山西省晉中市名校2024年中考五模數學試題含解析_第1頁
山西省晉中市名校2024年中考五模數學試題含解析_第2頁
山西省晉中市名校2024年中考五模數學試題含解析_第3頁
山西省晉中市名校2024年中考五模數學試題含解析_第4頁
山西省晉中市名校2024年中考五模數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省晉中市名校2024年中考五模數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在直角坐標系中,等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),直角頂點B在第二象限,等腰直角△BCD的C點在y軸上移動,我們發(fā)現(xiàn)直角頂點D點隨之在一條直線上移動,這條直線的解析式是()A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+22.一次函數的圖像不經過的象限是:()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若分式有意義,則的取值范圍是()A.; B.; C.; D..4.下列幾何體中,三視圖有兩個相同而另一個不同的是()A.(1)(2) B.(2)(3) C.(2)(4) D.(3)(4)5.下列各式計算正確的是()A.a2+2a3=3a5 B.a?a2=a3 C.a6÷a2=a3 D.(a2)3=a56.已知:如圖,在扇形中,,半徑,將扇形沿過點的直線折疊,點恰好落在弧上的點處,折痕交于點,則弧的長為()A. B. C. D.7.tan45o的值為()A. B.1 C. D.8.不等式組的正整數解的個數是()A.5 B.4 C.3 D.29.若一次函數y=(2m﹣3)x﹣1+m的圖象不經過第三象限,則m的取值范圖是()A.1<m< B.1≤m< C.1<m≤ D.1≤m≤10.如圖是一個空心圓柱體,其俯視圖是()A.B.C.D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,點A為函數y=(x>0)圖象上一點,連結OA,交函數y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△OBC的面積為____.12.飛機著陸后滑行的距離y(單位:m)關于滑行時間t(單位:s)的函數解析式是y=60t﹣.在飛機著陸滑行中,最后4s滑行的距離是_____m.13.如圖,在x軸的正半軸上依次間隔相等的距離取點A1,A2,A3,A4,…,An,分別過這些點做x軸的垂線與反比例函數y=的圖象相交于點P1,P2,P3,P4,…Pn,再分別過P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分別為B1,B2,B3,B4,…,Bn﹣1,連接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一組Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,則Rt△Pn﹣1Bn﹣1Pn的面積為_____.14.如圖,在菱形ABCD中,點E、F在對角線BD上,BE=DF=BD,若四邊形AECF為正方形,則tan∠ABE=_____.15.親愛的同學們,在我們的生活中處處有數學的身影.請看圖,折疊一張三角形紙片,把三角形的三個角拼在一起,就得到一個著名的幾何定理,請你寫出這一定理的結論:“三角形的三個內角和等于_______°.”16.把小圓形場地的半徑增加5米得到大圓形場地,此時大圓形場地的面積是小圓形場地的4倍,設小圓形場地的半徑為x米,若要求出未知數x,則應列出方程(列出方程,不要求解方程).17.現(xiàn)有一張圓心角為108°,半徑為40cm的扇形紙片,小紅剪去圓心角為θ的部分扇形紙片后,將剩下的紙片制作成一個底面半徑為10cm的圓錐形紙帽(接縫處不重疊),則剪去的扇形紙片的圓心角θ為_____.三、解答題(共7小題,滿分69分)18.(10分)已知二次函數y=mx2﹣2mx+n的圖象經過(0,﹣3).(1)n=_____________;(2)若二次函數y=mx2﹣2mx+n的圖象與x軸有且只有一個交點,求m值;(3)若二次函數y=mx2﹣2mx+n的圖象與平行于x軸的直線y=5的一個交點的橫坐標為4,則另一個交點的坐標為;(4)如圖,二次函數y=mx2﹣2mx+n的圖象經過點A(3,0),連接AC,點P是拋物線位于線段AC下方圖象上的任意一點,求△PAC面積的最大值.19.(5分)已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=40°.(1)如圖1,若D為弧AB的中點,求∠ABC和∠ABD的度數;(2)如圖2,過點D作⊙O的切線,與AB的延長線交于點P,若DP∥AC,求∠OCD的度數.20.(8分)如圖,∠AOB=45°,點M,N在邊OA上,點P是邊OB上的點.(1)利用直尺和圓規(guī)在圖1確定點P,使得PM=PN;(2)設OM=x,ON=x+4,①若x=0時,使P、M、N構成等腰三角形的點P有個;②若使P、M、N構成等腰三角形的點P恰好有三個,則x的值是____________.21.(10分)如圖,△ABC內接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF(1)判斷AF與⊙O的位置關系并說明理由;(2)若⊙O的半徑為4,AF=3,求AC的長.22.(10分)如圖,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),B(4,0),與y軸交于點C(0,2)(1)求拋物線的表達式;(2)拋物線的對稱軸與x軸交于點M,點D與點C關于點M對稱,試問在該拋物線的對稱軸上是否存在點P,使△BMP與△ABD相似?若存在,請求出所有滿足條件的P點的坐標;若不存在,請說明理由.23.(12分)先化簡:()÷,再從﹣2,﹣1,0,1這四個數中選擇一個合適的數代入求值.24.(14分)計算:(-1)-1-++|1-3|

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

抓住兩個特殊位置:當BC與x軸平行時,求出D的坐標;C與原點重合時,D在y軸上,求出此時D的坐標,設所求直線解析式為y=kx+b,將兩位置D坐標代入得到關于k與b的方程組,求出方程組的解得到k與b的值,即可確定出所求直線解析式.【詳解】當BC與x軸平行時,過B作BE⊥x軸,過D作DF⊥x軸,交BC于點G,如圖1所示.∵等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐標為(﹣1,3);當C與原點O重合時,D在y軸上,此時OD=BE=1,即D(0,1),設所求直線解析式為y=kx+b(k≠0),將兩點坐標代入得:,解得:.則這條直線解析式為y=﹣x+1.故選D.【點睛】本題屬于一次函數綜合題,涉及的知識有:待定系數法確定一次函數解析式,等腰直角三角形的性質,坐標與圖形性質,熟練運用待定系數法是解答本題的關鍵.2、C【解析】試題分析:根據一次函數y=kx+b(k≠0,k、b為常數)的圖像與性質可知:當k>0,b>0時,圖像過一二三象限;當k>0,b<0時,圖像過一三四象限;當k<0,b>0時,圖像過一二四象限;當k<0,b<0,圖像過二三四象限.這個一次函數的k=<0與b=1>0,因此不經過第三象限.答案為C考點:一次函數的圖像3、B【解析】

分式的分母不為零,即x-2≠1.【詳解】∵分式有意義,∴x-2≠1,∴.故選:B.【點睛】考查了分式有意義的條件,(1)分式無意義?分母為零;(2)分式有意義?分母不為零;(3)分式值為零?分子為零且分母不為零.4、B【解析】

根據三視圖的定義即可解答.【詳解】正方體的三視圖都是正方形,故(1)不符合題意;圓柱的主視圖、左視圖都是矩形,俯視圖是圓,故(2)符合題意;圓錐的主視圖、左視圖都是三角形,俯視圖是圓形,故(3)符合題意;三棱錐主視圖是、左視圖是,俯視圖是三角形,故(4)不符合題意;故選B.【點睛】本題考查了簡單幾何體的三視圖,熟知三視圖的定義是解決問題的關鍵.5、B【解析】

根據冪的乘方,底數不變指數相乘;同底數冪相除,底數不變,指數相減;同底數冪相乘,底數不變指數相加,對各選項分析判斷利用排除法求解【詳解】A.a2與2a3不是同類項,故A不正確;B.a?a2=a3,正確;C.原式=a4,故C不正確;D.原式=a6,故D不正確;故選:B.【點睛】此題考查同底數冪的乘法,冪的乘方與積的乘方,解題的關鍵在于掌握運算法則.6、D【解析】

如圖,連接OD.根據折疊的性質、圓的性質推知△ODB是等邊三角形,則易求∠AOD=110°-∠DOB=50°;然后由弧長公式弧長的公式來求的長【詳解】解:如圖,連接OD.解:如圖,連接OD.

根據折疊的性質知,OB=DB.

又∵OD=OB,

∴OD=OB=DB,即△ODB是等邊三角形,

∴∠DOB=60°.

∵∠AOB=110°,

∴∠AOD=∠AOB-∠DOB=50°,

∴的長為=5π.

故選D.【點睛】本題考查了弧長的計算,翻折變換(折疊問題).折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.所以由折疊的性質推知△ODB是等邊三角形是解答此題的關鍵之處.7、B【解析】

解:根據特殊角的三角函數值可得tan45o=1,故選B.【點睛】本題考查特殊角的三角函數值.8、C【解析】

先解不等式組得到-1<x≤3,再找出此范圍內的正整數.【詳解】解不等式1-2x<3,得:x>-1,

解不等式≤2,得:x≤3,

則不等式組的解集為-1<x≤3,

所以不等式組的正整數解有1、2、3這3個,

故選C.【點睛】本題考查了一元一次不等式組的整數解,解題的關鍵是正確得出一元一次不等式組的解集.9、B【解析】

根據一次函數的性質,根據不等式組即可解決問題;【詳解】∵一次函數y=(2m-3)x-1+m的圖象不經過第三象限,∴,解得1≤m<.故選:B.【點睛】本題考查一次函數的圖象與系數的關系等知識,解題的關鍵是學會用轉化的思想思考問題,屬于中考常考題型.10、D【解析】

根據從上邊看得到的圖形是俯視圖,可得答案.【詳解】該空心圓柱體的俯視圖是圓環(huán),如圖所示:故選D.【點睛】本題考查了三視圖,明確俯視圖是從物體上方看得到的圖形是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、6【解析】

根據題意可以分別設出點A、點B的坐標,根據點O、A、B在同一條直線上可以得到A、B的坐標之間的關系,由AO=AC可知點C的橫坐標是點A的橫坐標的2倍,從而可以得到△OBC的面積.【詳解】設點A的坐標為(a,),點B的坐標為(b,),∵點C是x軸上一點,且AO=AC,∴點C的坐標是(2a,0),設過點O(0,0),A(a,)的直線的解析式為:y=kx,∴=k?a,解得k=,又∵點B(b,)在y=x上,∴=?b,解得,=或=?(舍去),∴S△OBC==6.故答案為:6.【點睛】本題考查了等腰三角形的性質與反比例函數的圖象以及三角形的面積公式,解題的關鍵是熟練的掌握等腰三角形的性質與反比例函數的圖象以及三角形的面積公式.12、24【解析】

先利用二次函數的性質求出飛機滑行20s停止,此時滑行距離為600m,然后再將t=20-4=16代入求得16s時滑行的距離,即可求出最后4s滑行的距離.【詳解】y=60t﹣=(t-20)2+600,即飛機著陸后滑行20s時停止,滑行距離為600m,當t=20-4=16時,y=576,600-576=24,即最后4s滑行的距離是24m,故答案為24.【點睛】本題考查二次函數的應用,解題的關鍵是理解題意,熟練應用二次函數的性質解決問題.13、【解析】

解:設OA1=A1A2=A2A3=…=An-2An-1=An-1An=a,∵當x=a時,,∴P1的坐標為(a,),當x=2a時,,∴P2的坐標為(2a,),……∴Rt△P1B1P2的面積為,Rt△P2B2P3的面積為,Rt△P3B3P4的面積為,……∴Rt△Pn-1Bn-1Pn的面積為.故答案為:14、【解析】

利用正方形對角線相等且互相平分,得出EO=AO=BE,進而得出答案.【詳解】解:∵四邊形AECF為正方形,

∴EF與AC相等且互相平分,

∴∠AOB=90°,AO=EO=FO,

∵BE=DF=BD,

∴BE=EF=FD,

∴EO=AO=BE,

∴tan∠ABE==.

故答案為:【點睛】此題主要考查了正方形的性質以及銳角三角函數關系,正確得出EO=AO=BE是解題關鍵.15、1【解析】本題主要考查了三角形的內角和定理.解:根據三角形的內角和可知填:1.16、π(x+5)1=4πx1.【解析】

根據等量關系“大圓的面積=4×小圓的面積”可以列出方程.【詳解】解:設小圓的半徑為x米,則大圓的半徑為(x+5)米,根據題意得:π(x+5)1=4πx1,故答案為π(x+5)1=4πx1.【點睛】本題考查了由實際問題抽象出一元二次方程的知識,本題等量關系比較明顯,容易列出.17、18°【解析】試題分析:根據圓錐的展開圖的圓心角計算法則可得:扇形的圓心角=1040考點:圓錐的展開圖三、解答題(共7小題,滿分69分)18、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)當a=時,△PAC的面積取最大值,最大值為【解析】

(2)將(0,-2)代入二次函數解析式中即可求出n值;(2)由二次函數圖象與x軸只有一個交點,利用根的判別式△=0,即可得出關于m的一元二次方程,解之取其非零值即可得出結論;(2)根據二次函數的解析式利用二次函數的性質可找出二次函數圖象的對稱軸,利用二次函數圖象的對稱性即可找出另一個交點的坐標;(4)將點A的坐標代入二次函數解析式中可求出m值,由此可得出二次函數解析式,由點A、C的坐標,利用待定系數法可求出直線AC的解析式,過點P作PD⊥x軸于點D,交AC于點Q,設點P的坐標為(a,a2-2a-2),則點Q的坐標為(a,a-2),點D的坐標為(a,0),根據三角形的面積公式可找出S△ACP關于a的函數關系式,配方后即可得出△PAC面積的最大值.【詳解】解:(2)∵二次函數y=mx2﹣2mx+n的圖象經過(0,﹣2),∴n=﹣2.故答案為﹣2.(2)∵二次函數y=mx2﹣2mx﹣2的圖象與x軸有且只有一個交點,∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,解得:m2=0,m2=﹣2.∵m≠0,∴m=﹣2.(2)∵二次函數解析式為y=mx2﹣2mx﹣2,∴二次函數圖象的對稱軸為直線x=﹣=2.∵該二次函數圖象與平行于x軸的直線y=5的一個交點的橫坐標為4,∴另一交點的橫坐標為2×2﹣4=﹣2,∴另一個交點的坐標為(﹣2,5).故答案為(﹣2,5).(4)∵二次函數y=mx2﹣2mx﹣2的圖象經過點A(2,0),∴0=9m﹣6m﹣2,∴m=2,∴二次函數解析式為y=x2﹣2x﹣2.設直線AC的解析式為y=kx+b(k≠0),將A(2,0)、C(0,﹣2)代入y=kx+b,得:,解得:,∴直線AC的解析式為y=x﹣2.過點P作PD⊥x軸于點D,交AC于點Q,如圖所示.設點P的坐標為(a,a2﹣2a﹣2),則點Q的坐標為(a,a﹣2),點D的坐標為(a,0),∴PQ=a﹣2﹣(a2﹣2a﹣2)=2a﹣a2,∴S△ACP=S△APQ+S△CPQ=PQ?OD+PQ?AD=﹣a2+a=﹣(a﹣)2+,∴當a=時,△PAC的面積取最大值,最大值為.【點睛】本題考查了待定系數法求一次(二次)函數解析式、拋物線與x軸的交點、二次函數的性質以及二次函數的最值,解題的關鍵是:(2)代入點的坐標求出n值;(2)牢記當△=b2-4ac=0時拋物線與x軸只有一個交點;(2)利用二次函數的對稱軸求出另一交點的坐標;(4)利用三角形的面積公式找出S△ACP關于a的函數關系式.19、(1)45°;(2)26°.【解析】

(1)根據圓周角和圓心角的關系和圖形可以求得∠ABC和∠ABD的大??;(2)根據題意和平行線的性質、切線的性質可以求得∠OCD的大?。驹斀狻浚?)∵AB是⊙O的直徑,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D為弧AB的中點,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)連接OD,∵DP切⊙O于點D,∴OD⊥DP,即∠ODP=90°,∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一個外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.【點睛】本題考查切線的性質、圓周角定理,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.20、(1)見解析;(2)①1;②:x=0或x=4﹣4或4<x<4;【解析】

(1)分別以M、N為圓心,以大于MN為半徑作弧,兩弧相交與兩點,過兩弧交點的直線就是MN的垂直平分線;(2)①分為PM=PN,MP=MN,NP=NM三種情況進行判斷即可;②如圖1,構建腰長為4的等腰直角△OMC,和半徑為4的⊙M,發(fā)現(xiàn)M在點D的位置時,滿足條件;如圖4,根據等腰三角形三種情況的畫法:分別以M、N為圓心,以MN為半徑畫弧,與OB的交點就是滿足條件的點P,再以MN為底邊的等腰三角形,通過畫圖發(fā)現(xiàn),無論x取何值,以MN為底邊的等腰三角形都存在一個,所以只要滿足以MN為腰的三角形有兩個即可.【詳解】解:(1)如圖所示:(2)①如圖所示:故答案為1.②如圖1,以M為圓心,以4為半徑畫圓,當⊙M與OB相切時,設切點為C,⊙M與OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴當M與D重合時,即時,同理可知:點P恰好有三個;如圖4,取OM=4,以M為圓心,以OM為半徑畫圓.則⊙M與OB除了O外只有一個交點,此時x=4,即以∠PMN為頂角,MN為腰,符合條件的點P有一個,以N圓心,以MN為半徑畫圓,與直線OB相離,說明此時以∠PNM為頂角,以MN為腰,符合條件的點P不存在,還有一個是以NM為底邊的符合條件的點P;點M沿OA運動,到M1時,發(fā)現(xiàn)⊙M1與直線OB有一個交點;∴當時,圓M在移動過程中,則會與OB除了O外有兩個交點,滿足點P恰好有三個;綜上所述,若使點P,M,N構成等腰三角形的點P恰好有三個,則x的值是:x=0或或故答案為x=0或或【點睛】本題考查了等腰三角形的判定,有難度,本題通過數形結合的思想解決問題,解題的關鍵是熟練掌握已知一邊,作等腰三角形的畫法.21、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點,即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【解析】試題分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對應角相等∠OAF=∠OCF,再根據切線的性質得出∠OCF=90°,證出∠OAF=90°,即可得出結論;(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據垂徑定理得出AC=2AE.試題解析:(1)連接OC,如圖所示:∵AB是⊙O直徑,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切線,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切線;(2)∵⊙O的半徑為4,AF=3,∠OAF=90°,∴OF==1∵FA⊥OA,OF⊥AC,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論