版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省威海市乳山市2024年中考數(shù)學押題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.在如圖的2016年6月份的日歷表中,任意框出表中豎列上三個相鄰的數(shù),這三個數(shù)的和不可能是()A.27 B.51 C.69 D.722.如圖,平面直角坐標中,點A(1,2),將AO繞點A逆時針旋轉90°,點O的對應點B恰好落在雙曲線y=kxA.2 B.3 C.4 D.63.一個正比例函數(shù)的圖象過點(2,﹣3),它的表達式為()A. B. C. D.4.如圖,矩形ABCD內接于⊙O,點P是上一點,連接PB、PC,若AD=2AB,則cos∠BPC的值為()A. B. C. D.5.如圖,△ABC中,∠B=70°,則∠BAC=30°,將△ABC繞點C順時針旋轉得△EDC.當點B的對應點D恰好落在AC上時,∠CAE的度數(shù)是()A.30° B.40° C.50° D.60°6.不等式組的解集是()A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤47.我國古代《易經(jīng)》一書中記載,遠古時期,人們通過在繩子上打結來記錄數(shù)量,即“結繩計數(shù)”.如圖,一位母親在從右到左依次排列的繩子上打結,滿七進一,用來記錄孩子自出生后的天數(shù),由圖可知,孩子自出生后的天數(shù)是()A.84 B.336 C.510 D.13268.設α,β是一元二次方程x2+2x-1=0的兩個根,則αβ的值是()A.2B.1C.-2D.-19.圖1是邊長為1的六個小正方形組成的圖形,它可以圍成圖2的正方體,則圖1中正方形頂點A,B在圍成的正方體中的距離是()A.0 B.1 C. D.10.直線y=3x+1不經(jīng)過的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題(本大題共6個小題,每小題3分,共18分)11.在△ABC中,∠C=90°,sinA=,BC=4,則AB值是_____.12.北京奧運會國家體育場“鳥巢”的建筑面積為258000平方米,那么258000用科學記數(shù)法可表示為.13.含45°角的直角三角板如圖放置在平面直角坐標系中,其中A(-2,0),B(0,1),則直線BC的解析式為______.14.如圖,在△ABC中,BC=8,高AD=6,矩形EFGH的一邊EF在邊BC上,其余兩個頂點G、H分別在邊AC、AB上,則矩形EFGH的面積最大值為_____.15.的相反數(shù)是_____,倒數(shù)是_____,絕對值是_____16.如圖,點D是線段AB的中點,點C是線段AD的中點,若CD=1,則AB=________________.三、解答題(共8題,共72分)17.(8分)閱讀下列材料,解答下列問題:材料1.把一個多項式化成幾個整式的積的形式,這種變形叫做因式分解,也叫分解因式.如果把整式的乘法看成一個變形過程,那么多項式的因式分解就是它的逆過程.公式法(平方差公式、完全平方公式)是因式分解的一種基本方法.如對于二次三項式a2+2ab+b2,可以逆用乘法公式將它分解成(a+b)2的形式,我們稱a2+2ab+b2為完全平方式.但是對于一般的二次三項式,就不能直接應用完全平方了,我們可以在二次三項式中先加上一項,使其配成完全平方式,再減去這項,使整個式子的值不變,于是有:x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)材料2.因式分解:(x+y)2+2(x+y)+1解:將“x+y”看成一個整體,令x+y=A,則原式=A2+2A+1=(A+1)2再將“A”還原,得:原式=(x+y+1)2.上述解題用到的是“整體思想”,整體思想是數(shù)學解題中常見的一種思想方法,請你解答下列問題:(1)根據(jù)材料1,把c2﹣6c+8分解因式;(2)結合材料1和材料2完成下面小題:①分解因式:(a﹣b)2+2(a﹣b)+1;②分解因式:(m+n)(m+n﹣4)+3.18.(8分)解不等式組:,并寫出它的所有整數(shù)解.19.(8分)如圖,平行四邊形ABCD的對角線AC,BD相交于點O,EF過點O且與AB、CD分別交于點E、F.求證:OE=OF.20.(8分)先化簡,后求值:a2?a4﹣a8÷a2+(a3)2,其中a=﹣1.21.(8分)如圖,在平面直角坐標中,點O是坐標原點,一次函數(shù)y1=kx+b與反比例函數(shù)y2=的圖象交于A(1,m)、B(n,1)兩點.(1)求直線AB的解析式;(2)根據(jù)圖象寫出當y1>y2時,x的取值范圍;(3)若點P在y軸上,求PA+PB的最小值.22.(10分)如圖,直線y=﹣x+3分別與x軸、y交于點B、C;拋物線y=x2+bx+c經(jīng)過點B、C,與x軸的另一個交點為點A(點A在點B的左側),對稱軸為l1,頂點為D.(1)求拋物線y=x2+bx+c的解析式.(2)點M(1,m)為y軸上一動點,過點M作直線l2平行于x軸,與拋物線交于點P(x1,y1),Q(x2,y2),與直線BC交于點N(x3,y3),且x2>x1>1.①結合函數(shù)的圖象,求x3的取值范圍;②若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,求m的值.23.(12分)如圖,已知拋物線y=x2﹣4與x軸交于點A,B(點A位于點B的左側),C為頂點,直線y=x+m經(jīng)過點A,與y軸交于點D.求線段AD的長;平移該拋物線得到一條新拋物線,設新拋物線的頂點為C′.若新拋物線經(jīng)過點D,并且新拋物線的頂點和原拋物線的頂點的連線CC′平行于直線AD,求新拋物線對應的函數(shù)表達式.24.對x,y定義一種新運算T,規(guī)定T(x,y)=(其中a,b是非零常數(shù),且x+y≠0),這里等式右邊是通常的四則運算.如:T(3,1)=,T(m,﹣2)=.填空:T(4,﹣1)=(用含a,b的代數(shù)式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.①求a與b的值;②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】設第一個數(shù)為x,則第二個數(shù)為x+7,第三個數(shù)為x+1.列出三個數(shù)的和的方程,再根據(jù)選項解出x,看是否存在.解:設第一個數(shù)為x,則第二個數(shù)為x+7,第三個數(shù)為x+1故三個數(shù)的和為x+x+7+x+1=3x+21當x=16時,3x+21=69;當x=10時,3x+21=51;當x=2時,3x+21=2.故任意圈出一豎列上相鄰的三個數(shù)的和不可能是3.故選D.“點睛“此題主要考查了一元一次方程的應用,解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系列出方程,再求解.2、B【解析】
作AC⊥y軸于C,ADx軸,BD⊥y軸,它們相交于D,有A點坐標得到AC=1,OC=1,由于AO繞點A逆時針旋轉90°,點O的對應B點,所以相當是把△AOC繞點A逆時針旋轉90°得到△ABD,根據(jù)旋轉的性質得AD=AC=1,BD=OC=1,原式可得到B點坐標為(2,1),然后根據(jù)反比例函數(shù)圖象上點的坐標特征計算k的值.【詳解】作AC⊥y軸于C,AD⊥x軸,BD⊥y軸,它們相交于D,如圖,∵A點坐標為(1,1),∴AC=1,OC=1.∵AO繞點A逆時針旋轉90°,點O的對應B點,即把△AOC繞點A逆時針旋轉90°得到△ABD,∴AD=AC=1,BD=OC=1,∴B點坐標為(2,1),∴k=2×1=2.故選B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)y=kx(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k3、A【解析】
利用待定系數(shù)法即可求解.【詳解】設函數(shù)的解析式是y=kx,根據(jù)題意得:2k=﹣3,解得:k=.∴函數(shù)的解析式是:.故選A.4、A【解析】
連接BD,根據(jù)圓周角定理可得cos∠BDC=cos∠BPC,又BD為直徑,則∠BCD=90°,設DC為x,則BC為2x,根據(jù)勾股定理可得BD=x,再根據(jù)cos∠BDC===,即可得出結論.【詳解】連接BD,∵四邊形ABCD為矩形,∴BD過圓心O,∵∠BDC=∠BPC(圓周角定理)∴cos∠BDC=cos∠BPC∵BD為直徑,∴∠BCD=90°,∵=,∴設DC為x,則BC為2x,∴BD===x,∴cos∠BDC===,∵cos∠BDC=cos∠BPC,∴cos∠BPC=.故答案選A.【點睛】本題考查了圓周角定理與勾股定理,解題的關鍵是熟練的掌握圓周角定理與勾股定理的應用.5、C【解析】
由三角形內角和定理可得∠ACB=80°,由旋轉的性質可得AC=CE,∠ACE=∠ACB=80°,由等腰的性質可得∠CAE=∠AEC=50°.【詳解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵將△ABC繞點C順時針旋轉得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故選C.【點睛】本題考查了旋轉的性質,等腰三角形的性質,熟練運用旋轉的性質是本題的關鍵.6、D【解析】試題分析:解不等式①可得:x>-1,解不等式②可得:x≤4,則不等式組的解為-1<x≤4,故選D.7、C【解析】由題意滿七進一,可得該圖示為七進制數(shù),化為十進制數(shù)為:1×73+3×72+2×7+6=510,故選:C.點睛:本題考查記數(shù)的方法,注意運用七進制轉化為十進制,考查運算能力,屬于基礎題.8、D【解析】試題分析:∵α、β是一元二次方程x2+2x-1=0的兩個根,∴αβ=考點:根與系數(shù)的關系.9、C【解析】試題分析:本題考查了勾股定理、展開圖折疊成幾何體、正方形的性質;熟練掌握正方形的性質和勾股定理,并能進行推理計算是解決問題的關鍵.由正方形的性質和勾股定理求出AB的長,即可得出結果.解:連接AB,如圖所示:根據(jù)題意得:∠ACB=90°,由勾股定理得:AB==;故選C.考點:1.勾股定理;2.展開圖折疊成幾何體.10、D【解析】
利用兩點法可畫出函數(shù)圖象,則可求得答案.【詳解】在y=3x+1中,令y=0可得x=-,令x=0可得y=1,∴直線與x軸交于點(-,0),與y軸交于點(0,1),其函數(shù)圖象如圖所示,∴函數(shù)圖象不過第四象限,故選:D.【點睛】本題主要考查一次函數(shù)的性質,正確畫出函數(shù)圖象是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、6【解析】
根據(jù)正弦函數(shù)的定義得出sinA=,即,即可得出AB的值.【詳解】∵sinA=,即,∴AB=1,故答案為1.【點睛】本題考查了解直角三角形,熟練掌握正弦函數(shù)的定義是解題的關鍵.12、2.58×1【解析】科學記數(shù)法就是將一個數(shù)字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數(shù).即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.258000=2.58×1.13、【解析】
過C作CD⊥x軸于點D,則可證得△AOB≌△CDA,可求得CD和OD的長,可求得C點坐標,利用待定系數(shù)法可求得直線BC的解析式.【詳解】如圖,過C作CD⊥x軸于點D.∵∠CAB=90°,∴∠DAC+∠BAO=∠BAO+∠ABO=90°,∴∠DAC=∠ABO.在△AOB和△CDA中,∵,∴△AOB≌△CDA(AAS).∵A(﹣2,0),B(0,1),∴AD=BO=1,CD=AO=2,∴C(﹣3,2),設直線BC解析式為y=kx+b,∴,解得:,∴直線BC解析式為yx+1.故答案為yx+1.【點睛】本題考查了待定系數(shù)法及全等三角形的判定和性質,構造全等三角形求得C點坐標是解題的關鍵.14、1【解析】
設HG=x,根據(jù)相似三角形的性質用x表示出KD,根據(jù)矩形面積公式列出二次函數(shù)解析式,根據(jù)二次函數(shù)的性質計算即可.【詳解】解:設HG=x.∵四邊形EFGH是矩形,∴HG∥BC,∴△AHG∽△ABC,∴=,即=,解得:KD=6﹣x,則矩形EFGH的面積=x(6﹣x)=﹣x2+6x=(x﹣4)2+1,則矩形EFGH的面積最大值為1.故答案為1.【點睛】本題考查的是相似三角形的判定和性質、二次函數(shù)的性質,掌握相似三角形的判定定理和性質定理是解題的關鍵.15、,【解析】∵只有符號不同的兩個數(shù)是互為相反數(shù),∴的相反數(shù)是;∵乘積為1的兩個數(shù)互為倒數(shù),∴的倒數(shù)是;∵負數(shù)得絕對值是它的相反數(shù),∴絕對值是故答案為(1).(2).(3).16、4【解析】∵點C是線段AD的中點,若CD=1,∴AD=1×2=2,∵點D是線段AB的中點,∴AB=2×2=4,故答案為4.三、解答題(共8題,共72分)17、(1)(c-4)(c-2);(2)①(a-b+1)2;②(m+n-1)(m+n-3).【解析】
(1)根據(jù)材料1,可以對c2-6c+8分解因式;(2)①根據(jù)材料2的整體思想可以對(a-b)2+2(a-b)+1分解因式;②根據(jù)材料1和材料2可以對(m+n)(m+n-4)+3分解因式.【詳解】(1)c2-6c+8=c2-6c+32-32+8=(c-3)2-1=(c-3+1)(c-3+1)=(c-4)(c-2);(2)①(a-b)2+2(a-b)+1設a-b=t,則原式=t2+2t+1=(t+1)2,則(a-b)2+2(a-b)+1=(a-b+1)2;②(m+n)(m+n-4)+3設m+n=t,則t(t-4)+3=t2-4t+3=t2-4t+22-22+3=(t-2)2-1=(t-2+1)(t-2-1)=(t-1)(t-3),則(m+n)(m+n-4)+3=(m+n-1)(m+n-3).【點睛】本題考查因式分解的應用,解題的關鍵是明確題意,可以根據(jù)材料中的例子對所求的式子進行因式分解.18、﹣2,﹣1,0,1,2;【解析】
首先解每個不等式,兩個不等式的解集的公共部分就是不等式組的解集;再確定解集中的所有整數(shù)解即可.【詳解】解:解不等式(1),得解不等式(2),得x≤2所以不等式組的解集:-3<x≤2它的整數(shù)解為:-2,-1,0,1,219、見解析【解析】
由四邊形ABCD是平行四邊形,根據(jù)平行四邊形對角線互相平分,即可得OA=OC,易證得△AEO≌△CFO,由全等三角形的對應邊相等,可得OE=OF.【詳解】證明:∵四邊形ABCD是平行四邊形,∴OA=OC,AB∥DC,∴∠EAO=∠FCO,在△AEO和△CFO中,∴△AEO≌△CFO(ASA),∴OE=OF.【點睛】本題考查了平行四邊形的性質和全等三角形的判定,屬于簡單題,熟悉平行四邊形的性質和全等三角形的判定方法是解題關鍵.20、1【解析】
先進行同底數(shù)冪的乘除以及冪的乘方運算,再合并同類項得到化簡后的式子,將a的值代入化簡后的式子計算即可.【詳解】原式=a6﹣a6+a6=a6,當a=﹣1時,原式=1.【點睛】本題主要考查同底數(shù)冪的乘除以及冪的乘方運算法則.21、(1)y=﹣x+4;(2)1<x<1;(1)2.【解析】
(1)依據(jù)反比例函數(shù)y2=(x>0)的圖象交于A(1,m)、B(n,1)兩點,即可得到A(1,1)、B(1,1),代入一次函數(shù)y1=kx+b,可得直線AB的解析式;(2)當1<x<1時,正比例函數(shù)圖象在反比例函數(shù)圖象的上方,即可得到當y1>y2時,x的取值范圍是1<x<1;(1)作點A關于y軸的對稱點C,連接BC交y軸于點P,則PA+PB的最小值等于BC的長,利用勾股定理即可得到BC的長.【詳解】(1)A(1,m)、B(n,1)兩點坐標分別代入反比例函數(shù)y2=(x>0),可得m=1,n=1,∴A(1,1)、B(1,1),把A(1,1)、B(1,1)代入一次函數(shù)y1=kx+b,可得,解得,∴直線AB的解析式為y=-x+4;(2)觀察函數(shù)圖象,發(fā)現(xiàn):當1<x<1時,正比例函數(shù)圖象在反比例函數(shù)圖象的上方,∴當y1>y2時,x的取值范圍是1<x<1.(1)如圖,作點A關于y軸的對稱點C,連接BC交y軸于點P,則PA+PB的最小值等于BC的長,過C作y軸的平行線,過B作x軸的平行線,交于點D,則Rt△BCD中,BC=,∴PA+PB的最小值為2.【點睛】本題考查的是反比例函數(shù)與一次函數(shù)的交點問題,根據(jù)函數(shù)圖象的上下位置關系結合交點的橫坐標,得出不等式的取值范圍是解答此題的關鍵.22、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值為或2.【解析】
(2)由直線y=﹣x+3分別與x軸、y交于點B、C求得點B、C的坐標,再代入y=x2+bx+c求得b、c的值,即可求得拋物線的解析式;(2)①先求得拋物線的頂點坐標為D(2,﹣2),當直線l2經(jīng)過點D時求得m=﹣2;當直線l2經(jīng)過點C時求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分當直線l2在x軸的下方時,點Q在點P、N之間和當直線l2在x軸的上方時,點N在點P、Q之間兩種情況求m的值即可.【詳解】(2)在y=﹣x+3中,令x=2,則y=3;令y=2,則x=3;得B(3,2),C(2,3),將點B(3,2),C(2,3)的坐標代入y=x2+bx+c得:,解得∴y=x2﹣4x+3;(2)∵直線l2平行于x軸,∴y2=y2=y3=m,①如圖①,y=x2﹣4x+3=(x﹣2)2﹣2,∴頂點為D(2,﹣2),當直線l2經(jīng)過點D時,m=﹣2;當直線l2經(jīng)過點C時,m=3∵x2>x2>2,∴﹣2<y3<3,即﹣2<﹣x3+3<3,得2<x3<4,②如圖①,當直線l2在x軸的下方時,點Q在點P、N之間,若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,則得PQ=QN.∵x2>x2>2,∴x3﹣x2=x2﹣x2,即x3=2x2﹣x2,∵l2∥x軸,即PQ∥x軸,∴點P、Q關于拋物線的對稱軸l2對稱,又拋物線的對稱軸l2為x=2,∴2﹣x2=x2﹣2,即x2=4﹣x2,∴x3=3x2﹣4,將點Q(x2,y2)的坐標代入y=x2﹣4x+3得y2=x22﹣4x2+3,又y2=y3=﹣x3+3∴x22﹣4x2+3=﹣x3+3,∴x22﹣4x2=﹣(3x2﹣4)即x22﹣x2﹣4=2,解得x2=,(負值已舍去),∴m=()2﹣4×+3=如圖②,當直線l2在x軸的上方時,點N在點P、Q之間,若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,則得PN=NQ.由上可得點P、Q關于直線l2對稱,∴點N在拋物線的對稱軸l2:x=2,又點N在直線y=﹣x+3上,∴y3=﹣2+3=2,即m=2.故m的值為或2.【點睛】本題是二次函數(shù)綜合題,本題為二次函數(shù)的綜合應用,涉及待定系數(shù)法、函數(shù)圖象的交點、線段的中點及分類討論思想等知識.在(2)中注意待定系數(shù)法的應用;在(2)①注意利用數(shù)形結合思想;在(2)②注意分情況討論.本題考查知識點較多,綜合性較強,難度較大
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年食堂信息化管理及服務外包合同5篇
- 2025年度購物中心物業(yè)管理員勞動合同3篇
- 二零二五版泰康人壽保險產(chǎn)品推廣合同范本3篇
- 2025年度木工項目投資與建設合同4篇
- 2025年度定制化木模板木方定制加工及銷售合同4篇
- 印刷材料的科技創(chuàng)新與應用考核試卷
- 2025版老舊建筑幕墻改造升級合同范文4篇
- 2025年醫(yī)療病例管理協(xié)議
- 2025年度美發(fā)店客戶滿意度調查與服務提升合同8篇
- 2025年食堂檔口租賃及市場營銷合作合同范本3篇
- 電纜擠塑操作手冊
- 浙江寧波鄞州區(qū)市級名校2025屆中考生物全真模擬試卷含解析
- IATF16949基礎知識培訓教材
- 【MOOC】大學生創(chuàng)新創(chuàng)業(yè)知能訓練與指導-西北農(nóng)林科技大學 中國大學慕課MOOC答案
- 勞務派遣公司員工考核方案
- 基礎生態(tài)學-7種內種間關系
- 2024年光伏農(nóng)田出租合同范本
- 《阻燃材料與技術》課件 第3講 阻燃基本理論
- 2024-2030年中國黃鱔市市場供需現(xiàn)狀與營銷渠道分析報告
- 新人教版九年級化學第三單元復習課件
- 江蘇省南京鼓樓區(qū)2024年中考聯(lián)考英語試題含答案
評論
0/150
提交評論