版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第23講平面向量基本定理和坐標(biāo)表示(精講)題型目錄一覽①平面向量基本定理的應(yīng)用②平面向量的坐標(biāo)運(yùn)算③向量共線的坐標(biāo)表示一、知識(shí)點(diǎn)梳理一、知識(shí)點(diǎn)梳理一、平面向量基本定理和性質(zhì)(1)共線向量定理如果SKIPIF1<0,則SKIPIF1<0;反之,如果SKIPIF1<0且SKIPIF1<0,則一定存在唯一的實(shí)數(shù)SKIPIF1<0,使SKIPIF1<0.(口訣:數(shù)乘即得平行,平行必有數(shù)乘).(2)三點(diǎn)共線定理平面內(nèi)三點(diǎn)A,B,C共線的充要條件是:存在實(shí)數(shù)SKIPIF1<0,使SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0為平面內(nèi)一點(diǎn).若A、B、C三點(diǎn)共線SKIPIF1<0存在唯一的實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0SKIPIF1<0存在唯一的實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0SKIPIF1<0存在唯一的實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0SKIPIF1<0存在SKIPIF1<0,使得SKIPIF1<0.(3)中線向量定理如圖所示,在SKIPIF1<0中,若點(diǎn)D是邊BC的中點(diǎn),則中線向量SKIPIF1<0SKIPIF1<0,反之亦正確.DDACB二、平面向量的坐標(biāo)表示及坐標(biāo)運(yùn)算(1)平面向量的坐標(biāo)表示在平面直角坐標(biāo)中,分別取與SKIPIF1<0軸,SKIPIF1<0軸正半軸方向相同的兩個(gè)單位向量SKIPIF1<0作為基底,那么由平面向量基本定理可知,對(duì)于平面內(nèi)的一個(gè)向量SKIPIF1<0,有且只有一對(duì)實(shí)數(shù)SKIPIF1<0使SKIPIF1<0,我們把有序?qū)崝?shù)對(duì)SKIPIF1<0叫做向量SKIPIF1<0的坐標(biāo),記作SKIPIF1<0.(2)向量的坐標(biāo)表示和以坐標(biāo)原點(diǎn)為起點(diǎn)的向量是一一對(duì)應(yīng)的,即有向量SKIPIF1<0SKIPIF1<0向量SKIPIF1<0SKIPIF1<0點(diǎn)SKIPIF1<0.(3)設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即兩個(gè)向量的和與差的坐標(biāo)分別等于這兩個(gè)向量相應(yīng)坐標(biāo)的和與差.若SKIPIF1<0,SKIPIF1<0為實(shí)數(shù),則SKIPIF1<0,即實(shí)數(shù)與向量的積的坐標(biāo),等于用該實(shí)數(shù)乘原來向量的相應(yīng)坐標(biāo).(4)設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0=SKIPIF1<0SKIPIF1<0,即一個(gè)向量的坐標(biāo)等于該向量的有向線段的終點(diǎn)的坐標(biāo)減去始點(diǎn)坐標(biāo).三、平面向量的直角坐標(biāo)運(yùn)算①已知點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0②已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0,【常用結(jié)論】①減法公式:SKIPIF1<0,常用于向量式的化簡.②SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共線SKIPIF1<0SKIPIF1<0SKIPIF1<0,這是直線的向量式方程.③SKIPIF1<0SKIPIF1<0SKIPIF1<0二、題型分類精講二、題型分類精講題型一平面向量基本定理的應(yīng)用策略方法平面向量基本定理解決問題的一般思路(1)先選擇一組基底,并運(yùn)用該基底將條件和結(jié)論表示為向量的形式,再通過向量的運(yùn)算來解決.(2)在基底未給出的情況下,合理地選取基底會(huì)給解題帶來方便.另外,要熟練運(yùn)用平面幾何的一些性質(zhì)定理.【典例1】在平行四邊形ABCD中,SKIPIF1<0,SKIPIF1<0.
(1)如圖1,如果E、F分別是BC,DC的中點(diǎn),試用SKIPIF1<0分別表示SKIPIF1<0;(2)如圖2,如果O是AC與BD的交點(diǎn),G是DO的中點(diǎn),試用SKIPIF1<0表示SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)(2)均根據(jù)向量的線性運(yùn)算直接表示即可;【詳解】(1)當(dāng)E、F分別是BC,DC的中點(diǎn)時(shí),SKIPIF1<0,SKIPIF1<0.(2)∵O是AC與BD的交點(diǎn),G是DO的中點(diǎn),所以SKIPIF1<0,SKIPIF1<0.【題型訓(xùn)練】一、單選題1.(2023春·重慶萬州·高三重慶市萬州第二高級(jí)中學(xué)校考階段練習(xí))在SKIPIF1<0中,SKIPIF1<0,E為AD中點(diǎn),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)向量的減法法則和平行四邊形法則對(duì)向量進(jìn)行分解轉(zhuǎn)化即可.【詳解】因?yàn)镾KIPIF1<0,E為AD中點(diǎn),所以SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:B.2.(2023·廣東汕頭·統(tǒng)考三模)如圖,點(diǎn)D、E分別AC、BC的中點(diǎn),設(shè)SKIPIF1<0,SKIPIF1<0,F(xiàn)是DE的中點(diǎn),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)向量的運(yùn)算,利用基底向量SKIPIF1<0表示SKIPIF1<0即可.【詳解】因?yàn)辄c(diǎn)D、E分別AC、BC的中點(diǎn),F(xiàn)是DE的中點(diǎn),所以SKIPIF1<0SKIPIF1<0.即SKIPIF1<0.故選:C.3.(2023·四川瀘州·四川省瀘縣第四中學(xué)??寄M預(yù)測)在平行四邊形SKIPIF1<0中,M為SKIPIF1<0的中點(diǎn),SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用向量的線性運(yùn)算的幾何意義進(jìn)行分解即可.【詳解】
SKIPIF1<0.故選:A.4.(2023·山西大同·統(tǒng)考模擬預(yù)測)在△ABC中,D為BC中點(diǎn),M為AD中點(diǎn),SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】A【分析】根據(jù)圖象及其性質(zhì),即可得出SKIPIF1<0,SKIPIF1<0,進(jìn)而根據(jù)SKIPIF1<0,即可求出SKIPIF1<0的值,即可得出答案.【詳解】因?yàn)镾KIPIF1<0是SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,SKIPIF1<0.又因?yàn)镾KIPIF1<0是SKIPIF1<0的中點(diǎn),所以,SKIPIF1<0SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:A.5.(2023·內(nèi)蒙古赤峰·赤峰二中校聯(lián)考模擬預(yù)測)在SKIPIF1<0中,SKIPIF1<0是SKIPIF1<0中線SKIPIF1<0的中點(diǎn),過點(diǎn)SKIPIF1<0的直線SKIPIF1<0交邊SKIPIF1<0于點(diǎn)M,交邊SKIPIF1<0于點(diǎn)N,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.4【答案】D【分析】把向量SKIPIF1<0分解成SKIPIF1<0形式,再由SKIPIF1<0三點(diǎn)共線,則SKIPIF1<0即可求解.【詳解】因?yàn)镾KIPIF1<0三點(diǎn)共線,所以SKIPIF1<0,且SKIPIF1<0,因?yàn)镾KIPIF1<0是SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0.故選:D6.(2023·全國·高三專題練習(xí))在平行四邊形ABCD中,AC與BD相交于點(diǎn)O,點(diǎn)E是線段OD的中點(diǎn),AE的延長線與CD交于點(diǎn)F,若SKIPIF1<0=a,SKIPIF1<0=b,且SKIPIF1<0=λa+μb,則λ+μ等于()
A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】如圖,作=,延長CD與AG相交于G,因?yàn)镃,F(xiàn),G三點(diǎn)共線,所以λ+μ=1.故選A.
二、多選題7.(2023·江蘇蘇州·模擬預(yù)測)在SKIPIF1<0中,記SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,且SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0的值可能為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】BC【分析】分點(diǎn)內(nèi)分與外分線段SKIPIF1<0討論,再由向量的線性運(yùn)算求解即可.【詳解】當(dāng)SKIPIF1<0點(diǎn)在線段SKIPIF1<0上時(shí),如圖,SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0點(diǎn)在線段SKIPIF1<0的延長線上時(shí),如圖,SKIPIF1<0,則SKIPIF1<0,故選:BC.8.(2023·全國·高三專題練習(xí))如圖,在SKIPIF1<0中,若點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點(diǎn),設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0交于一點(diǎn)SKIPIF1<0,則下列結(jié)論中成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AB【分析】利用向量的加減法則進(jìn)行判斷.【詳解】根據(jù)向量減法可得SKIPIF1<0,故A正確;因?yàn)镾KIPIF1<0是SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,故B正確;由題意知SKIPIF1<0是SKIPIF1<0的重心,則SKIPIF1<0,故C錯(cuò)誤;SKIPIF1<0,故D錯(cuò)誤.故選:AB.三、填空題9.(2023春·貴州黔東南·高三??茧A段練習(xí))在SKIPIF1<0中,若點(diǎn)SKIPIF1<0滿足SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0【分析】根據(jù)向量的線性運(yùn)算可用SKIPIF1<0表示SKIPIF1<0,求出SKIPIF1<0的值后可求SKIPIF1<0的值.【詳解】因?yàn)镾KIPIF1<0,故SKIPIF1<0,整理得到:SKIPIF1<0,故SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0為線段SKIPIF1<0靠近SKIPIF1<0的三等分點(diǎn),故SKIPIF1<0不共線,故SKIPIF1<0即SKIPIF1<0故答案為:SKIPIF1<0.10.(2023·江蘇鎮(zhèn)江·江蘇省鎮(zhèn)江中學(xué)校考三模)在SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0是SKIPIF1<0的中點(diǎn).若存在實(shí)數(shù)SKIPIF1<0使得SKIPIF1<0,則SKIPIF1<0__________(請(qǐng)用數(shù)字作答).【答案】SKIPIF1<0【分析】利用基底表示出SKIPIF1<0,結(jié)合條件可得SKIPIF1<0,進(jìn)而可求答案.【詳解】因?yàn)镾KIPIF1<0是SKIPIF1<0的中點(diǎn),所以SKIPIF1<0SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0.11.(2023·福建漳州·統(tǒng)考三模)已知SKIPIF1<0,點(diǎn)D滿足SKIPIF1<0,點(diǎn)E為線段CD上異于C,D的動(dòng)點(diǎn),若SKIPIF1<0,則SKIPIF1<0的取值范圍是_________.【答案】SKIPIF1<0【分析】利用向量得加減法,利用SKIPIF1<0為基底,表示出SKIPIF1<0,整理方程,結(jié)合二次函數(shù)得性質(zhì),可得答案.【詳解】由題意設(shè)SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,由二次函數(shù)得性質(zhì)得SKIPIF1<0,所以SKIPIF1<0得取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.四、解答題12.(2023春·湖南長沙·高三校聯(lián)考期中)如圖在△ABC中,點(diǎn)D是AC的中點(diǎn),點(diǎn)E是BD的中點(diǎn),設(shè)SKIPIF1<0=SKIPIF1<0,SKIPIF1<0=SKIPIF1<0.(1)用SKIPIF1<0表示向量SKIPIF1<0;(2)若點(diǎn)F在AC上,且SKIPIF1<0,求AF∶CF.【答案】(1)SKIPIF1<0.(2)SKIPIF1<0【分析】(1)利用向量線性運(yùn)算法則求解;(2)設(shè)SKIPIF1<0=λSKIPIF1<0(0<λ<1),由向量線性運(yùn)算用SKIPIF1<0表示出SKIPIF1<0,再與已知比較求得SKIPIF1<0后即可得.【詳解】(1)因?yàn)镾KIPIF1<0=SKIPIF1<0-SKIPIF1<0=SKIPIF1<0,點(diǎn)D是AC的中點(diǎn),所以SKIPIF1<0=SKIPIF1<0SKIPIF1<0=SKIPIF1<0(SKIPIF1<0),因?yàn)辄c(diǎn)E是BD的中點(diǎn),所以SKIPIF1<0=SKIPIF1<0(SKIPIF1<0+SKIPIF1<0)=SKIPIF1<0+SKIPIF1<0=-SKIPIF1<0SKIPIF1<0+SKIPIF1<0(SKIPIF1<0)=SKIPIF1<0.(2)設(shè)SKIPIF1<0=λSKIPIF1<0(0<λ<1),所以SKIPIF1<0=SKIPIF1<0+SKIPIF1<0=SKIPIF1<0+λSKIPIF1<0=SKIPIF1<0,.又SKIPIF1<0=SKIPIF1<0,所以λ=SKIPIF1<0,所以SKIPIF1<0=SKIPIF1<0,所以AF∶CF=4∶1.題型二平面向量的坐標(biāo)運(yùn)算策略方法平面向量坐標(biāo)運(yùn)算的技巧(1)利用向量加、減、數(shù)乘運(yùn)算的法則來進(jìn)行求解,若已知有向線段兩端點(diǎn)的坐標(biāo),則應(yīng)先求向量的坐標(biāo).(2)解題過程中,常利用“向量相等,則坐標(biāo)相同”這一結(jié)論,由此可列方程(組)進(jìn)行求解.【典例1】如圖,平面上SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)的坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)寫出向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的坐標(biāo);(2)如果四邊形SKIPIF1<0是平行四邊形,求SKIPIF1<0的坐標(biāo).【答案】(1)SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0【分析】(1)根據(jù)向量的坐標(biāo)運(yùn)算即可求解;(2)根據(jù)向量相等,即可利用坐標(biāo)相等求解.【詳解】(1)SKIPIF1<0SKIPIF1<0(2)設(shè)SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0【題型訓(xùn)練】一、單選題1.(2023·全國·高三專題練習(xí))在如圖所示的平面直角坐標(biāo)系中,向量SKIPIF1<0的坐標(biāo)是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先根據(jù)圖形得SKIPIF1<0坐標(biāo),即可得到答案【詳解】解:由圖象可得SKIPIF1<0,所以SKIPIF1<0,故選:D.2.(2023·全國·高三專題練習(xí))已知SKIPIF1<0的頂點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則頂點(diǎn)SKIPIF1<0的坐標(biāo)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由平行四邊形可得SKIPIF1<0進(jìn)而即得.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,由平行四邊形可得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的坐標(biāo)為SKIPIF1<0.故選:B.3.(2023·全國·高三專題練習(xí))已知SKIPIF1<0,若SKIPIF1<0,則點(diǎn)SKIPIF1<0的坐標(biāo)為(
)A.(-2,3) B.(2,-3)C.(-2,1) D.(2,-1)【答案】D【分析】設(shè)SKIPIF1<0,根據(jù)平面向量的坐標(biāo)運(yùn)算得出SKIPIF1<0,再根據(jù)SKIPIF1<0,列出方程組可求出SKIPIF1<0,從而得出點(diǎn)SKIPIF1<0的坐標(biāo).【詳解】解:設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,根據(jù)SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,所以點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0.故選:D.4.(2023·浙江·二模)若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)平面向量的坐標(biāo)運(yùn)算即可求得答案.【詳解】由題意知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,故選:B5.(2023·安徽滁州·??寄M預(yù)測)已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.5 B.6 C.7 D.8【答案】C【分析】由向量的坐標(biāo)運(yùn)算計(jì)算即可.【詳解】由題意,得SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故選:C.6.(2023春·云南昆明·高三??茧A段練習(xí))已知點(diǎn)SKIPIF1<0,SKIPIF1<0,則與SKIPIF1<0方向相反的單位向量是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】求出SKIPIF1<0,即得解.【詳解】解:由題意有SKIPIF1<0,所以SKIPIF1<0,所以與SKIPIF1<0方向相反的單位向量是SKIPIF1<0.故選:C7.(2023·全國·高三專題練習(xí))如圖,半徑為1的扇形SKIPIF1<0的圓心角為SKIPIF1<0,點(diǎn)C在弧SKIPIF1<0上,且SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】建立直角坐標(biāo)系,求出點(diǎn)的坐標(biāo),結(jié)合平面向量的基本定理建立方程求解即可.【詳解】如圖所示,以O(shè)為原點(diǎn),OB為x軸,建立直角坐標(biāo)系,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,故選:B【點(diǎn)睛】方法點(diǎn)睛:本題主要考查向量的坐標(biāo)運(yùn)算、相等向量以及平面向量基本定理,向量的運(yùn)算有兩種方法,一是幾何運(yùn)算往往結(jié)合平面幾何知識(shí)和三角函數(shù)知識(shí)解答,運(yùn)算法則是平行四邊形法則與三角形法則;二是坐標(biāo)運(yùn)算:建立坐標(biāo)系轉(zhuǎn)化為解析幾何或者三角函數(shù)問題解答.8.(2023·全國·高三專題練習(xí))在平面直角坐標(biāo)系SKIPIF1<0中,設(shè)SKIPIF1<0,向量SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.1 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)平面向量的坐標(biāo)運(yùn)算求得向量SKIPIF1<0,再根據(jù)SKIPIF1<0,將SKIPIF1<0用SKIPIF1<0表示,再根據(jù)平面向量的模的坐標(biāo)表示結(jié)合二次函數(shù)的性質(zhì)即可得出答案.【詳解】解:SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.故選:D.二、填空題9.(2023·河北·高三學(xué)業(yè)考試)若SKIPIF1<0,A點(diǎn)的坐標(biāo)為SKIPIF1<0,則B點(diǎn)的坐標(biāo)為__________.【答案】SKIPIF1<0【分析】向量SKIPIF1<0的坐標(biāo)等于點(diǎn)SKIPIF1<0的坐標(biāo)減去點(diǎn)SKIPIF1<0的坐標(biāo),從而求得結(jié)果.【詳解】設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查平面向量的坐標(biāo)表示,一個(gè)向量的坐標(biāo)等于終點(diǎn)坐標(biāo)減去起點(diǎn)的坐標(biāo),屬于基礎(chǔ)題目.10.(2023·四川綿陽·模擬預(yù)測)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則點(diǎn)M的坐標(biāo)為______.【答案】SKIPIF1<0【分析】設(shè)出點(diǎn)M的坐標(biāo),將各個(gè)點(diǎn)坐標(biāo)代入SKIPIF1<0中,計(jì)算結(jié)果.【詳解】解:由題意得SKIPIF1<0,所以SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故點(diǎn)M的坐標(biāo)為SKIPIF1<0.故答案為:SKIPIF1<011.(2023·貴州·統(tǒng)考模擬預(yù)測)已知向量SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0【分析】先求得SKIPIF1<0的坐標(biāo),再利用向量相等求解.【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0解得SKIPIF1<0.故答案為:SKIPIF1<0三、解答題12.(2023·全國·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,求點(diǎn)SKIPIF1<0及向量SKIPIF1<0的坐標(biāo).【答案】SKIPIF1<0.,SKIPIF1<0,SKIPIF1<0.【分析】先利用向量的坐標(biāo)運(yùn)算求出SKIPIF1<0,SKIPIF1<0,再設(shè)SKIPIF1<0,利用向量共線列方程組求得SKIPIF1<0,可得SKIPIF1<0,同理可得SKIPIF1<0,進(jìn)而可求SKIPIF1<0的坐標(biāo).【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0=SKIPIF1<0,即SKIPIF1<0.解得SKIPIF1<0,即SKIPIF1<0.同理可得SKIPIF1<0.所以SKIPIF1<0.題型三向量共線的坐標(biāo)表示策略方法平面向量共線的坐標(biāo)表示問題的解題策略(1)如果已知兩向量共線,求某些參數(shù)的取值時(shí),利用“若a=(x1,y1),b=(x2,y2),則a∥b的充要條件是x1y2=x2y1”.(2)在求與一個(gè)已知向量a共線的向量時(shí),可設(shè)所求向量為λa(λ∈R).【典例1】已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的值;(2)若SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)首先求出SKIPIF1<0的坐標(biāo),再根據(jù)向量共線的坐標(biāo)表示得到方程,解得即可;(2)首先求出SKIPIF1<0,SKIPIF1<0的坐標(biāo),依題意SKIPIF1<0,根據(jù)向量共線的坐標(biāo)表示得到方程,解得即可;【詳解】(1)因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0的值為SKIPIF1<0.【題型訓(xùn)練】一、單選題1.(2023·河南·襄城高中校聯(lián)考三模)已知向量SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0(
)A.5 B.4 C.3 D.2【答案】B【分析】利用平面向量線性運(yùn)算的坐標(biāo)表示和向量共線的坐標(biāo)表示求參數(shù).【詳解】SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:B2.(2023·廣東佛山·??寄M預(yù)測)梯形SKIPIF1<0中,SKIPIF1<0,已知SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由題意可知SKIPIF1<0,代入求解即可.【詳解】在梯形SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:C3.(2023·江西上饒·校聯(lián)考模擬預(yù)測)已知向量SKIPIF1<0,若SKIPIF1<0與SKIPIF1<0共線,則SKIPIF1<0(
)A.4 B.3 C.2 D.1【答案】D【分析】先根據(jù)向量的坐標(biāo)運(yùn)算規(guī)則求出SKIPIF1<0,再根據(jù)向量共線的運(yùn)算規(guī)則求解.【詳解】SKIPIF1<0,SKIPIF1<0;故選:D.4.(2023·黑龍江哈爾濱·哈爾濱三中??寄M預(yù)測)在平面直角坐標(biāo)系中,向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若A,B,C三點(diǎn)共線,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)三點(diǎn)共線的向量關(guān)系式即可求解.【詳解】因?yàn)锳,B,C三點(diǎn)共線,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故選:C5.(2023·江蘇揚(yáng)州·揚(yáng)州中學(xué)??寄M預(yù)測)已知向量SKIPIF1<0,SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【分析】若SKIPIF1<0,由SKIPIF1<0得出SKIPIF1<0,若SKIPIF1<0,由平行向量的坐標(biāo)公式得出SKIPIF1<0,從而得出答案.【詳解】若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0;若SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,得不出SKIPIF1<0.所以“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件.故選:A.6.(2023春·陜西榆林·高三綏德中學(xué)??茧A段練習(xí))在SKIPIF1<0中,點(diǎn)SKIPIF1<0滿足SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】法一,根據(jù)向量共線可得SKIPIF1<0,再得SKIPIF1<0,又SKIPIF1<0,再表示出SKIPIF1<0,利用向量相等解出SKIPIF1<0,即可得解;法二,建立平面直角坐標(biāo)系,利用坐標(biāo)法求出即可.【詳解】法一:因?yàn)镾KIPIF1<0在SKIPIF1<0上,故SKIPIF1<0,所以存在唯一實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0;同理存在SKIPIF1<0,使得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:C.法二:不妨設(shè)SKIPIF1<0為等腰直角三角形,其中SKIPIF1<0,以SKIPIF1<0為原點(diǎn),SKIPIF1<0所在直線為SKIPIF1<0軸,建立平面直角坐標(biāo)系,如圖,SKIPIF1<0,則直線SKIPIF1<0的方程分別為SKIPIF1<0,聯(lián)立解得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0.故選:C.二、填空題7.(2023·北京·北京四中??寄M預(yù)測)已知向量SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0______.【答案】SKIPIF1<0【分析】根據(jù)平面向量平行的坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024日用品衛(wèi)生紙出口貿(mào)易與清關(guān)代理合同3篇
- 2024版凱悅酒店消防工程合同
- 2024年道路橋梁施工合同范本3篇
- 2024年高端數(shù)控機(jī)床生產(chǎn)銷售合同
- 專業(yè)人力資源三方分配合作合同(2024版)版B版
- 2024年派遣工作詳細(xì)勞動(dòng)協(xié)議樣式版B版
- 專業(yè)廣告設(shè)計(jì)服務(wù)協(xié)議(2024年度)一
- 2024年自卸車建筑材料運(yùn)輸合同
- 2024年精密零件加工合作協(xié)議
- 專業(yè)化內(nèi)墻裝修項(xiàng)目協(xié)議書2024版版B版
- 臨時(shí)施工單位安全協(xié)議書
- 網(wǎng)絡(luò)評(píng)論員培訓(xùn)
- 《數(shù)字信號(hào)處理原理與實(shí)現(xiàn)(第3版)》全套教學(xué)課件
- 大型醫(yī)院多院區(qū)一體化基礎(chǔ)信息平臺(tái)建設(shè)方案
- 2024年消防月全員消防安全知識(shí)培訓(xùn)
- 2024年航空職業(yè)技能鑒定考試-航空乘務(wù)員危險(xiǎn)品考試近5年真題集錦(頻考類試題)帶答案
- 表 6-1-12? 咽喉部檢查法評(píng)分標(biāo)準(zhǔn)
- 低壓電工培訓(xùn)課件-電工常用工具、儀表的使用
- 林業(yè)專業(yè)知識(shí)考試試題及答案
- 2024年湖南省長沙市中考數(shù)學(xué)試題(含解析)
- 2024年大學(xué)華西醫(yī)院運(yùn)營管理部招考聘用3人高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
評(píng)論
0/150
提交評(píng)論