;

C、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF;

D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF.

故選B.【點睛】本題考查了平行四邊形的判定與性質(zhì),注意根據(jù)題意證得四邊形BFDE是平行四邊形是關(guān)鍵.5、B【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】數(shù)據(jù)12000用科學(xué)記數(shù)法表示為1.2×104,故選:B.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.6、C【解析】作點A關(guān)于MN的對稱點A′,連接A′B,交MN于點P,則PA+PB最小,連接OA′,AA′.∵點A與A′關(guān)于MN對稱,點A是半圓上的一個三等分點,∴∠A′ON=∠AON=60°,PA=PA′,∵點B是弧AN∧的中點,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=∴PA+PB=PA′+PB=A′B=故選:C.7、C【解析】

A、前年①的收入為60000×=19500,去年①的收入為80000×=26000,此選項錯誤;B、前年③的收入所占比例為×100%=30%,去年③的收入所占比例為×100%=32.5%,此選項錯誤;C、去年②的收入為80000×=28000=2.8(萬元),此選項正確;D、前年年收入即為①②③三種農(nóng)作物的收入,此選項錯誤,故選C.【點睛】本題主要考查扇形統(tǒng)計圖,解題的關(guān)鍵是掌握扇形統(tǒng)計圖是用整個圓表示總數(shù)用圓內(nèi)各個扇形的大小表示各部分?jǐn)?shù)量占總數(shù)的百分?jǐn)?shù),并且通過扇形統(tǒng)計圖可以很清楚地表示出各部分?jǐn)?shù)量同總數(shù)之間的關(guān)系.8、B【解析】分析:分h<2、2≤h≤5和h>5三種情況考慮:當(dāng)h<2時,根據(jù)二次函數(shù)的性質(zhì)可得出關(guān)于h的一元二次方程,解之即可得出結(jié)論;當(dāng)2≤h≤5時,由此時函數(shù)的最大值為0與題意不符,可得出該情況不存在;當(dāng)h>5時,根據(jù)二次函數(shù)的性質(zhì)可得出關(guān)于h的一元二次方程,解之即可得出結(jié)論.綜上即可得出結(jié)論.詳解:如圖,當(dāng)h<2時,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);當(dāng)2≤h≤5時,y=-(x-h)2的最大值為0,不符合題意;當(dāng)h>5時,有-(5-h)2=-1,解得:h3=4(舍去),h4=1.綜上所述:h的值為1或1.故選B.點睛:本題考查了二次函數(shù)的最值以及二次函數(shù)的性質(zhì),分h<2、2≤h≤5和h>5三種情況求出h值是解題的關(guān)鍵.9、B【解析】

根據(jù)多項式的乘法法則計算即可.【詳解】(x-l)(x-2)=x2-2x-x+2=x2-3x+2.故選B.【點睛】本題考查了多項式與多項式的乘法運算,多項式與多項式相乘,先用一個多項式的每一項分別乘另一個多項式的每一項,再把所得的積相加.10、B【解析】

根據(jù)矩形的性質(zhì)得到,CB∥x軸,AB∥y軸,于是得到D、E坐標(biāo),根據(jù)勾股定理得到ED,連接BB′,交ED于F,過B′作B′G⊥BC于G,根據(jù)軸對稱的性質(zhì)得到BF=B′F,BB′⊥ED求得BB′,設(shè)EG=x,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:∵矩形OABC,∴CB∥x軸,AB∥y軸.∵點B坐標(biāo)為(6,1),∴D的橫坐標(biāo)為6,E的縱坐標(biāo)為1.∵D,E在反比例函數(shù)的圖象上,∴D(6,1),E(,1),∴BE=6﹣=,BD=1﹣1=3,∴ED==.連接BB′,交ED于F,過B′作B′G⊥BC于G.∵B,B′關(guān)于ED對稱,∴BF=B′F,BB′⊥ED,∴BF?ED=BE?BD,即BF=3×,∴BF=,∴BB′=.設(shè)EG=x,則BG=﹣x.∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=.故選B.【點睛】本題考查了翻折變換(折疊問題),矩形的性質(zhì),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】試題分析:∵AD∥BE∥CF,∴,即,∴EF=1.故答案為1.考點:平行線分線段成比例.12、﹣2≤a<﹣1.【解析】

先確定不等式組的整數(shù)解,再求出a的范圍即可.【詳解】∵關(guān)于x的不等式組恰有3個整數(shù)解,∴整數(shù)解為1,0,﹣1,∴﹣2≤a<﹣1,故答案為:﹣2≤a<﹣1.【點睛】本題考查了一元一次不等式組的整數(shù)解的應(yīng)用,能根據(jù)已知不等式組的解集和整數(shù)解確定a的取值范圍是解此題的關(guān)鍵.13、0<x<4【解析】

根據(jù)二次函數(shù)的對稱性及已知數(shù)據(jù)可知該二次函數(shù)的對稱軸為x=2,結(jié)合表格中所給數(shù)據(jù)可得出答案.【詳解】由表可知,二次函數(shù)的對稱軸為直線x=2,所以,x=4時,y=5,所以,y<5時,x的取值范圍為0<x<4.故答案為0<x<4.【點睛】此題主要考查了二次函數(shù)的性質(zhì),利用圖表得出二次函數(shù)的圖象即可得出函數(shù)值得取值范圍,同學(xué)們應(yīng)熟練掌握.14、1.【解析】

根據(jù)立體圖形畫出它的主視圖,再求出面積即可.【詳解】主視圖如圖所示,∵主視圖是由1個棱長均為1的正方體組成的幾何體,∴主視圖的面積為1×12=1.故答案為:1.【點睛】本題是簡單組合體的三視圖,主要考查了立體圖的左視圖,解本題的關(guān)鍵是畫出它的左視圖.15、2.1【解析】試題分析:∵數(shù)據(jù)1,2,x,2,3,3,1,7的眾數(shù)是2,∴x=2,∴這組數(shù)據(jù)的中位數(shù)是(2+3)÷2=2.1;故答案為2.1.考點:1、眾數(shù);2、中位數(shù)16、(,)【解析】

根據(jù)相似三角形的性質(zhì)求出相似比,根據(jù)位似變換的性質(zhì)計算即可.【詳解】解:∵△ABC與△DEF位似,原點O是位似中心,要使△DEF的面積是△ABC面積的5倍,則△DEF的邊長是△ABC邊長的倍,∴點F的坐標(biāo)為(1×,×),即(,),故答案為:(,).【點睛】本題考查的是位似變換,在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或﹣k.三、解答題(共8題,共72分)17、(1)y=﹣x2+x+2;(2)m=﹣1或m=3時,四邊形DMQF是平行四邊形;(3)點Q的坐標(biāo)為(3,2)或(﹣1,0)時,以點B、Q、M為頂點的三角形與△BOD相似.【解析】

分析:(1)待定系數(shù)法求解可得;

(2)先利用待定系數(shù)法求出直線BD解析式為y=x-2,則Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四邊形DMQF是平行四邊形知QM=DF,據(jù)此列出關(guān)于m的方程,解之可得;

(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再證△MBQ∽△BPQ得,即,解之即可得此時m的值;②∠BQM=90°,此時點Q與點A重合,△BOD∽△BQM′,易得點Q坐標(biāo).詳解:(1)由拋物線過點A(-1,0)、B(4,0)可設(shè)解析式為y=a(x+1)(x-4),

將點C(0,2)代入,得:-4a=2,

解得:a=-,

則拋物線解析式為y=-(x+1)(x-4)=-x2+x+2;

(2)由題意知點D坐標(biāo)為(0,-2),

設(shè)直線BD解析式為y=kx+b,

將B(4,0)、D(0,-2)代入,得:,解得:,

∴直線BD解析式為y=x-2,

∵QM⊥x軸,P(m,0),

∴Q(m,-m2+m+2)、M(m,m-2),

則QM=-m2+m+2-(m-2)=-m2+m+4,

∵F(0,)、D(0,-2),

∴DF=,

∵QM∥DF,

∴當(dāng)-m2+m+4=時,四邊形DMQF是平行四邊形,

解得:m=-1(舍)或m=3,

即m=3時,四邊形DMQF是平行四邊形;

(3)如圖所示:

∵QM∥DF,

∴∠ODB=∠QMB,

分以下兩種情況:

①當(dāng)∠DOB=∠MBQ=90°時,△DOB∽△MBQ,

則,

∵∠MBQ=90°,

∴∠MBP+∠PBQ=90°,

∵∠MPB=∠BPQ=90°,

∴∠MBP+∠BMP=90°,

∴∠BMP=∠PBQ,

∴△MBQ∽△BPQ,

∴,即,

解得:m1=3、m2=4,

當(dāng)m=4時,點P、Q、M均與點B重合,不能構(gòu)成三角形,舍去,

∴m=3,點Q的坐標(biāo)為(3,2);

②當(dāng)∠BQM=90°時,此時點Q與點A重合,△BOD∽△BQM′,

此時m=-1,點Q的坐標(biāo)為(-1,0);

綜上,點Q的坐標(biāo)為(3,2)或(-1,0)時,以點B、Q、M為頂點的三角形與△BOD相似.點睛:本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、平行四邊形的判定與性質(zhì)、相似三角形的判定與性質(zhì)及分類討論思想的運用.【詳解】請在此輸入詳解!18、見解析,【解析】

要證∠DAE=∠ECD.需先證△ADF≌△CEF,由折疊得BC=EC,∠B=∠AEC,由矩形得BC=AD,∠B=∠ADC=90°,再根據(jù)等量代換和對頂角相等可以證出,得出結(jié)論.【詳解】證明:由折疊得:BC=EC,∠B=∠AEC,∵矩形ABCD,∴BC=AD,∠B=∠ADC=90°,∴EC=DA,∠AEC=∠ADC=90°,又∵∠AFD=∠CFE,∴△ADF≌△CEF(AAS)∴∠DAE=∠ECD.【點睛】本題考查折疊的性質(zhì)、矩形的性質(zhì)、全等三角形的性質(zhì)和判定等知識,借助于三角形全等證明線段相等和角相等是常用的方法.19、13.1.【解析】試題分析:如圖,作CM∥AB交AD于M,MN⊥AB于N,根據(jù)=,可求得CM的長,在RT△AMN中利用三角函數(shù)求得AN的長,再由MN∥BC,AB∥CM,判定四邊形MNBC是平行四邊形,即可得BN的長,最后根據(jù)AB=AN+BN即可求得AB的長.試題解析:如圖作CM∥AB交AD于M,MN⊥AB于N.由題意=,即=,CM=,在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.3,∵M(jìn)N∥BC,AB∥CM,∴四邊形MNBC是平行四邊形,∴BN=CM=,∴AB=AN+BN=13.1米.考點:解直角三角形的應(yīng)用.20、(1)68

;(2)4倍;(3)4x,猜想正確,見解析;(4)M的值不能等于1,見解析.【解析】

(1)直接相加即得到答案;(2)根據(jù)(1)猜想a+b+c+d=4x;(3)用x表示a、b、c、d,相加后即等于4x;(4)得到方程5x=1,求出的x不符合數(shù)表里數(shù)的特征,故不能等于1.【詳解】(1)5+15+19+29=68,故答案為68;(2)根據(jù)(1)猜想a+b+c+d=4x,答案為:4倍;(3)a=x-12,b=x-2,c=x+2,d=x+12,∴a+b+c+d=x-12+x-2+x+2+x+12=4x,∴猜想正確;(4)M=a+b+c+d+x=4x+x=5x,若M=5x=1,解得:x=404,但整個數(shù)表所有的數(shù)都為奇數(shù),故不成立,∴M的值不能等于1.【點睛】本題考查了一元一次方程的應(yīng)用.當(dāng)解得方程的解后,要觀察是否滿足題目和實際要求再進(jìn)行取舍.21、(1)錯誤步驟在第①②步.(2)x=4.【解析】

(1)第①步在去分母的時候,兩邊同乘以6,但是方程右邊沒有乘,另外在去括號時沒有注意到符號的變化,所以出現(xiàn)錯誤;(2)注重改正錯誤,按以上步驟進(jìn)行即可.【詳解】解:(1)方程兩邊同乘6,得3x﹣2(x﹣1)=6①去括號,得3x﹣2x+2=6②∴錯誤步驟在第①②步.(2)方程兩邊同乘6,得3x﹣2(x﹣1)=6去括號,得3x﹣2x+2=6合并同類項,得x+2=6解得x=4∴原方程的解為x=4【點睛】本題考查的解一元一次方程,注意去分母與去括號中常見錯誤,符號也經(jīng)常是出現(xiàn)錯誤的原因.22、x<5;數(shù)軸見解析【解析】【分析】將(x-2)當(dāng)做一個整體,先移項,然后再按解一元一次不等式的一般步驟進(jìn)行求解,求得解集后在數(shù)軸上表示即可.【詳解】移項,得,去分母,得,移項,得,∴不等式的解集為,在數(shù)軸上表示如圖所示:【點睛】本題考查了解一元一次不等式,在數(shù)軸上表示不等式的解集,根據(jù)不等式的特點選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行求解是關(guān)鍵.23、(1)1件;(2)y甲=30t(0≤t≤5);y乙=;(3)小時;【解析】

(1)根據(jù)圖①可得出總工作量為370件,根據(jù)圖②可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論