![2023屆陜西省長(zhǎng)安區(qū)第一中學(xué)數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第1頁(yè)](http://file4.renrendoc.com/view8/M00/39/01/wKhkGWaze7uAEmrmAAHqmePlyh8978.jpg)
![2023屆陜西省長(zhǎng)安區(qū)第一中學(xué)數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第2頁(yè)](http://file4.renrendoc.com/view8/M00/39/01/wKhkGWaze7uAEmrmAAHqmePlyh89782.jpg)
![2023屆陜西省長(zhǎng)安區(qū)第一中學(xué)數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第3頁(yè)](http://file4.renrendoc.com/view8/M00/39/01/wKhkGWaze7uAEmrmAAHqmePlyh89783.jpg)
![2023屆陜西省長(zhǎng)安區(qū)第一中學(xué)數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第4頁(yè)](http://file4.renrendoc.com/view8/M00/39/01/wKhkGWaze7uAEmrmAAHqmePlyh89784.jpg)
![2023屆陜西省長(zhǎng)安區(qū)第一中學(xué)數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第5頁(yè)](http://file4.renrendoc.com/view8/M00/39/01/wKhkGWaze7uAEmrmAAHqmePlyh89785.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),,,則()A. B. C. D.2.體育教師指導(dǎo)4個(gè)學(xué)生訓(xùn)練轉(zhuǎn)身動(dòng)作,預(yù)備時(shí),4個(gè)學(xué)生全部面朝正南方向站成一排.訓(xùn)練時(shí),每次都讓3個(gè)學(xué)生“向后轉(zhuǎn)”,若4個(gè)學(xué)生全部轉(zhuǎn)到面朝正北方向,則至少需要“向后轉(zhuǎn)”的次數(shù)是()A.3 B.4 C.5 D.63.已知拋物線:,直線與分別相交于點(diǎn),與的準(zhǔn)線相交于點(diǎn),若,則()A.3 B. C. D.4.若向量,則()A.30 B.31 C.32 D.335.已知集合,,則集合子集的個(gè)數(shù)為()A. B. C. D.6.在四面體中,為正三角形,邊長(zhǎng)為6,,,,則四面體的體積為()A. B. C.24 D.7.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,28.設(shè)函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是()A. B.C. D.9.已知函數(shù),若曲線上始終存在兩點(diǎn),,使得,且的中點(diǎn)在軸上,則正實(shí)數(shù)的取值范圍為()A. B. C. D.10.若變量,滿足,則的最大值為()A.3 B.2 C. D.1011.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.12.若是定義域?yàn)榈钠婧瘮?shù),且,則A.的值域?yàn)?B.為周期函數(shù),且6為其一個(gè)周期C.的圖像關(guān)于對(duì)稱 D.函數(shù)的零點(diǎn)有無(wú)窮多個(gè)二、填空題:本題共4小題,每小題5分,共20分。13.某大學(xué)、、、四個(gè)不同的專業(yè)人數(shù)占本???cè)藬?shù)的比例依次為、、、,現(xiàn)欲采用分層抽樣的方法從這四個(gè)專業(yè)的總?cè)藬?shù)中抽取人調(diào)查畢業(yè)后的就業(yè)情況,則專業(yè)應(yīng)抽取_________人.14.已知拋物線的焦點(diǎn)和橢圓的右焦點(diǎn)重合,直線過(guò)拋物線的焦點(diǎn)與拋物線交于、兩點(diǎn)和橢圓交于、兩點(diǎn),為拋物線準(zhǔn)線上一動(dòng)點(diǎn),滿足,,當(dāng)面積最大時(shí),直線的方程為_(kāi)_____.15.若x,y滿足,且y≥?1,則3x+y的最大值_____16.在的二項(xiàng)展開(kāi)式中,x的系數(shù)為_(kāi)_______.(用數(shù)值作答)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,有一個(gè)微型智能機(jī)器人(大小不計(jì))只能沿著坐標(biāo)軸的正方向或負(fù)方向行進(jìn),且每一步只能行進(jìn)1個(gè)單位長(zhǎng)度,例如:該機(jī)器人在點(diǎn)處時(shí),下一步可行進(jìn)到、、、這四個(gè)點(diǎn)中的任一位置.記該機(jī)器人從坐標(biāo)原點(diǎn)出發(fā)、行進(jìn)步后落在軸上的不同走法的種數(shù)為.(1)分別求、、的值;(2)求的表達(dá)式.18.(12分)已知數(shù)列滿足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,證明:.19.(12分)橢圓:的離心率為,點(diǎn)為橢圓上的一點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若斜率為的直線過(guò)點(diǎn),且與橢圓交于兩點(diǎn),為橢圓的下頂點(diǎn),求證:對(duì)于任意的實(shí)數(shù),直線的斜率之積為定值.20.(12分)已知是公比為的無(wú)窮等比數(shù)列,其前項(xiàng)和為,滿足,________.是否存在正整數(shù),使得?若存在,求的最小值;若不存在,說(shuō)明理由.從①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在上面問(wèn)題中并作答.21.(12分)已知數(shù)列的前項(xiàng)和為,且滿足,各項(xiàng)均為正數(shù)的等比數(shù)列滿足(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和22.(10分)記為數(shù)列的前項(xiàng)和,N.(1)求;(2)令,證明數(shù)列是等比數(shù)列,并求其前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
先利用換底公式將對(duì)數(shù)都化為以2為底,利用對(duì)數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關(guān)系.【詳解】,,,因此,故選:A.【點(diǎn)睛】本題主要考查了利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎(chǔ)題.2、B【解析】
通過(guò)列舉法,列舉出同學(xué)的朝向,然后即可求出需要向后轉(zhuǎn)的次數(shù).【詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉(zhuǎn)”第2次“向后轉(zhuǎn)”第3次“向后轉(zhuǎn)”第4次“向后轉(zhuǎn)”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數(shù)為4次.故選:B.【點(diǎn)睛】本題考查的是求最小推理次數(shù),一般這類題型構(gòu)造較為巧妙,可通過(guò)列舉的方法直觀感受,屬于基礎(chǔ)題.3、C【解析】
根據(jù)拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過(guò)拋物線的焦點(diǎn)如圖,過(guò)A,M作準(zhǔn)線的垂直,垂足分別為C,D,過(guò)M作AC的垂線,垂足為E根據(jù)拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點(diǎn),所以MD為三角形NAC的中位線,故MD=CE=EA=AC設(shè)MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點(diǎn)睛】本題考查求拋物線的焦點(diǎn)弦的斜率,常見(jiàn)于利用拋物線的定義構(gòu)建關(guān)系,屬于中檔題.4、C【解析】
先求出,再與相乘即可求出答案.【詳解】因?yàn)?所以.故選:C.【點(diǎn)睛】本題考查了平面向量的坐標(biāo)運(yùn)算,考查了學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.5、B【解析】
首先求出,再根據(jù)含有個(gè)元素的集合有個(gè)子集,計(jì)算可得.【詳解】解:,,,子集的個(gè)數(shù)為.故選:.【點(diǎn)睛】考查列舉法、描述法的定義,以及交集的運(yùn)算,集合子集個(gè)數(shù)的計(jì)算公式,屬于基礎(chǔ)題.6、A【解析】
推導(dǎo)出,分別取的中點(diǎn),連結(jié),則,推導(dǎo)出,從而,進(jìn)而四面體的體積為,由此能求出結(jié)果.【詳解】解:在四面體中,為等邊三角形,邊長(zhǎng)為6,,,,,,分別取的中點(diǎn),連結(jié),則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【點(diǎn)睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.7、C【解析】
先求出集合U,再根據(jù)補(bǔ)集的定義求出結(jié)果即可.【詳解】由題意得U=x|∵A=1,2∴CU故選C.【點(diǎn)睛】本題考查集合補(bǔ)集的運(yùn)算,求解的關(guān)鍵是正確求出集合U和熟悉補(bǔ)集的定義,屬于簡(jiǎn)單題.8、B【解析】
由題意首先確定導(dǎo)函數(shù)的符號(hào),然后結(jié)合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【詳解】函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,且函數(shù)在處取得極大值,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.時(shí),,時(shí),,當(dāng)或時(shí),;當(dāng)時(shí),.故選:【點(diǎn)睛】根據(jù)函數(shù)取得極大值,判斷導(dǎo)函數(shù)在極值點(diǎn)附近左側(cè)為正,右側(cè)為負(fù),由正負(fù)情況討論圖像可能成立的選項(xiàng),是判斷圖像問(wèn)題常見(jiàn)方法,有一定難度.9、D【解析】
根據(jù)中點(diǎn)在軸上,設(shè)出兩點(diǎn)的坐標(biāo),,().對(duì)分成三類,利用則,列方程,化簡(jiǎn)后求得,利用導(dǎo)數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點(diǎn)的橫坐標(biāo)互為相反數(shù),不妨設(shè),,(),若,則,由,所以,即,方程無(wú)解;若,顯然不滿足;若,則,由,即,即,因?yàn)?,所以函?shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域?yàn)?,?故選D.【點(diǎn)睛】本小題主要考查平面平面向量數(shù)量積為零的坐標(biāo)表示,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查利用導(dǎo)數(shù)研究函數(shù)的最小值,考查分析與運(yùn)算能力,屬于較難的題目.10、D【解析】
畫(huà)出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】解:畫(huà)出滿足條件的平面區(qū)域,如圖示:如圖點(diǎn)坐標(biāo)分別為,目標(biāo)函數(shù)的幾何意義為,可行域內(nèi)點(diǎn)與坐標(biāo)原點(diǎn)的距離的平方,由圖可知到原點(diǎn)的距離最大,故.故選:D【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃問(wèn)題,考查數(shù)形結(jié)合思想,屬于中檔題.11、B【解析】
根據(jù)在上投影為,以及,可得;再對(duì)所求模長(zhǎng)進(jìn)行平方運(yùn)算,可將問(wèn)題轉(zhuǎn)化為模長(zhǎng)和夾角運(yùn)算,代入即可求得.【詳解】在上投影為,即又本題正確選項(xiàng):【點(diǎn)睛】本題考查向量模長(zhǎng)的運(yùn)算,對(duì)于含加減法運(yùn)算的向量模長(zhǎng)的求解,通常先求解模長(zhǎng)的平方,再開(kāi)平方求得結(jié)果;解題關(guān)鍵是需要通過(guò)夾角取值范圍的分析,得到的最小值.12、D【解析】
運(yùn)用函數(shù)的奇偶性定義,周期性定義,根據(jù)表達(dá)式判斷即可.【詳解】是定義域?yàn)榈钠婧瘮?shù),則,,又,,即是以4為周期的函數(shù),,所以函數(shù)的零點(diǎn)有無(wú)窮多個(gè);因?yàn)?,,令,則,即,所以的圖象關(guān)于對(duì)稱,由題意無(wú)法求出的值域,所以本題答案為D.【點(diǎn)睛】本題綜合考查了函數(shù)的性質(zhì),主要是抽象函數(shù)的性質(zhì),運(yùn)用數(shù)學(xué)式子判斷得出結(jié)論是關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出專業(yè)人數(shù)在、、、四個(gè)專業(yè)總?cè)藬?shù)的比例后可得.【詳解】由題意、、、四個(gè)不同的專業(yè)人數(shù)的比例為,故專業(yè)應(yīng)抽取的人數(shù)為.故答案為:1.【點(diǎn)睛】本題考查分層抽樣,根據(jù)分層抽樣的定義,在各層抽取樣本數(shù)量是按比例抽取的.14、【解析】
根據(jù)均值不等式得到,,根據(jù)等號(hào)成立條件得到直線的傾斜角為,計(jì)算得到直線方程.【詳解】由橢圓,可知,,,,,,,(當(dāng)且僅當(dāng),等號(hào)成立),,,,,直線的傾斜角為,直線的方程為.故答案為:.【點(diǎn)睛】本題考查了拋物線,橢圓,直線的綜合應(yīng)用,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.15、5.【解析】
由約束條件作出可行域,令z=3x+y,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由題意作出可行域如圖陰影部分所示.設(shè),當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),取最大值5.故答案為:5【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.16、-40【解析】
由題意,可先由公式得出二項(xiàng)展開(kāi)式的通項(xiàng),再令10-3r=1,得r=3即可得出x項(xiàng)的系數(shù)【詳解】的二項(xiàng)展開(kāi)式的通項(xiàng)公式為,r=0,1,2,3,4,5,令,所以的二項(xiàng)展開(kāi)式中x項(xiàng)的系數(shù)為.故答案為:-40.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,解題關(guān)鍵是靈活掌握二項(xiàng)式展開(kāi)式通項(xiàng)的公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),,,(2)【解析】
(1)根據(jù)機(jī)器人的進(jìn)行規(guī)律可確定、、的值;(2)首先根據(jù)機(jī)器人行進(jìn)規(guī)則知機(jī)器人沿軸行進(jìn)步,必須沿軸負(fù)方向行進(jìn)相同的步數(shù),而余下的每一步行進(jìn)方向都有兩個(gè)選擇(向上或向下),由此結(jié)合組合知識(shí)確定機(jī)器人的每一種走法關(guān)于的表達(dá)式,并得到的表達(dá)式,然后結(jié)合二項(xiàng)式定理及展開(kāi)式的通項(xiàng)公式進(jìn)行求解.【詳解】解:(1),,(2)設(shè)為沿軸正方向走的步數(shù)(每一步長(zhǎng)度為1),則反方向也需要走步才能回到軸上,所以,1,2,……,,(其中為不超過(guò)的最大整數(shù))總共走步,首先任選步沿軸正方向走,再在剩下的步中選步沿軸負(fù)方向走,最后剩下的每一步都有兩種選擇(向上或向下),即等價(jià)于求中含項(xiàng)的系數(shù),為其中含項(xiàng)的系數(shù)為故.【點(diǎn)睛】本題考查組合數(shù)、二項(xiàng)式定理,考查學(xué)生的邏輯推理能力,推理論證能力以及分類討論的思想.18、(1);(2)見(jiàn)解析.【解析】
(1)令,,利用可求得數(shù)列的通項(xiàng)公式,由此可得出數(shù)列的通項(xiàng)公式;(2)求得,利用裂項(xiàng)相消法求得,進(jìn)而可得出結(jié)論.【詳解】(1)令,,當(dāng)時(shí),;當(dāng)時(shí),,則,故;(2),.【點(diǎn)睛】本題考查利用求通項(xiàng),同時(shí)也考查了裂項(xiàng)相消法求和,考查計(jì)算能力與推理能力,屬于基礎(chǔ)題.19、(1);(2)證明見(jiàn)解析【解析】
(1)運(yùn)用離心率公式和點(diǎn)滿足橢圓方程,解得,,進(jìn)而得到橢圓方程;(2)設(shè)直線,代入橢圓方程,運(yùn)用韋達(dá)定理和直線的斜率公式,以及點(diǎn)在直線上滿足直線方程,化簡(jiǎn)整理,即可得到定值.【詳解】(1)因?yàn)?,所以,①又橢圓過(guò)點(diǎn),所以②由①②,解得所以橢圓的標(biāo)準(zhǔn)方程為.(2)證明設(shè)直線:,聯(lián)立得,設(shè),則易知故所以對(duì)于任意的,直線的斜率之積為定值.【點(diǎn)睛】本題考查橢圓的方程的求法,注意運(yùn)用離心率公式和點(diǎn)滿足橢圓方程,考查直線方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理和直線的斜率公式,化簡(jiǎn)整理,考查運(yùn)算能力,屬于中檔題.20、見(jiàn)解析【解析】
選擇①或②或③,求出的值,然后利用等比數(shù)列的求和公式可得出關(guān)于的不等式,判斷不等式是否存在符合條件的正整數(shù)解,在有解的情況下,解出不等式,進(jìn)而可得出結(jié)論.【詳解】選擇①:因?yàn)?,所以,所以.令,即,,所以使得的正整?shù)的最小值為;選擇②:因?yàn)?,所以,.因?yàn)?,所以不存在滿足條件的正整數(shù);選擇③:因?yàn)?,所以,所以.令,即,整理得.?dāng)為偶數(shù)時(shí),原不等式無(wú)解;當(dāng)為奇數(shù)時(shí),原不等式等價(jià)于,所以使得的正整數(shù)的最小值為.【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.21、(1);(2)【解析】
(1)由化為,利用數(shù)列的通項(xiàng)公式和前n項(xiàng)和的關(guān)系,得到是首項(xiàng)為,公差為的等差數(shù)列求解.(2)由(1)得到,再利用錯(cuò)位相減法求解.【詳解】(1)可以化為,,,,又時(shí),數(shù)列從開(kāi)始成等差數(shù)列,,代入得是首項(xiàng)為,公差為
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 業(yè)務(wù)代理合同范本結(jié)款方式
- 二手房屋裝修合同范本
- 產(chǎn)品收款合同范本
- 農(nóng)作物種子訂購(gòu)合同范本
- 個(gè)人車(chē)位承租合同范本
- 九夾板采購(gòu)合同范本
- 共同合租人合同范例
- 會(huì)議租用酒店合同范本
- 建筑用輕質(zhì)透水磚材料研究考核試卷
- 買(mǎi)賣(mài)公司轉(zhuǎn)讓合同范本
- T-CSUS 69-2024 智慧水務(wù)技術(shù)標(biāo)準(zhǔn)
- 2025年護(hù)理質(zhì)量與安全管理工作計(jì)劃
- 湖南大學(xué) 嵌入式開(kāi)發(fā)與應(yīng)用(張自紅)教案
- 地下商業(yè)街的規(guī)劃設(shè)計(jì)
- 長(zhǎng)安大學(xué)《畫(huà)法幾何與機(jī)械制圖一》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024-2030年全球及中國(guó)低密度聚乙烯(LDPE)行業(yè)需求動(dòng)態(tài)及未來(lái)發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 2024年新華東師大版七年級(jí)上冊(cè)數(shù)學(xué)全冊(cè)教案(新版教材)
- 醫(yī)院物業(yè)管理制度
- 新版高中物理必做實(shí)驗(yàn)?zāi)夸浖捌鞑?(電子版)
- 初中數(shù)學(xué)思維訓(xùn)練雙十字相乘法因式分解練習(xí)100道及答案
- (正式版)QC∕T 625-2024 汽車(chē)用涂鍍層和化學(xué)處理層
評(píng)論
0/150
提交評(píng)論