版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山西?。〞x城地區(qū))2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.甲、乙兩人沿相同的路線由A地到B地勻速前進(jìn),A、B兩地間的路程為20km.他們前進(jìn)的路程為s(km),甲出發(fā)后的時(shí)間為t(h),甲、乙前進(jìn)的路程與時(shí)間的函數(shù)圖象如圖所示.根據(jù)圖象信息,下列說法正確的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出發(fā)1h D.甲比乙晚到B地3h2.如圖1,點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),沿B→C→A勻速運(yùn)動(dòng)到點(diǎn)A,圖2是點(diǎn)P運(yùn)動(dòng)時(shí),線段BP的長(zhǎng)度y隨時(shí)間x變化的關(guān)系圖象,其中M為曲線部分的最低點(diǎn),則△ABC的面積是()A.10 B.12 C.20 D.243.如圖,在矩形ABCD中,AB=3,AD=4,點(diǎn)E在邊BC上,若AE平分∠BED,則BE的長(zhǎng)為()A. B. C. D.4﹣4.下表是某校合唱團(tuán)成員的年齡分布.年齡/歲13141516頻數(shù)515x對(duì)于不同的x,下列關(guān)于年齡的統(tǒng)計(jì)量不會(huì)發(fā)生改變的是()A.眾數(shù)、中位數(shù) B.平均數(shù)、中位數(shù) C.平均數(shù)、方差 D.中位數(shù)、方差5.下列成語(yǔ)描述的事件為隨機(jī)事件的是()A.水漲船高B.守株待兔C.水中撈月D.緣木求魚6.如圖,數(shù)軸A、B上兩點(diǎn)分別對(duì)應(yīng)實(shí)數(shù)a、b,則下列結(jié)論正確的是()A.a(chǎn)+b>0 B.a(chǎn)b>0 C.1a+7.下列運(yùn)算正確的()A.(b2)3=b5 B.x3÷x3=x C.5y3?3y2=15y5 D.a(chǎn)+a2=a38.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1259.已知x1、x2是關(guān)于x的方程x2﹣ax﹣2=0的兩根,下列結(jié)論一定正確的是()A.x1≠x2 B.x1+x2>0 C.x1?x2>0 D.x1<0,x2<010.一個(gè)圓的內(nèi)接正六邊形的邊長(zhǎng)為2,則該圓的內(nèi)接正方形的邊長(zhǎng)為()A. B.2 C.2 D.411.在Rt△ABC中,∠C=90°,AB=4,AC=1,則cosB的值為()A. B. C. D.12.化簡(jiǎn)(﹣a2)?a5所得的結(jié)果是()A.a(chǎn)7 B.﹣a7 C.a(chǎn)10 D.﹣a10二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.拋物線y=mx2+2mx+5的對(duì)稱軸是直線_____.14.如圖,在矩形ABCD中,AB=3,AD=5,點(diǎn)E在DC上,將矩形ABCD沿AE折疊,點(diǎn)D恰好落在BC邊上的點(diǎn)F處,那么cos∠EFC的值是.15.如圖,在邊長(zhǎng)為6的菱形ABCD中,分別以各頂點(diǎn)為圓心,以邊長(zhǎng)的一半為半徑,在菱形內(nèi)作四條圓弧,則圖中陰影部分的周長(zhǎng)是___結(jié)果保留16.如圖,以AB為直徑的半圓沿弦BC折疊后,AB與相交于點(diǎn)D.若,則∠B=________°.17.如圖,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分線MN交AC于D,連接DB,若tan∠CBD=,則BD=_____.18.關(guān)于x的一元二次方程x2-2x+m-1=0有兩個(gè)相等的實(shí)數(shù)根,則m的值為_________三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)若一個(gè)三位數(shù)的十位數(shù)字比個(gè)位數(shù)字和百位數(shù)字都大,則稱這個(gè)數(shù)為“傘數(shù)”.現(xiàn)從1,2,3,4這四個(gè)數(shù)字中任取3個(gè)數(shù),組成無重復(fù)數(shù)字的三位數(shù).(1)請(qǐng)畫出樹狀圖并寫出所有可能得到的三位數(shù);(2)甲、乙二人玩一個(gè)游戲,游戲規(guī)則是:若組成的三位數(shù)是“傘數(shù)”,則甲勝;否則乙勝.你認(rèn)為這個(gè)游戲公平嗎?試說明理由.20.(6分)發(fā)現(xiàn)如圖1,在有一個(gè)“凹角∠A1A2A3”n邊形A1A2A3A4……An中(n為大于3的整數(shù)),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.驗(yàn)證如圖2,在有一個(gè)“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+∠C+∠D.證明3,在有一個(gè)“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如圖4,在有兩個(gè)連續(xù)“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數(shù)),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣)×180°.21.(6分)如圖,已知點(diǎn)A,B,C在半徑為4的⊙O上,過點(diǎn)C作⊙O的切線交OA的延長(zhǎng)線于點(diǎn)D.(Ⅰ)若∠ABC=29°,求∠D的大小;(Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于點(diǎn)E,求:①BE的長(zhǎng);②四邊形ABCD的面積.22.(8分)如圖,一座鋼結(jié)構(gòu)橋梁的框架是△ABC,水平橫梁BC長(zhǎng)18米,中柱AD高6米,其中D是BC的中點(diǎn),且AD⊥BC.(1)求sinB的值;(2)現(xiàn)需要加裝支架DE、EF,其中點(diǎn)E在AB上,BE=2AE,且EF⊥BC,垂足為點(diǎn)F,求支架DE的長(zhǎng).23.(8分)有一個(gè)n位自然數(shù)能被x0整除,依次輪換個(gè)位數(shù)字得到的新數(shù)能被x0+1整除,再依次輪換個(gè)位數(shù)字得到的新數(shù)能被x0+2整除,按此規(guī)律輪換后,能被x0+3整除,…,能被x0+n﹣1整除,則稱這個(gè)n位數(shù)是x0的一個(gè)“輪換數(shù)”.例如:60能被5整除,06能被6整除,則稱兩位數(shù)60是5的一個(gè)“輪換數(shù)”;再如:324能被2整除,243能被3整除,432能被4整除,則稱三位數(shù)324是2個(gè)一個(gè)“輪換數(shù)”.(1)若一個(gè)兩位自然數(shù)的個(gè)位數(shù)字是十位數(shù)字的2倍,求證這個(gè)兩位自然數(shù)一定是“輪換數(shù)”.(2)若三位自然數(shù)是3的一個(gè)“輪換數(shù)”,其中a=2,求這個(gè)三位自然數(shù).24.(10分)在平面直角坐標(biāo)系xOy中,已知兩點(diǎn)A(0,3),B(1,0),現(xiàn)將線段AB繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)90°得到線段BC,拋物線y=ax2+bx+c經(jīng)過點(diǎn)C.(1)如圖1,若拋物線經(jīng)過點(diǎn)A和D(﹣2,0).①求點(diǎn)C的坐標(biāo)及該拋物線解析式;②在拋物線上是否存在點(diǎn)P,使得∠POB=∠BAO,若存在,請(qǐng)求出所有滿足條件的點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由;(2)如圖2,若該拋物線y=ax2+bx+c(a<0)經(jīng)過點(diǎn)E(2,1),點(diǎn)Q在拋物線上,且滿足∠QOB=∠BAO,若符合條件的Q點(diǎn)恰好有2個(gè),請(qǐng)直接寫出a的取值范圍.25.(10分)(問題情境)張老師給愛好學(xué)習(xí)的小軍和小俊提出這樣的一個(gè)問題:如圖1,在△ABC中,AB=AC,點(diǎn)P為邊BC上任一點(diǎn),過點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點(diǎn)C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過點(diǎn)P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當(dāng)點(diǎn)P在BC延長(zhǎng)線上時(shí),其余條件不變,求證:PD﹣PE=CF;請(qǐng)運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法完成下列兩題:[結(jié)論運(yùn)用]如圖4,將矩形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個(gè)航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點(diǎn),ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點(diǎn),連接DM、CN,求△DEM與△CEN的周長(zhǎng)之和.26.(12分)如圖,O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.寫出圖中小于平角的角.求出∠BOD的度數(shù).小明發(fā)現(xiàn)OE平分∠BOC,請(qǐng)你通過計(jì)算說明道理.27.(12分)拋物線y=x2+bx+c經(jīng)過點(diǎn)A、B、C,已知A(﹣1,0),C(0,﹣3).求拋物線的解析式;如圖1,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),M(m,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC=90°,請(qǐng)指出實(shí)數(shù)m的變化范圍,并說明理由.如圖2,將拋物線平移,使其頂點(diǎn)E與原點(diǎn)O重合,直線y=kx+2(k>0)與拋物線相交于點(diǎn)P、Q(點(diǎn)P在左邊),過點(diǎn)P作x軸平行線交拋物線于點(diǎn)H,當(dāng)k發(fā)生改變時(shí),請(qǐng)說明直線QH過定點(diǎn),并求定點(diǎn)坐標(biāo).
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由圖象知,甲出發(fā)1小時(shí)后乙才出發(fā),乙到2小時(shí)后甲才到,故選C.2、B【解析】
根據(jù)圖象可知點(diǎn)P在BC上運(yùn)動(dòng)時(shí),此時(shí)BP不斷增大,而從C向A運(yùn)動(dòng)時(shí),BP先變小后變大,從而可求出BC與AC的長(zhǎng)度.【詳解】解:根據(jù)圖象可知點(diǎn)P在BC上運(yùn)動(dòng)時(shí),此時(shí)BP不斷增大,
由圖象可知:點(diǎn)P從B向C運(yùn)動(dòng)時(shí),BP的最大值為5,即BC=5,
由于M是曲線部分的最低點(diǎn),
∴此時(shí)BP最小,即BP⊥AC,BP=4,
∴由勾股定理可知:PC=3,
由于圖象的曲線部分是軸對(duì)稱圖形,
∴PA=3,
∴AC=6,
∴△ABC的面積為:×4×6=12.故選:B.【點(diǎn)睛】本題考查動(dòng)點(diǎn)問題的函數(shù)圖象,解題關(guān)鍵是注意結(jié)合圖象求出BC與AC的長(zhǎng)度,本題屬于中等題型.3、D【解析】
首先根據(jù)矩形的性質(zhì),可知AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,然后根據(jù)AE平分∠BED求得ED=AD;利用勾股定理求得EC的長(zhǎng),進(jìn)而求得BE的長(zhǎng).【詳解】∵四邊形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,∴∠DAE=∠BEA,∵AE是∠DEB的平分線,∴∠BEA=∠AED,∴∠DAE=∠AED,∴DE=AD=4,再Rt△DEC中,EC===,∴BE=BC-EC=4-.故答案選D.【點(diǎn)睛】本題考查了矩形的性質(zhì)與角平分線的性質(zhì)以及勾股定理的應(yīng)用,解題的關(guān)鍵是熟練的掌握矩形的性質(zhì)與角平分線的性質(zhì)以及勾股定理的應(yīng)用.4、A【解析】
由頻數(shù)分布表可知后兩組的頻數(shù)和為10,即可得知總?cè)藬?shù),結(jié)合前兩組的頻數(shù)知出現(xiàn)次數(shù)最多的數(shù)據(jù)及第15、16個(gè)數(shù)據(jù)的平均數(shù),可得答案.【詳解】由題中表格可知,年齡為15歲與年齡為16歲的頻數(shù)和為,則總?cè)藬?shù)為,故該組數(shù)據(jù)的眾數(shù)為14歲,中位數(shù)為(歲),所以對(duì)于不同的x,關(guān)于年齡的統(tǒng)計(jì)量不會(huì)發(fā)生改變的是眾數(shù)和中位數(shù),故選A.【點(diǎn)睛】本題主要考查頻數(shù)分布表及統(tǒng)計(jì)量的選擇,由表中數(shù)據(jù)得出數(shù)據(jù)的總數(shù)是根本,熟練掌握平均數(shù)、中位數(shù)、眾數(shù)及方差的定義和計(jì)算方法是解題的關(guān)鍵.5、B【解析】試題解析:水漲船高是必然事件,A不正確;守株待兔是隨機(jī)事件,B正確;水中撈月是不可能事件,C不正確緣木求魚是不可能事件,D不正確;故選B.考點(diǎn):隨機(jī)事件.6、C【解析】
本題要先觀察a,b在數(shù)軸上的位置,得b<-1<0<a<1,然后對(duì)四個(gè)選項(xiàng)逐一分析.【詳解】A、因?yàn)閎<-1<0<a<1,所以|b|>|a|,所以a+b<0,故選項(xiàng)A錯(cuò)誤;B、因?yàn)閎<0<a,所以ab<0,故選項(xiàng)B錯(cuò)誤;C、因?yàn)閎<-1<0<a<1,所以1a+1D、因?yàn)閎<-1<0<a<1,所以1a-1故選C.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸的對(duì)應(yīng)關(guān)系,數(shù)軸上右邊的數(shù)總是大于左邊的數(shù).7、C【解析】分析:直接利用冪的乘方運(yùn)算法則以及同底數(shù)冪的除法運(yùn)算法則、單項(xiàng)式乘以單項(xiàng)式和合并同類項(xiàng)法則.詳解:A、(b2)3=b6,故此選項(xiàng)錯(cuò)誤;B、x3÷x3=1,故此選項(xiàng)錯(cuò)誤;C、5y3?3y2=15y5,正確;D、a+a2,無法計(jì)算,故此選項(xiàng)錯(cuò)誤.故選C.點(diǎn)睛:此題主要考查了冪的乘方運(yùn)算以及同底數(shù)冪的除法運(yùn)算、單項(xiàng)式乘以單項(xiàng)式和合并同類項(xiàng),正確掌握相關(guān)運(yùn)算法則是解題關(guān)鍵.8、B【解析】
根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進(jìn)而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故選:B.【點(diǎn)睛】本題考查角平分線的定義(從一個(gè)角的頂點(diǎn)引出一條射線,把這個(gè)角分成兩個(gè)完全相同的角,這條射線叫做這個(gè)角的角平分線),直角三角形的判定(有一個(gè)角為90°的三角形是直角三角形)以及勾股定理的運(yùn)用,解題的關(guān)鍵是首先證明出△ECF為直角三角形.9、A【解析】分析:A、根據(jù)方程的系數(shù)結(jié)合根的判別式,可得出△>0,由此即可得出x1≠x2,結(jié)論A正確;B、根據(jù)根與系數(shù)的關(guān)系可得出x1+x2=a,結(jié)合a的值不確定,可得出B結(jié)論不一定正確;C、根據(jù)根與系數(shù)的關(guān)系可得出x1?x2=﹣2,結(jié)論C錯(cuò)誤;D、由x1?x2=﹣2,可得出x1<0,x2>0,結(jié)論D錯(cuò)誤.綜上即可得出結(jié)論.詳解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,結(jié)論A正確;B、∵x1、x2是關(guān)于x的方程x2﹣ax﹣2=0的兩根,∴x1+x2=a,∵a的值不確定,∴B結(jié)論不一定正確;C、∵x1、x2是關(guān)于x的方程x2﹣ax﹣2=0的兩根,∴x1?x2=﹣2,結(jié)論C錯(cuò)誤;D、∵x1?x2=﹣2,∴x1<0,x2>0,結(jié)論D錯(cuò)誤.故選A.點(diǎn)睛:本題考查了根的判別式以及根與系數(shù)的關(guān)系,牢記“當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根”是解題的關(guān)鍵.10、B【解析】
圓內(nèi)接正六邊形的邊長(zhǎng)是1,即圓的半徑是1,則圓的內(nèi)接正方形的對(duì)角線長(zhǎng)是2,進(jìn)而就可求解.【詳解】解:∵圓內(nèi)接正六邊形的邊長(zhǎng)是1,∴圓的半徑為1.那么直徑為2.圓的內(nèi)接正方形的對(duì)角線長(zhǎng)為圓的直徑,等于2.∴圓的內(nèi)接正方形的邊長(zhǎng)是1.故選B.【點(diǎn)睛】本題考查正多邊形與圓,關(guān)鍵是利用知識(shí)點(diǎn):圓內(nèi)接正六邊形的邊長(zhǎng)和圓的半徑相等;圓的內(nèi)接正方形的對(duì)角線長(zhǎng)為圓的直徑解答.11、A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,則cosB==,故選A12、B【解析】分析:根據(jù)同底數(shù)冪的乘法計(jì)算即可,計(jì)算時(shí)注意確定符號(hào).詳解:(-a2)·a5=-a7.故選B.點(diǎn)睛:本題考查了同底數(shù)冪的乘法,熟練掌握同底數(shù)的冪相乘,底數(shù)不變,指數(shù)相加是解答本題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、x=﹣1【解析】
根據(jù)拋物線的對(duì)稱軸公式可直接得出.【詳解】解:這里a=m,b=2m∴對(duì)稱軸x=故答案為:x=-1.【點(diǎn)睛】解答本題關(guān)鍵是識(shí)記拋物線的對(duì)稱軸公式x=.14、.【解析】試題分析:根據(jù)翻轉(zhuǎn)變換的性質(zhì)得到∠AFE=∠D=90°,AF=AD=5,根據(jù)矩形的性質(zhì)得到∠EFC=∠BAF,根據(jù)余弦的概念計(jì)算即可.由翻轉(zhuǎn)變換的性質(zhì)可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案為:.考點(diǎn):軸對(duì)稱的性質(zhì),矩形的性質(zhì),余弦的概念.15、【解析】
直接利用已知得出所有的弧的半徑為3,所有圓心角的和為:菱形的內(nèi)角和,即可得出答案.【詳解】由題意可得:所有的弧的半徑為3,所有圓心角的和為:菱形的內(nèi)角和,故圖中陰影部分的周長(zhǎng)是:6π.故答案為6π.【點(diǎn)睛】本題考查了弧長(zhǎng)的計(jì)算以及菱形的性質(zhì),正確得出圓心角是解題的關(guān)鍵.16、18°【解析】
由折疊的性質(zhì)可得∠ABC=∠CBD,根據(jù)在同圓和等圓中,相等的圓周角所對(duì)的弧相等可得,再由和半圓的弧度為180°可得的度數(shù)×5=180°,即可求得的度數(shù)為36°,再由同弧所對(duì)的圓周角的度數(shù)為其弧度的一半可得∠B=18°.【詳解】解:由折疊的性質(zhì)可得∠ABC=∠CBD,∴,∵,∴的度數(shù)+的度數(shù)+的度數(shù)=180°,即的度數(shù)×5=180°,∴的度數(shù)為36°,∴∠B=18°.故答案為:18.【點(diǎn)睛】本題考查了折疊的性質(zhì):折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.還考查了圓弧的度數(shù)與圓周角之間的關(guān)系.17、2.【解析】
由tan∠CBD==設(shè)CD=3a、BC=4a,據(jù)此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.【詳解】解:在Rt△BCD中,∵tan∠CBD==,
∴設(shè)CD=3a、BC=4a,
則BD=AD=5a,
∴AC=AD+CD=5a+3a=8a,
在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,
解得:a=或a=-(舍),
則BD=5a=2,
故答案為2.【點(diǎn)睛】本題考查線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì),勾股定理的應(yīng)用,解題關(guān)鍵是熟記性質(zhì)與定理并準(zhǔn)確識(shí)圖.18、2.【解析】試題分析:已知方程x2-2x=0有兩個(gè)相等的實(shí)數(shù)根,可得:△=4-4(m-1)=-4m+8=0,所以,m=2.考點(diǎn):一元二次方程根的判別式.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析(2)不公平。理由見解析【解析】解:(1)畫樹狀圖得:所有得到的三位數(shù)有24個(gè),分別為:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,,413,421,423,431,432。(2)這個(gè)游戲不公平。理由如下:∵組成的三位數(shù)中是“傘數(shù)”的有:132,142,143,231,241,243,341,342,共有8個(gè),∴甲勝的概率為824=1∵甲勝的概率≠乙勝的概率,∴這個(gè)游戲不公平。(1)首先根據(jù)題意畫出樹狀圖,由樹狀圖即可求得所有可能得到的三位數(shù)。(2)由(1),可求得甲勝和乙勝的概率,比較是否相等即可得到答案。20、(1)見解析;(2)見解析;(3)1.【解析】
(1)如圖2,延長(zhǎng)AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如圖3,延長(zhǎng)AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如圖4,延長(zhǎng)A2A3交A5A4于C,延長(zhǎng)A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出規(guī)律即可解答【詳解】(1)如圖2,延長(zhǎng)AB交CD于E,則∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,∴∠ABC=∠A+∠C+∠D;(2)如圖3,延長(zhǎng)AB交CD于G,則∠ABC=∠BGC+∠C,∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;(3)如圖4,延長(zhǎng)A2A3交A5A4于C,延長(zhǎng)A3A2交A1An于B,則∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.故答案為1.【點(diǎn)睛】此題考查多邊形的內(nèi)角和外角,,解題的關(guān)鍵是熟練掌握三角形的外角的性質(zhì),屬于中考??碱}型21、(1)∠D=32°;(2)①BE=;②【解析】
(Ⅰ)連接OC,CD為切線,根據(jù)切線的性質(zhì)可得∠OCD=90°,根據(jù)圓周角定理可得∠AOC=2∠ABC=29°×2=58°,根據(jù)直角三角形的性質(zhì)可得∠D的大小.(Ⅱ)①根據(jù)∠D=30°,得到∠DOC=60°,根據(jù)∠BAO=15°,可以得出∠AOB=150°,進(jìn)而證明△OBC為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得出根據(jù)圓周角定理得出根據(jù)含角的直角三角形的性質(zhì)即可求出BE的長(zhǎng);②根據(jù)四邊形ABCD的面積=S△OBC+S△OCD﹣S△OAB進(jìn)行計(jì)算即可.【詳解】(Ⅰ)連接OC,∵CD為切線,∴OC⊥CD,∴∠OCD=90°,∵∠AOC=2∠ABC=29°×2=58°,∴∠D=90°﹣58°=32°;(Ⅱ)①連接OB,在Rt△OCD中,∵∠D=30°,∴∠DOC=60°,∵∠BAO=15°,∴∠OBA=15°,∴∠AOB=150°,∴∠OBC=150°﹣60°=90°,∴△OBC為等腰直角三角形,∴∵在Rt△CBE中,∴②作BH⊥OA于H,如圖,∵∠BOH=180°﹣∠AOB=30°,∴∴四邊形ABCD的面積=S△OBC+S△OCD﹣S△OAB【點(diǎn)睛】考查切線的性質(zhì),圓周角定理,等腰直角三角形的判定與性質(zhì),含角的等腰直角三角形的性質(zhì),三角形的面積公式等,題目比較典型,綜合性比較強(qiáng),難度適中.22、(1)sinB=;(2)DE=1.【解析】
(1)在Rt△ABD中,利用勾股定理求出AB,再根據(jù)sinB=計(jì)算即可;(2)由EF∥AD,BE=2AE,可得,求出EF、DF即可利用勾股定理解決問題;【詳解】(1)在Rt△ABD中,∵BD=DC=9,AD=6,∴AB==3,∴sinB==.(2)∵EF∥AD,BE=2AE,∴,∴,∴EF=4,BF=6,∴DF=3,在Rt△DEF中,DE==1.考點(diǎn):1.解直角三角形的應(yīng)用;2.平行線分線段成比例定理.23、(1)見解析;(2)201,207,1【解析】試題分析:(1)先設(shè)出兩位自然數(shù)的十位數(shù)字,表示出這個(gè)兩位自然數(shù),和輪換兩位自然數(shù)即可;
(2)先表示出三位自然數(shù)和輪換三位自然數(shù),再根據(jù)能被5整除,得出b的可能值,進(jìn)而用4整除,得出c的可能值,最后用能被3整除即可.試題解析:(1)設(shè)兩位自然數(shù)的十位數(shù)字為x,則個(gè)位數(shù)字為2x,∴這個(gè)兩位自然數(shù)是10x+2x=12x,∴這個(gè)兩位自然數(shù)是12x能被6整除,∵依次輪換個(gè)位數(shù)字得到的兩位自然數(shù)為10×2x+x=21x∴輪換個(gè)位數(shù)字得到的兩位自然數(shù)為21x能被7整除,∴一個(gè)兩位自然數(shù)的個(gè)位數(shù)字是十位數(shù)字的2倍,這個(gè)兩位自然數(shù)一定是“輪換數(shù)”.(2)∵三位自然數(shù)是3的一個(gè)“輪換數(shù)”,且a=2,∴100a+10b+c能被3整除,即:10b+c+200能被3整除,第一次輪換得到的三位自然數(shù)是100b+10c+a能被4整除,即100b+10c+2能被4整除,第二次輪換得到的三位自然數(shù)是100c+10a+b能被5整除,即100c+b+20能被5整除,∵100c+b+20能被5整除,∴b+20的個(gè)位數(shù)字不是0,便是5,∴b=0或b=5,當(dāng)b=0時(shí),∵100b+10c+2能被4整除,∴10c+2能被4整除,∴c只能是1,3,5,7,9;∴這個(gè)三位自然數(shù)可能是為201,203,205,207,209,而203,205,209不能被3整除,∴這個(gè)三位自然數(shù)為201,207,當(dāng)b=5時(shí),∵100b+10c+2能被4整除,∴10c+502能被4整除,∴c只能是1,5,7,9;∴這個(gè)三位自然數(shù)可能是為251,1,257,259,而251,257,259不能被3整除,∴這個(gè)三位自然數(shù)為1,即這個(gè)三位自然數(shù)為201,207,1.【點(diǎn)睛】此題是數(shù)的整除性,主要考查了3的倍數(shù),4的倍數(shù),5的倍數(shù)的特點(diǎn),解本題的關(guān)鍵是用5的倍數(shù)求出b的值.24、(1)①y=﹣x2+x+3;②P(,)或P'(,﹣);(2)≤a<1;【解析】
(1)①先判斷出△AOB≌△GBC,得出點(diǎn)C坐標(biāo),進(jìn)而用待定系數(shù)法即可得出結(jié)論;②分兩種情況,利用平行線(對(duì)稱)和直線和拋物線的交點(diǎn)坐標(biāo)的求法,即可得出結(jié)論;(2)同(1)②的方法,借助圖象即可得出結(jié)論.【詳解】(1)①如圖2,∵A(1,3),B(1,1),∴OA=3,OB=1,由旋轉(zhuǎn)知,∠ABC=91°,AB=CB,∴∠ABO+∠CBE=91°,過點(diǎn)C作CG⊥OB于G,∴∠CBG+∠BCG=91°,∴∠ABO=∠BCG,∴△AOB≌△GBC,∴CG=OB=1,BG=OA=3,∴OG=OB+BG=4∴C(4,1),拋物線經(jīng)過點(diǎn)A(1,3),和D(﹣2,1),∴,∴,∴拋物線解析式為y=﹣x2+x+3;②由①知,△AOB≌△EBC,∴∠BAO=∠CBF,∵∠POB=∠BAO,∴∠POB=∠CBF,如圖1,OP∥BC,∵B(1,1),C(4,1),∴直線BC的解析式為y=x﹣,∴直線OP的解析式為y=x,∵拋物線解析式為y=﹣x2+x+3;聯(lián)立解得,或(舍)∴P(,);在直線OP上取一點(diǎn)M(3,1),∴點(diǎn)M的對(duì)稱點(diǎn)M'(3,﹣1),∴直線OP'的解析式為y=﹣x,∵拋物線解析式為y=﹣x2+x+3;聯(lián)立解得,或(舍),∴P'(,﹣);(2)同(1)②的方法,如圖3,∵拋物線y=ax2+bx+c經(jīng)過點(diǎn)C(4,1),E(2,1),∴,∴,∴拋物線y=ax2﹣6ax+8a+1,令y=1,∴ax2﹣6ax+8a+1=1,∴x1×x2=∵符合條件的Q點(diǎn)恰好有2個(gè),∴方程ax2﹣6ax+8a+1=1有一個(gè)正根和一個(gè)負(fù)根或一個(gè)正根和1,∴x1×x2=≤1,∵a<1,∴8a+1≥1,∴a≥﹣,即:﹣≤a<1.【點(diǎn)睛】本題是二次函數(shù)綜合題,考查了待定系數(shù)法,全等三角形的判定和性質(zhì),平行線的性質(zhì),對(duì)稱的性質(zhì),解題的關(guān)鍵是求出直線和拋物線的交點(diǎn)坐標(biāo).25、小軍的證明:見解析;小俊的證明:見解析;[變式探究]見解析;[結(jié)論運(yùn)用]PG+PH的值為1;[遷移拓展](6+2)dm【解析】
小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過點(diǎn)P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據(jù)S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過點(diǎn)C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結(jié)論運(yùn)用]過點(diǎn)E作EQ⊥BC,先根據(jù)矩形的性質(zhì)求出BF,根據(jù)翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長(zhǎng)AD,BC交于點(diǎn)F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設(shè)DH=x,利用勾股定理求出x得到BH=6,再根據(jù)∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點(diǎn)即可得到答案.【詳解】小軍的證明:連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP+S△ACP,∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小俊的證明:過點(diǎn)P作PG⊥CF,如圖2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四邊形PDFG為矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,∴△PGC≌△CEP,∴CG=PE,∴CF=CG+FG=PE+PD;[變式探究]小軍的證明思路:連接AP,如圖③,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP﹣S△ACP,∴AB×CF=AB×PD﹣AC×PE,∵AB=AC,∴CF=PD﹣PE;小俊的證明思路:過點(diǎn)C,作CG⊥DP,如圖③,∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°,∴CF=GD,∠DGC=90°,四邊形CFDG是矩形,∵PE⊥AC,∴∠CEP=90°,∴∠CGP=∠CEP,∵CG⊥DP,AB⊥DP,∴∠CGP=∠BDP=90°,∴CG∥AB,∴∠GCP=∠B,∵AB=AC,∴∠B=∠ACB,∵∠ACB=∠PCE,∴∠GCP=∠ECP,在△CGP和△CEP中,,∴△CGP≌△CEP,∴PG=PE,∴CF=DG=DP﹣PG=DP﹣PE.[結(jié)論運(yùn)用]如圖④過點(diǎn)E作EQ⊥BC,∵四邊形ABCD是矩形,∴AD=BC,∠C=∠ADC=90°,∵AD=8,CF=3,∴BF=BC﹣CF=AD﹣CF=5,由折疊得DF=BF,∠BEF=∠DEF,∴DF=5,∵∠C=90°,∴DC==1,∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC,∴四邊形EQCD是矩形,∴EQ=DC=1,∵AD∥BC,∴∠DEF=∠EFB,∵∠BEF=∠DEF,∴∠BEF=∠EFB,∴BE=BF,由問題情景中的結(jié)論可得:PG+PH=EQ,∴PG+PH=1.∴PG+PH的值為1.[遷移拓展]延長(zhǎng)AD,BC交于點(diǎn)F,作BH⊥AF,如圖⑤,∵AD×CE=DE×BC,∴,∵ED⊥AD,EC⊥CB,∴∠ADE=∠BCE=90°,∴△ADE∽△BCE,∴∠A=∠CBE,∴FA=FB,由問題情景中的結(jié)論可得:ED+EC=BH,設(shè)DH=x,∴AH=AD+DH=3+x,∵BH⊥AF,∴∠BHA=90°,∴BH2=BD2﹣DH2=AB2﹣AH2,∵AB=2,AD=3,BD=,∴()2﹣x2=(2)2﹣(3+x)2,∴x=1,∴BH2=BD2﹣DH2=37﹣1=36,∴BH=6,∴ED+EC=6,∵∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點(diǎn),∴DM=EM=AE,CN=EN=BE,∴△DEM與△CEN的周長(zhǎng)之和=DE+DM+EM+CN+EN+EC=DE+AE+BE+EC=DE+AB+EC=DE+EC+AB=6+2,∴△DEM與△CEN的周長(zhǎng)之和(6+2)dm.【點(diǎn)睛】此題是一道綜合題,考查三角形全等的判定及性質(zhì),勾股定理,矩形的性質(zhì)定理,三角形的相似的判定及性質(zhì)定理,翻折的性質(zhì)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度淋浴房售后服務(wù)與技術(shù)支持合同8篇
- 二零二五版新能源股權(quán)質(zhì)押開發(fā)建設(shè)合同3篇
- 二零二五版鉆井工程地質(zhì)勘查合同書3篇
- 二零二五年度智能機(jī)器人試用買賣合同范本4篇
- 2025年牙齒正畸矯正器租賃與維修保養(yǎng)一體化服務(wù)合同模板下載2篇
- 2025年度旅游交通車輛安全檢查服務(wù)合同4篇
- 2025年度廠長(zhǎng)任期績(jī)效考核與晉升聘用合同4篇
- 2025年度煤炭產(chǎn)業(yè)居間服務(wù)合同范本4篇
- 2025年煤炭運(yùn)輸合同范本:煤炭運(yùn)輸與新能源技術(shù)研發(fā)合作協(xié)議4篇
- 2025年度食堂窗口節(jié)假日營(yíng)業(yè)保障合同
- ICU常見藥物課件
- CNAS實(shí)驗(yàn)室評(píng)審不符合項(xiàng)整改報(bào)告
- 農(nóng)民工考勤表(模板)
- 承臺(tái)混凝土施工技術(shù)交底
- 臥床患者更換床單-軸線翻身
- 計(jì)量基礎(chǔ)知識(shí)培訓(xùn)教材201309
- 中考英語(yǔ) 短文填詞、選詞填空練習(xí)
- 一汽集團(tuán)及各合資公司組織架構(gòu)
- 阿特拉斯基本擰緊技術(shù)ppt課件
- 初一至初三數(shù)學(xué)全部知識(shí)點(diǎn)
- 新課程理念下的班主任工作藝術(shù)
評(píng)論
0/150
提交評(píng)論