2022年新疆昌吉市第九中學(xué)數(shù)學(xué)高三第一學(xué)期期末考試試題含解析_第1頁
2022年新疆昌吉市第九中學(xué)數(shù)學(xué)高三第一學(xué)期期末考試試題含解析_第2頁
2022年新疆昌吉市第九中學(xué)數(shù)學(xué)高三第一學(xué)期期末考試試題含解析_第3頁
2022年新疆昌吉市第九中學(xué)數(shù)學(xué)高三第一學(xué)期期末考試試題含解析_第4頁
2022年新疆昌吉市第九中學(xué)數(shù)學(xué)高三第一學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則()A.21 B.22 C.11 D.122.金庸先生的武俠小說《射雕英雄傳》第12回中有這樣一段情節(jié),“……洪七公道:肉只五種,但豬羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有幾般變化,我可算不出了”.現(xiàn)有五種不同的肉,任何兩種(含兩種)以上的肉混合后的滋味都不一樣,則混合后可以組成的所有不同的滋味種數(shù)為()A.20 B.24 C.25 D.263.已知將函數(shù)(,)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,若和的圖象都關(guān)于對(duì)稱,則的值為()A.2 B.3 C.4 D.4.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件5.三棱錐中,側(cè)棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.6.已知,為兩條不同直線,,,為三個(gè)不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號(hào)為()A.②③ B.②③④ C.①④ D.①②③7.已知函數(shù),則的最小值為()A. B. C. D.8.設(shè),,分別是中,,所對(duì)邊的邊長(zhǎng),則直線與的位置關(guān)系是()A.平行 B.重合C.垂直 D.相交但不垂直9.復(fù)數(shù)的共軛復(fù)數(shù)記作,已知復(fù)數(shù)對(duì)應(yīng)復(fù)平面上的點(diǎn),復(fù)數(shù):滿足.則等于()A. B. C. D.10.()A. B. C. D.11.正方形的邊長(zhǎng)為,是正方形內(nèi)部(不包括正方形的邊)一點(diǎn),且,則的最小值為()A. B. C. D.12.若復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若關(guān)于的不等式在上恒成立,則的最大值為__________.14.若的展開式中所有項(xiàng)的系數(shù)之和為,則______,含項(xiàng)的系數(shù)是______(用數(shù)字作答).15.在二項(xiàng)式的展開式中,的系數(shù)為________.16.設(shè)O為坐標(biāo)原點(diǎn),,若點(diǎn)B(x,y)滿足,則的最大值是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)討論零點(diǎn)的個(gè)數(shù).18.(12分)已知的內(nèi)角、、的對(duì)邊分別為、、,滿足.有三個(gè)條件:①;②;③.其中三個(gè)條件中僅有兩個(gè)正確,請(qǐng)選出正確的條件完成下面兩個(gè)問題:(1)求;(2)設(shè)為邊上一點(diǎn),且,求的面積.19.(12分)在中,角,,所對(duì)的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大小;(2)求的值.20.(12分)如圖,四棱錐中,底面是菱形,對(duì)角線交于點(diǎn)為棱的中點(diǎn),.求證:(1)平面;(2)平面平面.21.(12分)的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知.(1)求B;(2)若,求的面積的最大值.22.(10分)在四棱錐中,底面為直角梯形,,,,,,,分別為,的中點(diǎn).(1)求證:.(2)若,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

由題意知成等差數(shù)列,結(jié)合等差中項(xiàng),列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項(xiàng).對(duì)于等差數(shù)列,一般用首項(xiàng)和公差將已知量表示出來,繼而求出首項(xiàng)和公差.但是這種基本量法計(jì)算量相對(duì)比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計(jì)算量大大減少.2、D【解析】

利用組合的意義可得混合后所有不同的滋味種數(shù)為,再利用組合數(shù)的計(jì)算公式可得所求的種數(shù).【詳解】混合后可以組成的所有不同的滋味種數(shù)為(種),故選:D.【點(diǎn)睛】本題考查組合的應(yīng)用,此類問題注意實(shí)際問題的合理轉(zhuǎn)化,本題屬于容易題.3、B【解析】

因?yàn)閷⒑瘮?shù)(,)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,可得,結(jié)合已知,即可求得答案.【詳解】將函數(shù)(,)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,又和的圖象都關(guān)于對(duì)稱,由,得,,即,又,.故選:B.【點(diǎn)睛】本題主要考查了三角函數(shù)圖象平移和根據(jù)圖象對(duì)稱求參數(shù),解題關(guān)鍵是掌握三角函數(shù)圖象平移的解法和正弦函數(shù)圖象的特征,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.4、B【解析】

由數(shù)量積的定義可得,為實(shí)數(shù),則由可得,根據(jù)共線的性質(zhì),可判斷;再根據(jù)判斷,由等價(jià)法即可判斷兩命題的關(guān)系.【詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B【點(diǎn)睛】本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數(shù)量積的應(yīng)用.5、B【解析】由題,側(cè)棱底面,,,,則根據(jù)余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點(diǎn)睛:本題考查的知識(shí)點(diǎn)是球內(nèi)接多面體,熟練掌握球的半徑公式是解答的關(guān)鍵.6、C【解析】

根據(jù)直線與平面,平面與平面的位置關(guān)系進(jìn)行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯(cuò)誤;若,,則可能平行,故③錯(cuò)誤;由線面垂直的性質(zhì)可得,④正確;故選:C【點(diǎn)睛】本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.7、C【解析】

利用三角恒等變換化簡(jiǎn)三角函數(shù)為標(biāo)準(zhǔn)正弦型三角函數(shù),即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點(diǎn)睛】本題考查利用降冪擴(kuò)角公式、輔助角公式化簡(jiǎn)三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎(chǔ)題.8、C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點(diǎn):直線與直線的位置關(guān)系9、A【解析】

根據(jù)復(fù)數(shù)的幾何意義得出復(fù)數(shù),進(jìn)而得出,由得出可計(jì)算出,由此可計(jì)算出.【詳解】由于復(fù)數(shù)對(duì)應(yīng)復(fù)平面上的點(diǎn),,則,,,因此,.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)模的計(jì)算,考查了復(fù)數(shù)的坐標(biāo)表示、共軛復(fù)數(shù)以及復(fù)數(shù)的除法,考查計(jì)算能力,屬于基礎(chǔ)題.10、B【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】.故選B.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.11、C【解析】

分別以直線為軸,直線為軸建立平面直角坐標(biāo)系,設(shè),根據(jù),可求,而,化簡(jiǎn)求解.【詳解】解:建立以為原點(diǎn),以直線為軸,直線為軸的平面直角坐標(biāo)系.設(shè),,,則,,由,即,得.所以=,所以當(dāng)時(shí),的最小值為.故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)題.12、B【解析】

復(fù)數(shù),在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,可得關(guān)于a的不等式組,解得a的范圍.【詳解】,由其在復(fù)平面對(duì)應(yīng)的點(diǎn)在第二象限,得,則.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義、不等式的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

分類討論,時(shí)不合題意;時(shí)求導(dǎo),求出函數(shù)的單調(diào)區(qū)間,得到在上的最小值,利用不等式恒成立轉(zhuǎn)化為函數(shù)最小值,化簡(jiǎn)得,構(gòu)造放縮函數(shù)對(duì)自變量再研究,可解,【詳解】令;當(dāng)時(shí),,不合題意;當(dāng)時(shí),,令,得或,所以在區(qū)間和上單調(diào)遞減.因?yàn)椋以趨^(qū)間上單調(diào)遞增,所以在處取極小值,即最小值為.若,,則,即.當(dāng)時(shí),,當(dāng)時(shí),則.設(shè),則.當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞增;在上單調(diào)遞減,所以,即,所以的最大值為.故答案為:【點(diǎn)睛】本題考查不等式恒成立問題.不等式恒成立問題的求解思路:已知不等式(為實(shí)參數(shù))對(duì)任意的恒成立,求參數(shù)的取值范圍.利用導(dǎo)數(shù)解決此類問題可以運(yùn)用分離參數(shù)法;如果無法分離參數(shù),可以考慮對(duì)參數(shù)或自變量進(jìn)行分類討論求解,如果是二次不等式恒成立的問題,可以考慮二次項(xiàng)系數(shù)與判別式的方法(,或,)求解.14、【解析】的展開式中所有項(xiàng)的系數(shù)之和為,,,項(xiàng)的系數(shù)是,故答案為(1),(2).15、60【解析】

直接利用二項(xiàng)式定理計(jì)算得到答案.【詳解】二項(xiàng)式的展開式通項(xiàng)為:,取,則的系數(shù)為.故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.16、【解析】,可行域如圖,直線與圓相切時(shí)取最大值,由三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】

(1)求導(dǎo)后分析導(dǎo)函數(shù)的正負(fù)再判斷單調(diào)性即可.(2),有零點(diǎn)等價(jià)于方程實(shí)數(shù)根,再換元將原方程轉(zhuǎn)化為,再求導(dǎo)分析的圖像數(shù)形結(jié)合求解即可.【詳解】(1)的定義域?yàn)?,當(dāng)時(shí),,所以在單調(diào)遞減;當(dāng)時(shí),,所以在單調(diào)遞增,所以的減區(qū)間為,增區(qū)間為.(2),有零點(diǎn)等價(jià)于方程實(shí)數(shù)根,令則原方程轉(zhuǎn)化為,令,.令,,∴,,,,,當(dāng)時(shí),,當(dāng)時(shí),.如圖可知①當(dāng)時(shí),有唯一零點(diǎn),即有唯一零點(diǎn);②當(dāng)時(shí),有兩個(gè)零點(diǎn),即有兩個(gè)零點(diǎn);③當(dāng)時(shí),有唯一零點(diǎn),即有唯一零點(diǎn);④時(shí),此時(shí)無零點(diǎn),即此時(shí)無零點(diǎn).【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性的方法,同時(shí)也考查了利用導(dǎo)數(shù)分析函數(shù)零點(diǎn)的問題,屬于中檔題.18、(1);(2).【解析】

(1)先求出角,進(jìn)而可得出,則①②中有且只有一個(gè)正確,③正確,然后分①③正確和②③正確兩種情況討論,結(jié)合三角形的面積公式和余弦定理可求得的值;(2)計(jì)算出和,計(jì)算出,可得出,進(jìn)而可求得的面積.【詳解】(1)因?yàn)椋?,得,,,為鈍角,與矛盾,故①②中僅有一個(gè)正確,③正確.顯然,得.當(dāng)①③正確時(shí),由,得(無解);當(dāng)②③正確時(shí),由于,,得;(2)如圖,因?yàn)椋?,則,則,.【點(diǎn)睛】本題考查解三角形綜合應(yīng)用,涉及三角形面積公式和余弦定理的應(yīng)用,考查計(jì)算能力,屬于中等題.19、(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進(jìn)而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點(diǎn)睛:本題主要考查正弦定理邊角互化及余弦定理的應(yīng)用與特殊角的三角函數(shù),屬于簡(jiǎn)單題.對(duì)余弦定理一定要熟記兩種形式:(1);(2),同時(shí)還要熟練掌握運(yùn)用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關(guān)的問題時(shí),還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.20、(1)詳見解析;(2)詳見解析.【解析】

(1)連結(jié)根據(jù)中位線的性質(zhì)證明即可.(2)證明,再證明平面即可.【詳解】解:證明:連結(jié)是菱形對(duì)角線的交點(diǎn),為的中點(diǎn),是棱的中點(diǎn),平面平面平面解:在菱形中,且為的中點(diǎn),,,平面平面,平面平面.【點(diǎn)睛】本題主要考查了線面平行與垂直的判定,屬于基礎(chǔ)題.21、(1)(2)【解析】

(1)由正弦定理邊化角化簡(jiǎn)已知條件可求得,即可求得;(2)由余弦定理借助基本不等式可求得,即可求出的面積的最大值.【詳解】(1),,所以,所以,,,,.(2)由余弦定理得.,,當(dāng)且僅當(dāng)時(shí)取等,.所以的面積的最大值為.【點(diǎn)睛】本題考查了正余弦定理在解三角形中的應(yīng)用,考查了三角形面積的最值問題,難度較易.22、(1)見解析(2)【解析】

(1)由已知可證明平面,從而得證面面垂直,再由,得線面垂直,從而得,由直角三角形得結(jié)論;(2)以為軸建立空間直角坐標(biāo)系,用空間向量法示二面角.【詳解】(1)證明:連接,,.,,平面.平面,平面平面.,為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論