版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知全集,函數(shù)的定義域為,集合,則下列結論正確的是A. B.C. D.2.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.3.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個 B.個 C.個 D.個4.已知函數(shù),關于的方程R)有四個相異的實數(shù)根,則的取值范圍是(
)A. B. C. D.5.在中,為邊上的中線,為的中點,且,,則()A. B. C. D.6.已知,,,,則()A. B. C. D.7.若,則下列不等式不能成立的是()A. B. C. D.8.已知數(shù)列滿足,則()A. B. C. D.9.已知集合,,則()A. B.C. D.10.已知函數(shù)f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.11.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.12.過拋物線的焦點的直線與拋物線交于、兩點,且,拋物線的準線與軸交于,的面積為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是偶函數(shù),則的最小值為___________.14.如圖,在矩形中,,是的中點,將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為__________.15.能說明“在數(shù)列中,若對于任意的,,則為遞增數(shù)列”為假命題的一個等差數(shù)列是______.(寫出數(shù)列的通項公式)16.在的二項展開式中,所有項的二項式系數(shù)之和為256,則_______,項的系數(shù)等于________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(Ⅰ)若,求曲線在點處的切線方程;(Ⅱ)若在上恒成立,求實數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項和,,求證:數(shù)列的前項和.18.(12分)定義:若數(shù)列滿足所有的項均由構成且其中有個,有個,則稱為“﹣數(shù)列”.(1)為“﹣數(shù)列”中的任意三項,則使得的取法有多少種?(2)為“﹣數(shù)列”中的任意三項,則存在多少正整數(shù)對使得且的概率為.19.(12分)若關于的方程的兩根都大于2,求實數(shù)的取值范圍.20.(12分)設,,,.(1)若的最小值為4,求的值;(2)若,證明:或.21.(12分)如圖所示,三棱柱中,平面,點,分別在線段,上,且,,是線段的中點.(Ⅰ)求證:平面;(Ⅱ)若,,,求直線與平面所成角的正弦值.22.(10分)設,函數(shù).(1)當時,求在內的極值;(2)設函數(shù),當有兩個極值點時,總有,求實數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
求函數(shù)定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.【點睛】本題考查集合的運算,解題關鍵是確定集合中的元素.確定集合的元素時要注意代表元形式,集合是函數(shù)的定義域,還是函數(shù)的值域,是不等式的解集還是曲線上的點集,都由代表元決定.2、A【解析】
根據直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點睛】本題主要考查雙曲線的幾何性質,還考查了運算求解的能力,屬于基礎題.3、C【解析】
計算球心連線形成的正四面體相對棱的距離為cm,得到最上層球面上的點距離桶底最遠為cm,得到不等式,計算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側面相切,且相鄰四個球兩兩相切,這樣,相鄰的四個球的球心連線構成棱長為cm的正面體,易求正四面體相對棱的距離為cm,每裝兩個球稱為“一層”,這樣裝層球,則最上層球面上的點距離桶底最遠為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個球.故選:【點睛】本題考查了圓柱和球的綜合問題,意在考查學生的空間想象能力和計算能力.4、A【解析】=,當時時,單調遞減,時,單調遞增,且當,當,
當時,恒成立,時,單調遞增且,方程R)有四個相異的實數(shù)根.令=則,,即.5、A【解析】
根據向量的線性運算可得,利用及,計算即可.【詳解】因為,所以,所以,故選:A【點睛】本題主要考查了向量的線性運算,向量數(shù)量積的運算,向量數(shù)量積的性質,屬于中檔題.6、D【解析】
令,求,利用導數(shù)判斷函數(shù)為單調遞增,從而可得,設,利用導數(shù)證出為單調遞減函數(shù),從而證出,即可得到答案.【詳解】時,令,求導,,故單調遞增:∴,當,設,,又,,即,故.故選:D【點睛】本題考查了作差法比較大小,考查了構造函數(shù)法,利用導數(shù)判斷式子的大小,屬于中檔題.7、B【解析】
根據不等式的性質對選項逐一判斷即可.【詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.【點睛】本題考查不等關系和不等式,屬于基礎題.8、C【解析】
利用的前項和求出數(shù)列的通項公式,可計算出,然后利用裂項法可求出的值.【詳解】.當時,;當時,由,可得,兩式相減,可得,故,因為也適合上式,所以.依題意,,故.故選:C.【點睛】本題考查利用求,同時也考查了裂項求和法,考查計算能力,屬于中等題.9、C【解析】
求出集合,計算出和,即可得出結論.【詳解】,,,.故選:C.【點睛】本題考查交集和并集的計算,考查計算能力,屬于基礎題.10、A【解析】
先通過降冪公式和輔助角法將函數(shù)轉化為,再求最值.【詳解】已知函數(shù)f(x)=sin2x+sin2(x),=,=,因為,所以f(x)的最小值為.故選:A【點睛】本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運算求解的能力,屬于中檔題.11、B【解析】
先判斷命題的真假,進而根據復合命題真假的真值表,即可得答案.【詳解】,,因為,,所以,所以,即命題p為真命題;畫出函數(shù)和圖象,知命題q為假命題,所以為真.故選:B.【點睛】本題考查真假命題的概念,以及真值表的應用,解題的關鍵是判斷出命題的真假,難度較易.12、B【解析】
設點、,并設直線的方程為,由得,將直線的方程代入韋達定理,求得,結合的面積求得的值,結合焦點弦長公式可求得.【詳解】設點、,并設直線的方程為,將直線的方程與拋物線方程聯(lián)立,消去得,由韋達定理得,,,,,,,,可得,,拋物線的準線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【點睛】本題考查拋物線焦點弦長的計算,計算出拋物線的方程是解答的關鍵,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
由偶函數(shù)性質可得,解得,再結合基本不等式即可求解【詳解】令得,所以,當且僅當時取等號.故答案為:2【點睛】考查函數(shù)的奇偶性、基本不等式,屬于基礎題14、【解析】
根據題意,畫出空間幾何體,設的中點分別為,并連接,利用面面垂直的性質及所給線段關系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【詳解】由題可得,,均為等腰直角三角形,如圖所示,設的中點分別為,連接,則,.因為平面平面,平面平面,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.【點睛】本題考查了空間幾何體的綜合應用,折疊后空間幾何體的線面位置關系應用,空間幾何體外接球的性質及體積求法,屬于中檔題.15、答案不唯一,如【解析】
根據等差數(shù)列的性質可得到滿足條件的數(shù)列.【詳解】由題意知,不妨設,則,很明顯為遞減數(shù)列,說明原命題是假命題.所以,答案不唯一,符合條件即可.【點睛】本題考查對等差數(shù)列的概念和性質的理解,關鍵是假設出一個遞減的數(shù)列,還需檢驗是否滿足命題中的條件,屬基礎題.16、81【解析】
根據二項式系數(shù)和的性質可得n,再利用展開式的通項公式求含項的系數(shù)即可.【詳解】由于所有項的二項式系數(shù)之和為,,故的二項展開式的通項公式為,令,求得,可得含x項的系數(shù)等于,故答案為:8;1.【點睛】本題主要考查二項式定理的應用,二項式系數(shù)的性質,二項式展開式的通項公式,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析.【解析】試題分析:將,求出切線方程求導后討論當時和時的單調性證明,求出實數(shù)的取值范圍先求出、的通項公式,利用當時,得,下面證明:解析:(Ⅰ)因為,所以,,切點為.由,所以,所以曲線在處的切線方程為,即(Ⅱ)由,令,則(當且僅當取等號).故在上為增函數(shù).①當時,,故在上為增函數(shù),所以恒成立,故符合題意;②當時,由于,,根據零點存在定理,必存在,使得,由于在上為增函數(shù),故當時,,故在上為減函數(shù),所以當時,,故在上不恒成立,所以不符合題意.綜上所述,實數(shù)的取值范圍為(III)證明:由由(Ⅱ)知當時,,故當時,,故,故.下面證明:因為而,所以,,即:點睛:本題考查了利用導數(shù)的幾何意義求出參數(shù)及證明不等式成立,借助第二問的證明過程,利用導數(shù)的單調性證明數(shù)列的不等式,在求解的過程中還要求出數(shù)列的和,計算較為復雜,本題屬于難題.18、(1)16;(2)115.【解析】
(1)易得使得的情況只有“”,“”兩種,再根據組合的方法求解兩種情況分別的情況數(shù)再求和即可.(2)易得“”共有種,“”共有種.再根據古典概型的方法可知,利用組合數(shù)的計算公式可得,當時根據題意有,共個;當時求得,再根據換元根據整除的方法求解滿足的正整數(shù)對即可.【詳解】解:(1)三個數(shù)乘積為有兩種情況:“”,“”,其中“”共有:種,“”共有:種,利用分類計數(shù)原理得:為“﹣數(shù)列”中的任意三項,則使得的取法有:種.(2)與(1)同理,“”共有種,“”共有種,而在“﹣數(shù)列”中任取三項共有種,根據古典概型有:,再根據組合數(shù)的計算公式能得到:,時,應滿足,,共個,時,應滿足,視為常數(shù),可解得,,根據可知,,,,根據可知,,(否則),下設,則由于為正整數(shù)知必為正整數(shù),,,化簡上式關系式可以知道:,均為偶數(shù),設,則,由于中必存在偶數(shù),只需中存在數(shù)為的倍數(shù)即可,,.檢驗:符合題意,共有個,綜上所述:共有個數(shù)對符合題意.【點睛】本題主要考查了排列組合的基本方法,同時也考查了組合數(shù)的運算以及整數(shù)的分析方法等,需要根據題意19、【解析】
先令,根據題中條件得到,求解,即可得出結果.【詳解】因為關于的方程的兩根都大于2,令所以有,解得,所以.【點睛】本題主要考查一元二次方程根的分布問題,熟記二次函數(shù)的特征即可,屬于常考題型.20、(1)2;(2)見解析【解析】
(1)將化簡為,再利用基本不等式即可求出最小值為4,便可得出的值;(2)根據,即,得出,利用基本不等式求出最值,便可得出的取值范圍.【詳解】解:(1)由題可知,,,,,∴.(2)∵,∴,∴,∴,即:或.【點睛】本題考查基本不等式的應用,利用基本不等式和放縮法求最值,考查化簡計算能力.21、(Ⅰ)證明見詳解;(Ⅱ).【解析】
(Ⅰ)取中點為,根據幾何關系,求證四邊形為平行四邊形,即可由線線平行推證線面平行;(Ⅱ)以為坐標原點,建立空間直角坐標系,求得直線的方向向量和平面的法向量,即可求得線面角的正弦值.【詳解】(Ⅰ)取的中點,連接,.如下圖所示:因為,分別是線段和的中點,所以是梯形的中位線,所以.又,所以.因為,,所以四邊形為平行四邊形,所以.所以,.所以四邊形為平行四邊形,所以.又平面,平面,所以平面.(Ⅱ)因為,且平面,故可以為原點,的方向為軸正方向建立如圖所示的空間直角坐標系,如下圖所示:不妨設,則,所以,,,,.所以,,.設平面的法向量為,則所以可取.設直線與平面所成的角為,則.故可得直線與平面所成的角的正弦值為.【點睛】本題考查由線線平行推證線面平行,以及用向量法求解線面角,屬綜合中檔題.22、(1)極大值是,無極小值;(2)【解析】
(1)當時,可求得,令,利用導數(shù)可判斷的單調性并得其零點,從而可得原函數(shù)的極值點及極大值;(2)表示出,并求得,由題意,得方程有兩個不同的實根,,從而可得△及,由,得.則可化為對任意的恒成立,按照、、三種情況分類討論,分離參數(shù)后轉化為求函數(shù)的最值可解決;【詳解】(1)當時,.令,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年辣椒種植收購合同
- 游戲課程設計軟件
- 2024年礦山機械臺班費用支付及合同解除合同范本3篇
- 網站策劃書課程設計
- 自動化課程設計路燈觸摸
- 離合器的設計課程設計
- 線性vf轉換課程設計
- 我國小學課程設計
- 2024版事業(yè)單位工作人員聘用合同書版B版
- 2024年項目經理聘請條件3篇
- Part 6 Unit 8 Green Earth 教案-【中職專用】高一英語精研課堂(高教版2021·基礎模塊2)
- 艾森克人格問卷(EPQ)(成人)
- 設備維護與故障排除項目風險評估報告
- (新版)質量知識競賽參考題庫400題(含各題型)
- 幼兒園小班語言《誰的耳朵》課件
- 院前急救診療技術操作規(guī)范
- 患者轉診記錄單
- 美好生活“油”此而來-暨南大學中國大學mooc課后章節(jié)答案期末考試題庫2023年
- 買賣合同糾紛案民事判決書
- 神經內科應急預案完整版
- 2023零售藥店醫(yī)保培訓試題及答案篇
評論
0/150
提交評論