四川省成都市成都高新實驗中學(xué)2024年中考數(shù)學(xué)五模試卷含解析_第1頁
四川省成都市成都高新實驗中學(xué)2024年中考數(shù)學(xué)五模試卷含解析_第2頁
四川省成都市成都高新實驗中學(xué)2024年中考數(shù)學(xué)五模試卷含解析_第3頁
四川省成都市成都高新實驗中學(xué)2024年中考數(shù)學(xué)五模試卷含解析_第4頁
四川省成都市成都高新實驗中學(xué)2024年中考數(shù)學(xué)五模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

四川省成都市成都高新實驗中學(xué)2024年中考數(shù)學(xué)五模試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.撫順市中小學(xué)機器人科技大賽中,有7名學(xué)生參加決賽,他們決賽的成績各不相同,其中一名參賽選手想知道自己能否進入前4名,他除了知道自己成績外還要知道這7名學(xué)生成績的()A.中位數(shù)B.眾數(shù)C.平均數(shù)D.方差2.下列運算正確的是()A.a(chǎn)2+a2=a4 B.(a+b)2=a2+b2 C.a(chǎn)6÷a2=a3 D.(﹣2a3)2=4a63.2cos30°的值等于()A.1 B. C. D.24.已知反比例函數(shù)y=-2A.圖象必經(jīng)過點(﹣1,2) B.y隨x的增大而增大C.圖象在第二、四象限內(nèi) D.若x>1,則0>y>-25.若關(guān)于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍()A. B. C.且 D.6.如圖,已知BD與CE相交于點A,ED∥BC,AB=8,AC=12,AD=6,那么AE的長等于()A.4 B.9 C.12 D.167.如圖,△ABC在邊長為1個單位的方格紙中,它的頂點在小正方形的頂點位置.如果△ABC的面積為10,且sinA=,那么點C的位置可以在()A.點C1處 B.點C2處 C.點C3處 D.點C4處8.已知點A(0,﹣4),B(8,0)和C(a,﹣a),若過點C的圓的圓心是線段AB的中點,則這個圓的半徑的最小值是()A. B. C. D.29.如圖,比例規(guī)是一種畫圖工具,它由長度相等的兩腳AC和BD交叉構(gòu)成,利用它可以把線段按一定的比例伸長或縮短.如果把比例規(guī)的兩腳合上,使螺絲釘固定在刻度3的地方(即同時使OA=3OC,OB=3OD),然后張開兩腳,使A,B兩個尖端分別在線段a的兩個端點上,當(dāng)CD=1.8cm時,則AB的長為()A.7.2cm B.5.4cm C.3.6cm D.0.6cm10.如圖是反比例函數(shù)(k為常數(shù),k≠0)的圖象,則一次函數(shù)的圖象大致是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知點A(4,0),O為坐標(biāo)原點,P是線段OA上任意一點(不含端點O,A),過P,O兩點的二次函數(shù)y1和過P,A兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為B,C,射線OB與射線AC相交于點D.當(dāng)△ODA是等邊三角形時,這兩個二次函數(shù)的最大值之和等于__.12.如圖,菱形ABCD的邊長為15,sin∠BAC=3513.若m+=3,則m2+=_____.14.如圖,已知AE∥BD,∠1=130°,∠2=28°,則∠C的度數(shù)為____.15.已知a<0,那么|﹣2a|可化簡為_____.16.在正方形鐵皮上剪下一個扇形和一個半徑為1cm的圓形,使之恰好圍成一個圓錐,則圓錐的高為______.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,ABAC,AE是∠BAC的平分線,∠ABC的平分線BM交AE于點M,點O在AB上,以點O為圓心,OB的長為半徑的圓經(jīng)過點M,交BC于點G,交AB于點F.(1)求證:AE為⊙O的切線;(2)當(dāng)BC=4,AC=6時,求⊙O的半徑;(3)在(2)的條件下,求線段BG的長.18.(8分)如圖,已知△ABC中,∠ACB=90°,D是邊AB的中點,P是邊AC上一動點,BP與CD相交于點E.(1)如果BC=6,AC=8,且P為AC的中點,求線段BE的長;(2)聯(lián)結(jié)PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;(3)聯(lián)結(jié)PD,如果BP2=2CD2,且CE=2,ED=3,求線段PD的長.19.(8分)如圖,在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的高(1)△ACD與△ABC相似嗎?為什么?(2)AC2=AB?AD成立嗎?為什么?20.(8分)如圖,在樓房AB和塔CD之間有一棵樹EF,從樓頂A處經(jīng)過樹頂E點恰好看到塔的底部D點,且俯角α為45°,從樓底B點1米的P點處經(jīng)過樹頂E點恰好看到塔的頂部C點,且仰角β為30°.已知樹高EF=6米,求塔CD的高度(結(jié)果保留根號).21.(8分)某年級組織學(xué)生參加夏令營活動,本次夏令營分為甲、乙、丙三組進行活動.下面兩幅統(tǒng)計圖反映了學(xué)生報名參加夏令營的情況,請你根據(jù)圖中的信息回答下列問題:該年級報名參加丙組的人數(shù)為;該年級報名參加本次活動的總?cè)藬?shù),并補全頻數(shù)分布直方圖;根據(jù)實際情況,需從甲組抽調(diào)部分同學(xué)到丙組,使丙組人數(shù)是甲組人數(shù)的3倍,應(yīng)從甲組抽調(diào)多少名學(xué)生到丙組?22.(10分)如圖1,的余切值為2,,點D是線段上的一動點(點D不與點A、B重合),以點D為頂點的正方形的另兩個頂點E、F都在射線上,且點F在點E的右側(cè),聯(lián)結(jié),并延長,交射線于點P.(1)點D在運動時,下列的線段和角中,________是始終保持不變的量(填序號);①;②;③;④;⑤;⑥;(2)設(shè)正方形的邊長為x,線段的長為y,求y與x之間的函數(shù)關(guān)系式,并寫出定義域;(3)如果與相似,但面積不相等,求此時正方形的邊長.23.(12分)計算:()﹣2﹣+(﹣2)0+|2﹣|24.如圖,AB=16,O為AB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉(zhuǎn)270°后得到扇形COD,AP,BQ分別切優(yōu)弧CD于點P,Q,且點P,Q在AB異側(cè),連接OP.求證:AP=BQ;當(dāng)BQ=時,求的長(結(jié)果保留);若△APO的外心在扇形COD的內(nèi)部,求OC的取值范圍.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

7人成績的中位數(shù)是第4名的成績.參賽選手要想知道自己是否能進入前4名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】由于總共有7個人,且他們的分?jǐn)?shù)互不相同,第4的成績是中位數(shù),要判斷是否進入前4名,故應(yīng)知道中位數(shù)的多少,故選A.【點睛】本題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義,熟練掌握相關(guān)的定義是解題的關(guān)鍵.2、D【解析】

根據(jù)完全平方公式、合并同類項、同底數(shù)冪的除法、積的乘方,即可解答.【詳解】A、a2+a2=2a2,故錯誤;B、(a+b)2=a2+2ab+b2,故錯誤;C、a6÷a2=a4,故錯誤;D、(-2a3)2=4a6,正確;故選D.【點睛】本題考查了完全平方公式、同底數(shù)冪的除法、積的乘方以及合并同類項,解決本題的關(guān)鍵是熟記公式和法則.3、C【解析】分析:根據(jù)30°角的三角函數(shù)值代入計算即可.詳解:2cos30°=2×=.故選C.點睛:此題主要考查了特殊角的三角函數(shù)值的應(yīng)用,熟記30°、45°、60°角的三角函數(shù)值是解題關(guān)鍵.4、B【解析】試題分析:根據(jù)反比例函數(shù)y=kx試題解析:A、(-1,2)滿足函數(shù)的解析式,則圖象必經(jīng)過點(-1,2);B、在每個象限內(nèi)y隨x的增大而增大,在自變量取值范圍內(nèi)不成立,則命題錯誤;C、命題正確;D、命題正確.故選B.考點:反比例函數(shù)的性質(zhì)5、C【解析】

根據(jù)一元二次方程的定義結(jié)合根的判別式即可得出關(guān)于a的一元一次不等式組,解之即可得出結(jié)論.【詳解】解:∵關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,∴,解得:k<1且k≠1.故選:C.【點睛】本題考查了一元二次方程的定義、根的判別式以及解一元一次不等式組,根據(jù)一元二次方程的定義結(jié)合根的判別式列出關(guān)于a的一元一次不等式組是解題的關(guān)鍵.6、B【解析】

由于ED∥BC,可證得△ABC∽△ADE,根據(jù)相似三角形所得比例線段,即可求得AE的長.【詳解】∵ED∥BC,∴△ABC∽△ADE,∴=,∴==,即AE=9;∴AE=9.故答案選B.【點睛】本題考查的知識點是相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形的判定與性質(zhì).7、D【解析】如圖:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案為D.8、B【解析】

首先求得AB的中點D的坐標(biāo),然后求得經(jīng)過點D且垂直于直線y=-x的直線的解析式,然后求得與y=-x的交點坐標(biāo),再求得交點與D之間的距離即可.【詳解】AB的中點D的坐標(biāo)是(4,-2),∵C(a,-a)在一次函數(shù)y=-x上,∴設(shè)過D且與直線y=-x垂直的直線的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,則函數(shù)解析式是y=x-1.根據(jù)題意得:,解得:,則交點的坐標(biāo)是(3,-3).則這個圓的半徑的最小值是:=.

故選:B【點睛】本題考查了待定系數(shù)法求函數(shù)的解析式,以及兩直線垂直的條件,正確理解C(a,-a),一定在直線y=-x上,是關(guān)鍵.9、B【解析】【分析】由已知可證△ABO∽CDO,故,即.【詳解】由已知可得,△ABO∽CDO,所以,,所以,,所以,AB=5.4故選B【點睛】本題考核知識點:相似三角形.解題關(guān)鍵點:熟記相似三角形的判定和性質(zhì).10、B【解析】根據(jù)圖示知,反比例函數(shù)的圖象位于第一、三象限,∴k>0,∴一次函數(shù)y=kx?k的圖象與y軸的交點在y軸的負(fù)半軸,且該一次函數(shù)在定義域內(nèi)是增函數(shù),∴一次函數(shù)y=kx?k的圖象經(jīng)過第一、三、四象限;故選:B.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】

連接PB、PC,根據(jù)二次函數(shù)的對稱性可知OB=PB,PC=AC,從而判斷出△POB和△ACP是等邊三角形,再根據(jù)等邊三角形的性質(zhì)求解即可.【詳解】解:如圖,連接PB、PC,由二次函數(shù)的性質(zhì),OB=PB,PC=AC,∵△ODA是等邊三角形,∴∠AOD=∠OAD=60°,∴△POB和△ACP是等邊三角形,∵A(4,0),∴OA=4,∴點B、C的縱坐標(biāo)之和為:OB×sin60°+PC×sin60°=4×=2,即兩個二次函數(shù)的最大值之和等于2.故答案為2.【點睛】本題考查了二次函數(shù)的最值問題,等邊三角形的判定與性質(zhì),解直角三角形,作輔助線構(gòu)造出等邊三角形并利用等邊三角形的知識求解是解題的關(guān)鍵.12、24【解析】試題分析:因為四邊形ABCD是菱形,根據(jù)菱形的性質(zhì)可知,BD與AC互相垂直且平分,因為sin∠BAC=35,AB=10,所以1考點:三角函數(shù)、菱形的性質(zhì)及勾股定理;13、7【解析】分析:把已知等式兩邊平方,利用完全平方公式化簡,即可求出答案.詳解:把m+=3兩邊平方得:(m+)2=m2++2=9,則m2+=7,故答案為:7點睛:此題考查了分式的混合運算,以及完全平方公式,熟練掌握運算法則及公式是解本題的關(guān)鍵.14、22°【解析】

由AE∥BD,根據(jù)平行線的性質(zhì)求得∠CBD的度數(shù),再由對頂角相等求得∠CDB的度數(shù),繼而利用三角形的內(nèi)角和等于180°求得∠C的度數(shù).【詳解】解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案為22°【點睛】本題考查了平行線的性質(zhì),對頂角相等及三角形內(nèi)角和定理.熟練運用相關(guān)知識是解決問題的關(guān)鍵.15、﹣3a【解析】

根據(jù)二次根式的性質(zhì)和絕對值的定義解答.【詳解】∵a<0,∴|﹣2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.【點睛】本題主要考查了根據(jù)二次根式的意義化簡.二次根式規(guī)律總結(jié):當(dāng)a≥0時,=a;當(dāng)a≤0時,=﹣a.解題關(guān)鍵是要判斷絕對值符號和根號下代數(shù)式的正負(fù)再去掉符號.16、cm【解析】

利用已知得出底面圓的半徑為:1cm,周長為2πcm,進而得出母線長,即可得出答案.【詳解】∵半徑為1cm的圓形,∴底面圓的半徑為:1cm,周長為2πcm,扇形弧長為:2π=,∴R=4,即母線為4cm,∴圓錐的高為:(cm).故答案為cm.【點睛】此題主要考查了圓錐展開圖與原圖對應(yīng)情況,以及勾股定理等知識,根據(jù)已知得出母線長是解決問題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)證明見解析;(2);(3)1.【解析】

(1)連接OM,如圖1,先證明OM∥BC,再根據(jù)等腰三角形的性質(zhì)判斷AE⊥BC,則OM⊥AE,然后根據(jù)切線的判定定理得到AE為⊙O的切線;(2)設(shè)⊙O的半徑為r,利用等腰三角形的性質(zhì)得到BE=CE=BC=2,再證明△AOM∽△ABE,則利用相似比得到,然后解關(guān)于r的方程即可;(3)作OH⊥BE于H,如圖,易得四邊形OHEM為矩形,則HE=OM=,所以BH=BE-HE=,再根據(jù)垂徑定理得到BH=HG=,所以BG=1.【詳解】解:(1)證明:連接OM,如圖1,∵BM是∠ABC的平分線,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分線,∴AE⊥BC,∴OM⊥AE,∴AE為⊙O的切線;(2)解:設(shè)⊙O的半徑為r,∵AB=AC=6,AE是∠BAC的平分線,∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴,即,解得r=,即設(shè)⊙O的半徑為;(3)解:作OH⊥BE于H,如圖,∵OM⊥EM,ME⊥BE,∴四邊形OHEM為矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.18、(1)(2)(3).【解析】

(1)由勾股定理求出BP的長,D是邊AB的中點,P為AC的中點,所以點E是△ABC的重心,然后求得BE的長.(2)過點B作BF∥CA交CD的延長線于點F,所以,然后可求得EF=8,所以,所以,因為PD⊥AB,D是邊AB的中點,在△ABC中可求得cosA的值.(3)由,∠PBD=∠ABP,證得△PBD∽△ABP,再證明△DPE∽△DCP得到,PD可求.【詳解】解:(1)∵P為AC的中點,AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=,∵D是邊AB的中點,P為AC的中點,∴點E是△ABC的重心,∴,(2)過點B作BF∥CA交CD的延長線于點F,∴,∵BD=DA,∴FD=DC,BF=AC,∵CE=2,ED=3,則CD=5,∴EF=8,∴,∴,∴,設(shè)CP=k,則PA=3k,∵PD⊥AB,D是邊AB的中點,∴PA=PB=3k,∴,∴,∵,∴,(3)∵∠ACB=90°,D是邊AB的中點,∴,∵,∴,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,△DPE∽△DCP,∴,∵DE=3,DC=5,∴.【點睛】本題是一道三角形的綜合性題目,熟練掌握三角形的重心,三角形相似的判定和性質(zhì)以及三角函數(shù)是解題的關(guān)鍵.19、(1)△ACD與△ABC相似;(2)AC2=AB?AD成立.【解析】

(1)求出∠ADC=∠ACB=90°,根據(jù)相似三角形的判定推出即可;(2)根據(jù)相似三角形的性質(zhì)得出比例式,再進行變形即可.【詳解】解:(1)△ACD與△ABC相似,理由是:∵在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的高,∴∠ADC=∠ACB=90°,∵∠A=∠A,∴△ACD∽∠ABC;(2)AC2=AB?AD成立,理由是:∵△ACD∽∠ABC,∴=,∴AC2=AB?AD.【點睛】本題考查了相似三角形的性質(zhì)和判定,能根據(jù)相似三角形的判定定理推出△ACD∽△ABC是解此題的關(guān)鍵.20、(6+2)米【解析】

根據(jù)題意求出∠BAD=∠ADB=45°,進而根據(jù)等腰直角三角形的性質(zhì)求得FD,在Rt△PEH中,利用特殊角的三角函數(shù)值分別求出BF,即可求得PG,在Rt△PCG中,繼而可求出CG的長度.【詳解】由題意可知∠BAD=∠ADB=45°,∴FD=EF=6米,在Rt△PEH中,∵tanβ==,∴BF==5,∴PG=BD=BF+FD=5+6,∵tanβ=,∴CG=(5+6)·=5+2,∴CD=(6+2)米.【點睛】本題考查了解直角三角形的應(yīng)用,解答本題的關(guān)鍵是構(gòu)造直角三角形,利用三角函數(shù)的知識求解相關(guān)線段的長度.21、(1)21人;(2)10人,見解析(3)應(yīng)從甲抽調(diào)1名學(xué)生到丙組【解析】(1)參加丙組的人數(shù)為21人;(2)21÷10%=10人,則乙組人數(shù)=10-21-11=10人,如圖:(3)設(shè)需從甲組抽調(diào)x名同學(xué)到丙組,根據(jù)題意得:3(11-x)=21+x解得x=1.答:應(yīng)從甲抽調(diào)1名學(xué)生到丙組(1)直接根據(jù)條形統(tǒng)計圖獲得數(shù)據(jù);(2)根據(jù)丙組的21人占總體的10%,即可計算總體人數(shù),然后計算乙組的人數(shù),補全統(tǒng)計圖;(3)設(shè)需從甲組抽調(diào)x名同學(xué)到丙組,根據(jù)丙組人數(shù)是甲組人數(shù)的3倍列方程求解22、(1)④⑤;(2);(3)或.【解析】

(1)作于M,交于N,如圖,利用三角函數(shù)的定義得到,設(shè),則,利用勾股定理得,解得,即,,設(shè)正方形的邊長為x,則,,由于,則可判斷為定值;再利用得到,則可判斷為定值;在中,利用勾股定理和三角函數(shù)可判斷在變化,在變化,在變化;(2)易得四邊形為矩形,則,證明,利用相似比可得到y(tǒng)與x的關(guān)系式;(3)由于,與相似,且面積不相等,利用相似比得到,討論:當(dāng)點P在點F點右側(cè)時,則,所以,當(dāng)點P在點F點左側(cè)時,則,所以,然后分別解方程即可得到正方形的邊長.【詳解】(1)如圖,作于M,交于N,在中,∵,設(shè),則,∵,∴,解得,∴,,設(shè)正方形的邊長為x,在中,∵,∴,∴,在中,,∴為定值;∵,∴,∴為定值;在中,,而在變化,∴在變化,在變化,∴在變化,所以和是始終保持不變的量;故答案為:④⑤(2)∵MN⊥AP,DEFG是正方形,∴四邊形為矩形,∴,∵,∴,∴,即,∴(3)∵,與相似,且面積不相等,∴,即,∴,當(dāng)點P在點F點右側(cè)時,AP=AF+PF==,∴,解得,當(dāng)點P在點F點左側(cè)時,,∴,解得,綜上所述,正方形的邊長為或.【點睛】本題考查了相似形綜合題:熟練掌握銳角三角函數(shù)的定義、正方形的性質(zhì)和相似三角形的判定與性質(zhì).23、2【解析】

直接利用零指數(shù)冪的性質(zhì)以及負(fù)指數(shù)冪的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論